A Review of the Diversity in Motor Control, Kinematics and Behaviour Paolo Domenici1,* and Melina E

Total Page:16

File Type:pdf, Size:1020Kb

A Review of the Diversity in Motor Control, Kinematics and Behaviour Paolo Domenici1,* and Melina E © 2019. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2019) 222, jeb166009. doi:10.1242/jeb.166009 REVIEW Escape responses of fish: a review of the diversity in motor control, kinematics and behaviour Paolo Domenici1,* and Melina E. Hale2 ABSTRACT 1978a; Weihs, 1973) and neural control (Eaton et al., 1977; Eaton and The study of fish escape responses has provided important insights Hackett, 1984), and it focused on a small number of species (mainly into the accelerative motions and fast response times of these animals. goldfish, trout and pike). As a result, fish escapes were seen as In addition, the accessibility of the underlying neural circuits has made stereotyped responses (Webb, 1984a). This basic high-acceleration the escape response a fundamental model in neurobiology. Fish escape response was described as occurring in three stages: stage 1 ‘ ’ escape responses were originally viewed as highly stereotypic all-or- (see Glossary), the preparatory stage, in which the body bends none behaviours. However, research on a wide variety of species has rapidly with minimal translation of the centre of mass; stage 2 (see ‘ ’ shown considerable taxon-specific and context-dependent variability Glossary), the propulsive stroke, when the fish accelerates away from in the kinematics and neural control of escape. In addition, escape-like its initial position; and stage 3, in which the fish either continues motions have been reported: these resemble escape responses swimming or starts gliding (Weihs, 1973). The first two stages have kinematically, but occur in situations that do not involve a response to a been the focus of most literature on escape response kinematics threatening stimulus. This Review focuses on the diversity of escape (Webb, 1976, 1978a, 1982, 1986; Weihs and Webb, 1984), although responses in fish by discussing recent work on: (1) the types of escape later work showed that escape responses can consist of stage 1 only responses as defined by kinematic analysis (these include C- and (i.e. single-bend responses as opposed to double-bend responses; S-starts, and single- versus double-bend responses); (2) the diversity Domenici and Blake, 1997). Stage 1 involves one of two distinct of neuromuscular control; (3) the variability of escape responses in motor patterns: during the C-start, the body takes on the shape of a ‘ ’ ‘ ’ terms of behaviour and kinematics within the context of predator−prey C , and in the S-start, the body bends into an S shape. interactions; and (4) the main escape-like motions observed in various Subsequent work on fish escape responses has addressed a broad species. Here, we aim to integrate recent knowledge on escape range of species, and has demonstrated wide kinematic variability responses and highlight rich areas for research. Rapidly developing across species. More recent work has also revealed the use of escape- approaches for studying the kinematics of swimming motion both in the like motions (see Glossary) that resemble escape responses but that lab and within the natural environment provide new avenues for occur in the absence of a frightening stimulus (Canfield and Rose, research on these critical and common behaviours. 1993; Domenici et al., 2015; Wohl and Schuster, 2007). Escape response studies have developed to include a number of variables that KEY WORDS: Escape response, Fish, Kinematics, Mauthner cells, add to the traditional ‘locomotor-type’ variables (e.g. speed and Swimming acceleration) to assess escape performance and its relevance in terms of vulnerability to predators (Domenici, 2010a; Walker et al., 2005). Introduction Escape traits that are relevant for successfully avoiding predation The past two decades have seen rapid developments in the ability to include the escape latency (see Glossary), the distance at which the explore behaviour and its neural basis in a wide range of species, prey react to the approaching predator and the directionality (see thanks to automated approaches to recording the movement of Glossary), in addition to locomotor traits. All of these traits may be individual animals and groups (Dell et al., 2014; Neuswanger et al., affected by the behavioural context, such as whether the prey is: (i) 2016; Olsen and Westneat, 2015; Shamur et al., 2016). Accordingly, part of a school, (ii) engaged in feeding or (iii) near a refuge the analysis of animal movement and behaviour has become less (Domenici, 2010a,b). In addition, dissection of the neural circuits labour intensive and more sophisticated, making use of machine driving escape has provided detailed understanding of the escape learning and ‘big data’ (Hong et al., 2015; Valletta et al., 2017). By circuit and variations in its structure and use; although Mauthner (M) taking advantage of these techniques we can hope to achieve an cells are the primary reticulospinal neuron responsible for triggering integrative view of behaviour – one that links kinematics to motor fast escape