Investigation of Shear Lag Effect in High-Rise Buildings with Diagrid System

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of Shear Lag Effect in High-Rise Buildings with Diagrid System Investigation of Shear Lag Effect in High-rise Buildings with Diagrid System by Johan Leonard B.S., Civil Engineering (2004) Illinois Institute of Technology Submitted to the Department of Civil and Environmental Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Civil and Environmental Engineering at the Massachusetts Institute of Technology June 2007 © 2007 Johan Leonard All rights reserved The author hereby grants MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created Signature of Author .......................................................................................................... Department of Civil and Environmental Engineering May 21, 2007 Certified by ...................................................................................................................... Jerome J. Connor Professor of Civil and Environmental Engineering Thesis Supervisor Accepted by ..................................................................................................................... Daniele Veneziano Chairman, Departmental Committee for Graduate Students Investigation of Shear Lag Effect in High-rise Buildings with Diagrid System by Johan Leonard B.S., Civil Engineering (2004) Illinois Institute of Technology Submitted to the Department of Civil and Environmental Engineering in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Civil and Environmental Engineering ABSTRACT In the recent years, there have been many new skyscrapers built which soar into new heights. The most efficient building system for high-rises has been the framed tube system. However, the framed tube building suffers from shear lag effects which cause a nonlinear distribution of axial stresses along the face of the building. A particular structural system called a diagrid system has caught the attention of the public. The diagrid system is not a new invention. The idea had been around since 1960 and few buildings have been built with the diagrid system. However, the implementation in a larger scale of such tall building was not practical due to high cost related to the difficult node connections. It is only in recent years that the technology has allowed for more reasonable cost of making the diagrid node connections. Despite becoming the new trend in high-rise structures, there are not many technical publications related to diagrid building system. A recent thesis by Moon (2005) studied the various angles of the diagrid to find optimum angle. He has also reviewed the design considerations for diagrid building. This thesis attempts to build on the study by Moon related to the shear lag effect in diagrid building. Diagrid buildings of different configuration are modeled in SAP2000 and analyzed for shear lag effect and structural performance. Thesis Supervisor: Jerome J. Connor Professor of Civil and Environmental Engineering Acknowledgements I would like to thank my family for their unwavering support. Without their prayers and support I would not have the chance to study in United States. Because of their support I also have the chance to study in the best institute in the world at MIT. I would like to thank all the professors and TA that I have encountered in my study at MIT. They have made me a better engineer. Special thanks to Professor Jerome Connor for his guidance throughout my study at MIT. He was a great teacher both inside and outside the classroom. I also would like to thank all of my friends. To each one of the M.Eng/The Mafia. Thanks for a great year. Each one of you was a great company in tough times and fun times. It was a pleasure to study with all of you, and play basketball and softball together. Thanks to Keith Coleman for being my partner in studying and doing all of our schoolwork. I would like to also thank other friends who have supported me even though they were not present in person, those who kept me company in my late night studies. Table of Contents Chapter 1: Introduction....................................................................................................8 Chapter 2: Shear Lag Effect...........................................................................................10 2.1 Introduction to Shear Lag ....................................................................................10 2.2 Shear Lag in Framed Tube Structure....................................................................13 Chapter 3: Diagrid Building System ..............................................................................19 Chapter 4: Modeling and Analysis.................................................................................23 4.1 Analysis Method..................................................................................................23 4.2 Analysis and Results............................................................................................25 4.3 Parametric Study .................................................................................................27 4.3.1 Angle Variation.............................................................................................27 4.3.2 Diagrid Density Variation .............................................................................32 4.4 Discussions..........................................................................................................35 Chapter 5: Conclusion ...................................................................................................41 