responses, escapes controlled by other reticulospinal control in multiple species – by deriving basic principles through neurons can also occur (Korn and Faber, 2005; Liu and Fetcho, 1999). species comparison. The escape response of fish has provided not only a prime example of One rich system for exploring behavioural diversity is the fish simple sensorimotor circuits and their evolutionary diversity, but escape response (see Glossary) and related accelerative behaviours also allows us to begin to understand a broad repertoire of high- (collectively termed ‘fast starts’; see Glossary). Early work on fish acceleration behaviours performed by a large number of fish species. escape responses was based on kinematics (Webb, 1975, 1976; Webb, Here, we review the diversity of escape and related behaviours and their neural underpinnings. We aim to synthesize current findings and provide a foundation for future work on accelerative behaviours in 1Organismal Biology Laboratory, IAS-CNR LocalitàSa Mardini, Torregrande, Oristano 09170, Italy. 2Department of Organismal Biology and Anatomy, University fish. Understanding the diversity in the motor control and kinematic of Chicago, Chicago, IL 60637, USA. output of high-acceleration movements is fundamental for furthering our knowledge of how fish swim. Even more broadly, it can provide a *Author for correspondence ([email protected]) window into how organisms evolve and coordinate suites of P.D., 0000-0003-3182-2579; M.E.H., 0000-0001-5194-1220 responses in a number of behavioural contexts. Journal of Experimental Biology 1 REVIEW Journal of Experimental Biology (2019) 222, jeb166009. doi:10.1242/jeb.166009 Escape kinematics: diversity of escape responses In the past couple of decades, multiple types of escape response (e.g. C-start, S-start, single bend, double bend) have been examined in Glossary depth (Domenici and Batty, 1997; Fleuren et al., 2018; Hale, 2002; Directionality Lefrançois et al., 2005; Spierts and Leeuwen, 1999; Tytell and Lauder, Escape responses can be divided into away and towards responses, 2002). Consequently, the fast-start nomenclature has proliferated. In when the head of the fish moves away from or towards the position of the order to clarify the nomenclature, we propose a simple Venn diagram threat, respectively. Directionality can be measured as the percentage of illustrating the current definitions of the fast-start behaviours discussed away responses out of the total number of trials. below (Fig. 1). As a response to a threat, fish typically show a startle Escape angle The angle between (a) the line corresponding to the fish’s orientation at response (see Glossary), which can consist of an escape response (a the time of the stimulation and (b) the line corresponding to the fish sudden acceleration), a head retraction or a freezing response (see swimming trajectory at the end of the escape response. Glossary). Of these, only escape responses involve locomotion and are Escape latency considered fast starts; head retraction and freezing are startle responses The time interval between the onset of the threatening stimulus and the but not fast starts. While escape responses can be considered a type of first visible reaction by the fish. fast start, not all fast starts are escape responses: fast starts can also be Escape response predator strikes (see Glossary) or other accelerative motions. Finally, An accelerative motion performed as a response to a sudden threat. All escape responses are fast-starts, although not all fast starts are escape predators not only use strikes to capture their prey, prey capture can responses. also be aided by suction feeding (Fig. 1; Norton and Brainerd, 1993). Escape trajectory The kinematics of the main escape response variants and other The angular sum of the stimulus angle and the escape angle. accelerative behaviours, along with the behavioural contexts within Escape-like motion which they are used and what is known about their neural control, are Any accelerative motion that resembles an escape response from a outlined below and illustrated in Fig. 2. kinematic perspective, but that is not triggered by a frightening, predator- like stimulus. Fast start Stage 1 kinematics: C-starts and S-starts An accelerative motion from resting or swimming, that can be observed The two most common stage 1 kinematic patterns are the C-start and during various behavioural contexts, including predator−prey encounters S-start. These are different behaviours with distinct motor programs (i.e. predator strikes, escape responses) and social interactions. (e.g. Hale, 2002; Liu and Hale, 2017). To discern a true S-start from a Freezing C-start it is critical to use electromyography or other physiological A startle response involving cessation of any pre-startle movement and a period when the fish is alert but unmoving. approaches to determine whether the pattern of bending in stage 1 is Mauthner cells (M-cells) actively generated, as water resistance can cause passive caudal Two giant neurons in the hindbrain of most fish species. They are known bending and result in an S-like bend from a C-start motor to control stage 1 of the escape response (although non-M-cell-mediated pattern.