Appendix A...................................................................................................................45 Appendix B...................................................................................................................49 4 List of Figures Figure 2-1: Axial Stress Distribution in Beam Structure ................................................10 Figure 2-2: Negative Shear Lag.....................................................................................11 Figure 2-3: Top Flange Stresses for Concentrated Load at Midspan...............................12 Figure 2-4: Deformed Shape of Flange..........................................................................12 Figure 2-5: Linearly Distributed Load Divided into 2 Load Cases .................................13 Figure 2-6: Stress Resultant at Point of Load Separation................................................13 Figure 2-7: Shear Lag in Framed Tube Building............................................................14 Figure 2-8: Variation of (ΔF)1 and (ΔF)2 along Height of Building ................................16 Figure 2-9: Axial Forces in Flange of 40 Story Building................................................16 Figure 2-10: Mega Bracings in Framed Tube Buildings.................................................18 Figure 2-11: Belt Truss in Framed Tube Building..........................................................18 Figure 3-1: CCTV Headquarters, Beijing.......................................................................20 Figure 3-2: Swiss Re, London .......................................................................................20 Figure 3-3: Hearst Tower, New York ............................................................................21 Figure 3-4: Kaiserslautern Landmark, Germany ............................................................21 Figure 4-1: 71.6° Diagrid Model....................................................................................24 Figure 4-2: Diagrid Building Model ..............................................................................24 Figure 4-3: Axial Stress Distribution in Flange Panel ....................................................26 Figure 4-4: Axial Stress Distribution in Web Panel........................................................26 Figure 4-5: Deflection of Diagrid Models for Various Angles .......................................29 Figure 4-6: Shear Lag Ratio in Diagrid Structure for Various Angles ............................29 Figure 4-7: Lateral Structure Weight for Various Diagrid Angles ..................................30 Figure 4-8: Deflection of Diagrid Models vs. Lateral Structure Weight .........................31 Figure 4-9: Lateral Structure Weight for Various Diagrid Densities...............................33 Figure 4-10: Shear Lag Ratio in Diagrid Structure for Various Diagrid Densities ..........33 Figure 4-11: Lateral Structure Weight for Various Diagrid Densities.............................34 Figure 4-12: Deflection of Diagrid Models vs. Lateral Structure Weight........................35 Figure 4-13: Tension Flange Axial Stresses...................................................................36 5 Figure 4-14: Web Panel Axial Stresses ..........................................................................36 Figure 4-15: Top Half of the Tension Flange Panel........................................................37 Figure 4-16: Bottom Half of the Tension Flange Panel ..................................................37 Figure 4-17: Compression Member ...............................................................................38 Figure 4-18: Box Panels Unfolded Showing Only Compression Components................38 Figure 4-19: Number of Nodes in Diagrid Building for Various Angles.........................39 Figure 4-20: Number of Nodes for Various Diagrid Densities
Recommended publications
  • Lbbert Wayne Wamer a Thesis Presented to the Graduate
    I AN ANALYSIS OF MULTIPLE USE BUILDING; by lbbert Wayne Wamer A Thesis Presented to the Graduate Committee of Lehigh University in Candidacy for the Degree of Master of Science in Civil Engineering Lehigh University 1982 TABLE OF CCNI'ENTS ABSI'RACI' 1 1. INTRODlCI'ICN 2 2. THE CGJCEPr OF A MULTI-USE BUILDING 3 3. HI8rORY AND GRami OF MULTI-USE BUIIDINCS 6 4. WHY MULTI-USE BUIIDINCS ARE PRACTICAL 11 4.1 CGVNI'GJN REJUVINATICN 11 4. 2 EN'ERGY SAVIN CS 11 4.3 CRIME PREVENTIOO 12 4. 4 VERI'ICAL CANYOO EFFECT 12 4. 5 OVEOCRO'IDING 13 5. DESHN CHARACTERisriCS OF MULTI-USE BUILDINCS 15 5 .1 srRlCI'URAL SYSI'EMS 15 5. 2 AOCHITECI'URAL CHARACTERisriCS 18 5. 3 ELEVATOR CHARACTERisriCS 19 6. PSYCHOI..OCICAL ASPECTS 21 7. CASE srUDIES 24 7 .1 JOHN HANCOCK CENTER 24 7 • 2 WATER TOiVER PlACE 25 7. 3 CITICORP CENTER 27 8. SUMMARY 29 9. GLOSSARY 31 10. TABLES 33 11. FIGJRES 41 12. REFERENCES 59 VITA 63 iii ACKNCMLEI)(}IIENTS The author would like to express his appreciation to Dr. Lynn S. Beedle for the supervision of this project and review of this manuscript. Research for this thesis was carried out at the Fritz Engineering Laboratory Library, Mart Science and Engineering Library, and Lindennan Library. The thesis is needed to partially fulfill degree requirenents in Civil Engineering. Dr. Lynn S. Beedle is the Director of Fritz Laboratory and Dr. David VanHom is the Chainnan of the Department of Civil Engineering. The author wishes to thank Betty Sumners, I:olores Rice, and Estella Brueningsen, who are staff menbers in Fritz Lab, for their help in locating infonnation and references.