Recommended publications
  • Evolutionary and Homeostatic Changes in Morphology of Visual Dendrites of Mauthner Cells in Astyanax Blind Cavefish
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.094680; this version posted May 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Research Article 2 Evolutionary and homeostatic changes in morphology of visual dendrites of 3 Mauthner cells in Astyanax blind cavefish 4 5 Zainab Tanvir1, Daihana Rivera1, Kristen E. Severi1, Gal Haspel1, Daphne Soares1* 6 7 1 Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark NJ 8 07102 9 10 11 12 Short Title: Astyanax Mauthner cell ventral dendrites 13 14 15 *Corresponding Author 16 Daphne Soares 17 Biological Sciences 18 New Jersey Institute of Technology 19 100 Summit street 20 Newark, NJ, 07102, USA 21 Tel: 973 596 6421 22 Fax: 23 E-mail: [email protected] 24 Keywords: Evolution, neuron, fish, homeostasis, adaptation 25 26 Abstract bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.094680; this version posted May 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 27 Mauthner cells are the largest neurons in the hindbrain of teleost fish and most amphibians. Each 28 cell has two major dendrites thought to receive segregated streams of sensory input: the lateral 29 dendrite receives mechanosensory input while the ventral dendrite receives visual input.
    [Show full text]
  • Loudness-Dependent Behavioral Responses and Habituation to Sound by the Longfin Squid (Doryteuthis Pealeii)
    1 2 Loudness-dependent behavioral responses and habituation to sound by the 3 longfin squid (Doryteuthis pealeii) 4 5 6 T. Aran Mooney1*, Julia E. Samson1, 2, Andrea D. Schlunk1 and Samantha Zacarias1 7 8 9 1Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA 10 2Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA 11 12 13 *Corresponding author: [email protected], (508) 289-2714 14 15 16 Keywords: noise, bioacoustics, soundscape, auditory scene, invertebrate 17 18 19 20 1 21 Abstract 22 Sound is an abundant cue in the marine environment, yet we know little regarding the 23 frequency range and levels which induce behavioral responses in ecologically key marine 24 invertebrates. Here we address the range of sounds that elicit unconditioned behavioral responses 25 in squid Doryteuthis pealeii, the types of responses generated, and how responses change over 26 multiple sound exposures. A variety of response types were evoked, from inking and jetting to 27 body pattern changes and fin movements. Squid responded to sounds from 80-1000 Hz, with 28 response rates diminishing at the higher and lower ends of this frequency range. Animals 29 responded to the lowest sound levels in the 200-400 Hz range. Inking, an escape response, was 30 confined to the lower frequencies and highest sound levels; jetting was more widespread. 31 Response latencies were variable but typically occurred after 0.36 s (mean) for jetting and 0.14 s 32 for body pattern changes; pattern changes occurred significantly faster. These results 33 demonstrate that squid can exhibit a range of behavioral responses to sound include fleeing, 34 deimatic and protean behaviors, all of which are associated with predator evasion.
    [Show full text]
  • Three-Dimensional Observations of Swarms of Antarctic Krill (Euphausia Superba) Made Using a Multi-Beam Echosounder
    ARTICLE IN PRESS Deep-Sea Research II 57 (2010) 508–518 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Three-dimensional observations of swarms of Antarctic krill (Euphausia superba) made using a multi-beam echosounder Martin J. Cox a,n, Joseph D. Warren b, David A. Demer c, George R. Cutter c, Andrew S. Brierley a a Pelagic Ecology Research Group, Gatty Marine Laboratory, University of St. Andrews, Fife KY16 8LB, Scotland, UK b School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Hwy, Southampton, NY 11968, USA c Advanced Survey Technology Program, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA article info abstract Article history: Antarctic krill (Euphausia superba) aggregate in dense swarms. Previous investigations of krill swarms Accepted 30 October 2009 have used conventional single- or split-beam echosounders that, with post-processing, provide a two- Available online 11 November 2009 dimensional (2-D) view of the water column, leaving the third dimension to be inferred. We used a multi-beam echosounder system (SM20, 200 kHz, Kongsberg Mesotech Ltd, Canada) from an inflatable Topical issue on ‘‘Krill Biology and Ecology.’’ boat (length=5.5 m) to sample water-column backscatter, particularly krill swarms, directly in 2-D and, The issue is compiled and guest-edited by the North Pacific Marine Science Organization (PICES), with post-processing, to provide a three dimensional (3-D) view of entire krill swarms. The study took International Council for the Exploration of the place over six days (2–8 February 2006) in the vicinity of Livingston Island, South Shetland Islands, Sea (ICES), and Global Ocean Ecosystem Antarctica (62.41S, 60.71W).
    [Show full text]
  • Temperament, Reward and Punishment Sensitivity, and Clinical Disorders: Implications for Behavioral Case Formulation and Therapy
    International Journal of Behavioral Consultation and Therapy Volume 1, No. 1, 2005 Temperament, reward and punishment sensitivity, and clinical disorders: Implications for behavioral case formulation and therapy Richard F. Farmer University of Canterbury Abstract Recent research in psychology, psychiatry and neuroscience has demonstrated reliable associations between temperament and individual differences in sensitivity and responsiveness to environmental cues and behavioral consequences. Temperament–influenced behavior patterns evident in infancy have also been found to predict behavioral tendencies in adulthood. Such observations suggest that neurophysiological structures and physiological events associated with temperament concepts exert a mediating or moderating influence between current environmental events and behavior. This paper summarizes relevant research on individual differences in sensitivity and responsiveness to environmental cues and behavioral consequences with reference to Jeffrey Gray’s neuropsychological theory of temperament. Implications of temperament research for behavioral case formulation and therapy are described. Key words. Temperament, reward sensitivity, punishment sensitivity, behavioral case formulation, behavior therapy The concept of temperament is emerging as a potentially important consideration in behavioral case formulation and therapy. There are at least three reasons why temperament may be important: (a) in a variety of studies temperament constructs have been linked to individual differences in reward and punishment sensitivity (e.g., Gray & McNaughton, 2000), (b) individual differences in temperament have been postulated to affect environments in which they are expressed, and that such environments, in turn, reciprocally affect future displays of temperamentally–influenced behavior (e.g., Rothbart, Ahadi, & Evans, 2000), and (c) temperament has emerged as an influential factor in the form or expression of several varieties of psychopathology (e.g., Claridge & Davis, 2003).