    [Show full text]
  • Braced Tube Structural System: a Review
    International Journal of Scientific & Engineering Research, Volume 6, Issue 12, December-2015 484 ISSN 2229-5518 Braced tube Structural System: A Review Hardik J. Patel Prof. A. R. Darji PROF. (DR.). K. B. PARIKH PG Student, M.E. Structure M.E. Structure engineer,, Assistant Head of Department, engineer Professor Government Engineering Government Engineering College, Government Engineering College, College, Dahod, Gujarat, Dahod, Gujarat, India. Applied Mechanics Department, India. Abstract: The advanced construction technologies, evolution of efficient structural system, necessity of vertical growth because of scarcity of urban land and rapidly increasing population caused the development of the high rise buildings all over the world. Lateral loads i.e. earthquake loads and wind loads requires special attention in design of high rise buildings along with gravitational loading. Lateral loads can be taken care by interior structural system or exterior structural system. Generally shear wall core, braced frame and their combination with other frames are interior structural systems where lateral load is borne by centrally located structural elements. While framed tube, braced tube structural system bear lateral loads by the elements provided on periphery of the buildings. It is very much important that the selected structural system must be optimized and should utilize structural elements effectively while satisfying design requirements. In the past decades, the Braced tube structural system is widely adopted and used for the construction of tall steel buildings due to its structural efficiency and aesthetic potential provided by the unique geometric configuration of the system. Compared to closely-spaced vertical columns in framed tube, Braced tube structural system consists of widely spaced column with inclined X- brace members on the exterior surface of building.
    [Show full text]
  • Structural Development of Skyscrapers
    STRUCTURAL DEVELOPMENT OF SKYSCRAPERS 1ABHISHEK GUPTA, 2S.M. GUPTA 1,2NIT KURUKSHETRA, HARYANA, INDIA E-mail: [email protected], [email protected] Abstract- This paper presents a review on the evolution of the structural system of skyscrapers from earlier to the modern and the effects of this on the society and environment Keywords- Skyscrapper/Tall Buildings, Height Premium, Internal, external and hybrid structural system, Building Loads, Shear Walls, lateral rigidity, Lateral Sway, Floor Vibration I. INTRODUCTION iron. The inventor Henry Bessemer took out a patent on the process in 1855. Tall buildings emerged in the late nineteenth century In 1857, Elisha Otis and the Otis Elevator Company in the United States of America. They constituted a began manufacturing passenger elevators. Invention so-called “American Building Type,” meaning that of Elevator allowed vertical transportation of people most important tall buildings were built in the U.S.A. and goods without stair Today, however, they are a worldwide architectural Chicago is the birthplace of the skyscraper The Home phenomenon. Many tall buildings are built Insurance building (1885) in Chicago, (ten storied worldwide, especially in Asian countries, such as with 42 meter in height) is generally referred as the China, Korea, Japan, and Malaysia. first high rise building (Architect :William Jenney) The Home Insurance Building was built followed by The distribution of tall buildings has changed the Great Chicago Fire, 1871 radically with Asia now having the largest share with • The physical envelope of construction was 38%, and North America’s at 22%(Fig. 1). This data traditional load-bearing system. demonstrates the rapid growth of tall building • Thick masonry external walls creates comfortable construction in Asian while North American indoor thermal environment construction has slowed.
    [Show full text]
  • Burj Khalifa Tower
    Burj Khalifa Tower The tallest structure in the world, standing at 2,722 ft (830 meters), just over 1/2 mile high, Burj Khalifa (Khalifa Tower) opened in 2010 as a centerpiece building in a large-scale, mixed-use development called Downtown Dubai. The building originally referred to as Dubai Tower was renamed in honor of the president of the United Arab Emirates, Khalifa bin Zayed Al Nahyan. Burj Khalifa Dubai, United Arab Emirates Architecture Style Modern Skyscraper | Neo-Futurism Glass, Steel, Aluminum & Reinforced Concrete Prominent Architecture Features Y-Shaped Floor Plan Maximizes Window Perimeter Areas for residential and hotel space Buttressed central core and wing design to support the height of the building 27 setbacks in a spiraling pattern Main Structure 430,000 cubic yards reinforced concrete and 61,000 tons rebar Foundation - 59,000 cubic yards concrete and 192 piles 164 ft (50 m) deep Highly compartmentalized, pressurized refuge floors for life safety Facade Aluminum and textured stainless steel spandrel panels with low-E glass Vertical polished stainless steel fins Observation Deck - 148th Floor PROJECT SUMMARY Project Description Burj Kahlifa, the tallest building in the world, has redefined the possibilities in the design, engineering, and construction of mega-tall buildings. Incorporating periodic setbacks at the ends of each wing, the tower tapers in an upward spiraling pattern that decreases is mass as the height of the tower increases. The building’s design included multiple wind tunnel tests and design adjustments to develop optimum performance relative to wind and natural forces. The building serves as a model for the concept of future, compact, livable, urban centers with direct connections to mass transit systems.
    [Show full text]
  • Construction History of the Composite Framed Tube Structural System
    Proceedings of the First International Congress on Construction History, Madrid, 20th-24th January 2003, ed. S. Huerta, Madrid: I. Juan de Herrera, SEdHC, ETSAM, A. E. Benvenuto, COAM, F. Dragados, 2003. Construction history of the composite framed tube structural system Richard A. Ellis David P. Billington This paper examines the construction history of tall primary lateral structural system. As a result, the building s designed during the latter portion of the potential applications for composite construction are twentieth century. Fazlur Khan was able to capitalize numerous, especially with the renewed awareness of on the inherent strengths of steel and concrete by fire protection concems in high-rise structures. using them in conjunction with a framed tube system. Study of such innovations allows us to see how This idea involves a novel construction process, they came into being, how individual engineers which takes advantage of the virtues of structural contributed to their success, and how the local steel and reinforced concrete. Early applications of construction constraints stimulated the search for this system in the mid-1960's were in the 35-story such new ideas. Gateway III Building in Chicago, Illinois and the 25 story CDC Building in Houston, Texas. Composite construction is now being used more frequently in the INTRODUCTlON design of high rise buildings. This paper will look closely at the construction history of the 52-story One Born in Dacca, Bangladesh, Fazlur Rahman Khan Shell Square Building in New Orleans, which was received his Bachelor of Engineering degree from the completed in 1971 and still stands as the tallest University of Dacca.
    [Show full text]
  • The-Hows-Whats-And-Wows-Of-Willis
    There are enough impressive facts about the When you get back to your school, we hope Willis Tower to make even the most worldly your students will send us photos or write or among us say, “Wow!” So many things at the create artwork about their experiences and Willis Tower can be described by a share them with us (via email or the mailing superlative: biggest, fastest, and longest. But address at the end of this guide). there is more to the building than all these “wows”: 1,450 sky-scraping, cloud-bumping One photo will be selected as the “Photo of feet of glass and steel, 43,000 miles of the Day” and displayed on our Skydeck telephone cable, 25,000 miles of plumbing, monitors for all to see. Artwork and writing 4.56 million square feet of floor space and a will posted on bulletin boards in the view of four states. lunchroom area. We would also love to have you and your students post you Skydeck Behind the “wows” are lots of “hows” and Chicago photos to the Skydeck Chicago pages “whats” for you and your students to on Facebook, Instagram, and Twitter. explore. In this guide you will be introduced to the building—its beginnings as the Sears As you get ready for your trip, please call us Tower and its design, construction and place with any questions at (312) 875-9447. We aim in the pantheon of skyscrapers. Its name to make your visit your best school trip ever. was recently changed to the Willis Tower, proudly reflecting the name of the global insurance broker who makes the Tower its Chicago home.
    [Show full text]
  • Fazlur R. Khan Lecture
    FAZLUR R. KHAN LECTURE 1 Life-Cycle and Sustainability of Civil Infrastructure Systems – Strauss, Frangopol & Bergmeister (Eds) © 2013 Taylor & Francis Group, London, ISBN 978-0-415-62126-7 Fazlur Khan’s legacy: Towers of the future M. Sarkisian Skidmore, Owings & Merrill LLP, San Francisco, USA ABSTRACT: Dr. Khan’s contributions to the design of tall buildings have had a profound impact on the pro- fession. Kahn had a unique understanding of forces, materials, behavior, as well as art, literature, and archi- tecture. Long before there was widespread focus on environmental issues, Kahn’s designs promoted structur- al efficiency and minimizing the use of materials resulting in the least carbon emission impact on the environment. Kahn was interested in the performance of structural systems over an expected life; recognizing a building’s life -cycle and issues of abnormal loading demands, he developed concepts to apply to severe wind environments as well as early concepts of seismic isolation of structures. These system ideas have led to the development of other concepts which have yielded buildings much taller than those considered by Kahn. His ideas have inspired others to expand the possibilities in tall building design, life-cycle engineering and the effects of the structures on the environment. However, the offer was subsequently withdrawn and he went on to become an Executive Engineer with 1 INTRODUCTION the Karachi Development Authority. Because he felt that his technical abilities where not fully uti- Inquisitive as a child, Fazlur Rahman Kahn was in- lized, Kahn returned to SOM in 1960 where he spent terested in form and how forms could be made.