    [Show full text]
  • Environmental Effects on Fish Escape Responses
    Clemson University TigerPrints All Theses Theses 8-2015 Environmental effects on fish escape responses: impact of flow on the escape performance of the Hawaiian stream goby, Sicyopterus stimpsoni Kelly Diamond Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Biology Commons Recommended Citation Diamond, Kelly, "Environmental effects on fish escape responses: impact of flow on the escape performance of the Hawaiian stream goby, Sicyopterus stimpsoni" (2015). All Theses. 2232. https://tigerprints.clemson.edu/all_theses/2232 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. ENVIRONMENTAL EFFECTS ON FISH ESCAPE RESPONSES: IMPACT OF FLOW ON THE ESCAPE PERFORMANCE OF THE HAWAIIAN STREAM GOBY, SICYOPTERUS STIMPSONI A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Biological Sciences by Kelly M. Diamond August 2015 Accepted by: Dr. Richard W. Blob, Committee Chair Dr. Heiko L. Schoenfuss Dr. Michael J. Childress Dr. Michael W. Sears ABSTRACT The ability of fish to escape from predators is a critical behavior for their survival. Experimental measurements of escape performance in fishes have typically been based on trials conducted in still water; however, such environmental conditions are rare in nature due to waves and currents that expose fishes to unsteady and/or directional flow. I examined the effects of water flow and predator attack direction on the escape behavior of fish, using juveniles of the amphidromous Hawaiian goby Sicyopterus stimpsoni as a model system.
    [Show full text]
  • THE EFFECTS of SOCIAL STATUS on DOPAMINERGIC REGULATION of NEURAL CIRCUIT ACTIVATION and BEHAVIOR by Katie N. Clements July, 2017 Director of Thesis: Dr
    THE EFFECTS OF SOCIAL STATUS ON DOPAMINERGIC REGULATION OF NEURAL CIRCUIT ACTIVATION AND BEHAVIOR By Katie N. Clements July, 2017 Director of Thesis: Dr. Fadi A. Issa Major Department: Biology Social hierarchies can be observed within communities across many species and allow for proper allocation of resources. When forming social hierarchies, animals that display the most aggressive behaviors generally emerge as dominant, while less aggressive animals are relegated to a subordinate role. The aim of this study is to address the neural bases of social regulation using zebrafish (Danio rerio) as a model organism. When paired, zebrafish form dominance hierarchies that consist of socially dominant and subordinate fish. To better understand the effects of social dominance on nervous system function we investigated the influence of social experience on the escape and swim behaviors. Using a non-invasive technique of recording field potentials, we monitored escape and swimming behavior between fish of known social status. We showed that social status affects neural activation underlying swimming and escape behaviors. Subordinates favor escape over swim, while dominants favor swim over escape. We hypothesized that a neuromodulator associated with social regulation and aggression, dopamine (DA), may influence the activation of the two underlying neural circuits responsible for these behaviors in a social status-dependent manner. To test this hypothesis, we initially looked at whether the supply of DA influenced differences in swimming and escape behavior. We augmented levels of DA through injection and observed no significant changes in the escape or swimming behavior of dominants or subordinates. Next, we determined if the interpretation of DA, via DA receptors, influenced the status-dependent behavioral differences.
    [Show full text]
  • Dopamine Modulates the Lateral Giant Neuron and Serotonergic Facilitation in Crayfish Joshua Scott Itlot W [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 1-1-2010 Dopamine Modulates the Lateral Giant Neuron and Serotonergic Facilitation in Crayfish Joshua Scott itloT w [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Aquaculture and Fisheries Commons, Marine Biology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Titlow, Joshua Scott, "Dopamine Modulates the Lateral Giant Neuron and Serotonergic Facilitation in Crayfish" (2010). Theses, Dissertations and Capstones. Paper 282. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. DOPAMINE MODULATES THE LATERAL GIANT NEURON AND SEROTONERGIC FACILITATION IN CRAYFISH Thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science Biological Science By Joshua Scott Titlow, B.S. Approved by Brian L. Antonsen, Ph.D., Committee Chairperson Elmer M. Price, Ph.D., Committee member Eric R. Blough, Ph.D., Committee member Marshall University December 2010 ACKNOWLEDGMENTS This thesis could not have been written without the expertise and guidance of Dr. Brian Antonsen. Thank you for giving me an opportunity in your lab and teaching me how to be a scientist. I am grateful to Dr. Nadja Spitzer for editing this manuscript and being a second mentor. I thank Dr. Eric Blough for his comments on the paper and professional advice, and Dr. Elmer Price for encouragement and thought-provoking conversations.