    [Show full text]
  • Economics Planning of Super Tall Buildings in Asia Pacific Cities
    Economics Planning of Super Tall Buildings in Asia Pacific Cities Dr Paul H K HO, Hong Kong SAR, China Key words: economics planning, super tall building, Asia Pacific SUMMARY The purpose of this paper is to study the economics planning of super tall office buildings in Asia Pacific cities. This study is based on the case study of the Asia Pacific’s 10 tallest buildings which are distributed over six major cities. All are landmark buildings with similar functions. From the analysis of the collected data, the floor plate of these buildings is comparatively large, thus achieving a fairly high lettable to gross floor ratio of about 80% and low wall to floor area ratio of about 0.33. The most common lease span is approximately 12m with column-free between its service core and exterior window. The most common floor-to-floor height is about 4.0m. Square or similar plan is the most common geometry in super tall buildings since this geometry offers the same stiffness in both directions against lateral wind forces. Typically the building is in form of a large podium at lower levels with a setback in the overall floor plan dimension in the main tower and a slightly tapered shape at its top floors. The central core approach in which the core is designed as a structural element to provide stability is commonly used in super tall buildings. By using slip-form or jump-form techniques, a 3 to 4-day cycle is achievable for core wall construction which is similar to steel construction.
    [Show full text]
  • Signature Redacted Department of Civil and Environmental Engineering May 21, 2015
    TRENDS AND INNOVATIONS IN HIGH-RISE BUILDINGS OVER THE PAST DECADE ARCHIVES 1 by MASSACM I 1TT;r OF 1*KCHN0L0LGY Wenjia Gu JUL 02 2015 B.S. Civil Engineering University of Illinois at Urbana-Champaign, 2014 LIBRAR IES SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN CIVIL ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2015 C2015 Wenjia Gu. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known of hereafter created. Signature of Author: Signature redacted Department of Civil and Environmental Engineering May 21, 2015 Certified by: Signature redacted ( Jerome Connor Professor of Civil and Environmental Engineering Thesis Supervisor Accepted bv: Signature redacted ?'Hei4 Nepf Donald and Martha Harleman Professor of Civil and Environmental Engineering Chair, Departmental Committee for Graduate Students TRENDS AND INNOVATIONS IN HIGH-RISE BUILDINGS OVER THE PAST DECADE by Wenjia Gu Submitted to the Department of Civil and Environmental Engineering on May 21, 2015 in Partial Fulfillment of the Degree Requirements for Master of Engineering in Civil and Environmental Engineering ABSTRACT Over the past decade, high-rise buildings in the world are both booming in quantity and expanding in height. One of the most important reasons driven the achievement is the continuously evolvement of structural systems. In this paper, previous classifications of structural systems are summarized and different types of structural systems are introduced. Besides the structural systems, innovations in other aspects of today's design of high-rise buildings including damping systems, construction techniques, elevator systems as well as sustainability are presented and discussed.
    [Show full text]
  • The Hows, Whats and Wows of the Willis Tower a Guide for Teachers Skydeck Chicago
    THE HOWS, WHATS AND WOWS OF THE WILLIS TOWER A GUIDE FOR TEACHERS SKYDECK CHICAGO PROPERTY MANAGED BY U.S. EQUITIES ASSET MANAGEMENT LLC WELCOME TO SKYDECK CHICAGO AT WILLIS TOWER THE NATION’S TALLEST SCHOOL When you get back to your school, we hope your students will send us photos or write or create There are enough impressive facts about the Willis artwork about their experiences and share them Tower to make even the most worldly among us with us (via email or the mailing address at the end say, “Wow!” So many things at the Willis Tower can of this guide). We’ve got 110 stories already, and we be described by a superlative: biggest, fastest, would like to add your students’ experiences to our longest. But there is more to the building than all collection. these “wows”: 1,450 sky-scraping, cloud-bumping feet of glass and steel, 43,000 miles of telephone One photo will be selected as the “Photo of the cable, 25,000 miles of plumbing, 4.56 million Day” and displayed on our Skydeck monitors for all square feet of floor space and a view of four states. to see. Artwork and writing will posted on bulletin boards in the lunchroom area. Your students also Behind the “wows” are lots of “hows” and “whats” can post their Skydeck Chicago photos to the Willis for you and your students to explore. In this Tower or Skydeck Chicago pages on flickr, a free guide you will be introduced to the building—its public photo-sharing site: http://www.flickr.com/ beginnings as the Sears Tower and its design, photos/tags/willistower/ or http://www.flickr.com/ construction and place in the pantheon of photos/skydeckchicago/ skyscrapers.
    [Show full text]
  • Petronas Office Towers
    2Q6LWH5HYLHZ5HSRUW 0$/ E\*DODO$EDGD 3HWURQDV2I¿FH7RZHUV .XDOD/XPSXU0DOD\VLD $UFKLWHFW &HVDU3HOOLDQG$VVRFLDWHV &OLHQW .XDOD/DPSXU&LW\&HQWUH+ROGLQJ6GQ%KG 'HVLJQ &RPSOHWHG Petronas Towers Kuala Lumpur, Malaysia I. Introduction The Petronas Towers were designed to be the centrepiece of a larger complex called the Kuala Lumpur City Centre (KLCC), a mixed-use development with a site area of 14.15 acres, which includes the towers, two other office towers, underground parking and service facilities. The project site is well located in the heart of the commercial district of the city, the ‘Golden Triangle’. Each of the twin towers is eighty-eight storeys high and contains 218,000 square metres of floor space. Rising 452 metres, the towers were certified the world’s tallest buildings by the Council of Tall Buildings and Urban Habitat in 1996. The two towers are connected by a sky bridge at the forty-first and forty-second floors – the sky lobby levels – to facilitate inter-tower communication and traffic. A multi-storey shopping and entertainment galleria connects the office towers at their bases, integrating the entire complex. Other public functions within the complex include the Petroleum Discovery Centre, an art gallery, an 865- seat concert hall and a multimedia conference centre. II. Contextual Information A. Historical background In early 1981 the Malaysian Government decided to move the Selangor Turf Club and its horse-racing track from the heart of the city to the periphery and to redevelop the site to meet the demands of urban and economic growth. The site, occupying 100 acres of land in a burgeoning economic catchment area with access to the city‘s main ring road, offered an ideal location for the development of a new city centre that would reinforce Kuala Lumpur‘s emerging status as an international city in the twenty-first century.
    [Show full text]
  • Shear-Lag Effect and Its Effect on the Design of High-Rise Buildings
    E3S Web of Conferences 33, 02001 (2018) https://doi.org/10.1051/e3sconf/20183302001 HRC 2017 Shear-lag effect and its effect on the design of high-rise buildings Bui Thanh Dat1*, Alexander Traykov2, Marina Traykova3 1National University of Civil Engineering, Hanoi, Vietnam 2University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria 3University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria Abstract. For super high-rise buildings, the analysis and selection of suitable structural solutions are very important. The structure has not only to carry the gravity loads (self-weight, live load, etc.), but also to resist lateral loads (wind and earthquake loads). As the buildings become taller, the demand on different structural systems dramatically increases. The article considers the division of the structural systems of tall buildings into two main categories - interior structures for which the major part of the lateral load resisting system is located within the interior of the building, and exterior structures for which the major part of the lateral load resisting system is located at the building perimeter. The basic types of each of the main structural categories are described. In particular, the framed tube structures, which belong to the second main category of exterior structures, seem to be very efficient. That type of structure system allows tall buildings resist the lateral loads. However, those tube systems are affected by shear lag effect - a nonlinear distribution of stresses across the sides of the section, which is commonly found in box girders under lateral loads. Based on a numerical example, some general conclusions for the influence of the shear- lag effect on frequencies, periods, distribution and variation of the magnitude of the internal forces in the structure are presented.
    [Show full text]