    [Show full text]
  • Development of Locomotion in Low Water Exposure Using Sturgeon 2 A,* B B 3 Anshin
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.01.972257; this version posted March 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 : Development of locomotion in low water exposure using sturgeon 2 a,* b b 3 Anshin. Asano-Hoshino , Hideyuki. Tanaka , Takashi. Nakakura , c d 4 Toshiaki. Tsuji , Takuo. Mizukami 5 6 aDepartment of Sports and Medical Science, Teikyo University, Tokyo, Japan. 7 359 Otsuka, Hachioji, Tokyo 192-0495, Japan. 8 9 bDepartment of Anatomy and Cell Biology, Teikyo University School of Medicine, Tokyo, 10 Japan. 11 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan. 12 13 cDepartment of Electronic Information System School of Science and Technology Saitama 14 University, Saitama, Japan. 15 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan. 16 17 dDepartment of Safety Research on Blood and Biological Products, National Institute of 18 Infectious Disease, Tokyo, Japan. 19 4-7-1 Gakuen, Musashimurayama-shi, Tokyo 208-0011, Japan. 20 21 *Corresponding author 22 Anshin Asano-Hoshino, Ph.D., 23 Faculty of Medical Technology, Teikyo University, Department of Sports and Medical Science 24 Tokyo, Japan 25 359 Otsuka, Hachioji, Tokyo 192-0495, Japan 26 Tel: +81-42-678-3388 27 E-mail: [email protected] 28 29 Keywords: quadrupedal locomotion, sturgeon, escape response, fish-tetrapod transition, evolution 30 31 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.01.972257; this version posted March 3, 2020.
    [Show full text]
  • Anti-Predator Responses of Squid Throughout Ontogeny
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Spring 2016 Anti-Predator Responses of Squid Throughout Ontogeny Carly Anne York Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biology Commons, and the Physiology Commons Recommended Citation York, Carly A.. "Anti-Predator Responses of Squid Throughout Ontogeny" (2016). Doctor of Philosophy (PhD), Dissertation, Biological Sciences, Old Dominion University, DOI: 10.25777/twms-7w98 https://digitalcommons.odu.edu/biology_etds/9 This Dissertation is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. ANTI-PREDATOR RESPONSES OF SQUID THROUGHOUT ONTOGENY by Carly Anne York B.S. December 2007, Elon University M.S. August 2011, Western Kentucky University A Dissertation Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY ECOLOGICAL SCIENCES OLD DOMINION UNIVERSITY May 2016 Approved by: Ian Bartol (Director) Lisa Horth (Member) Kent Carpenter (Member) Sara Maxwell (Member) Paul Krueger (Member) Joseph Thompson (Member) ABSTRACT ANTI-PREDATOR BEHAVIOR OF SQUID THROUGHOUT ONTOGENY Carly Anne York Old Dominion University, 2016 Director: Dr. Ian K. Bartol Multiple sensory modalities and a complex array of escape behaviors have evolved as components of anti-predator responses in squids. The goals of this study include: (1) examine the role of the lateral line analogue and vision in successful predator evasion; (2) measure kinematics of escape jetting; (3) document how chromatic patterning, posturing and inking in squid change in response to predators; and (4) investigate escape jet hydrodynamics of squid.
    [Show full text]
  • Response of the Larval Zebrafish to Spinal Cord Injury: Labeled Lesions, Two-Photon Axotomy and Recovery of Visuomotor Behaviors
    Response of the Larval Zebrafish to Spinal Cord Injury: Labeled Lesions, Two-Photon Axotomy and Recovery of Visuomotor Behaviors A Dissertation Submitted to the Department of Biology In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the field of Biology Northeastern University Boston, MA By Sucharita Saha July 2012 1 Abstract Spinal cord injuries can result in near total loss of function below the spinal-level of damage, due to the interruption of descending neural commands. A number of approaches are being tested to enhance axonal regeneration and assess the recovery of spinal cord function although, to date, no effective regeneration has been observed following complete spinal transection. Given the limited functional recovery seen in a variety of studies, and a lack of understanding of underlying molecular mechanisms, a system that enables faster and more precise analyses is needed. We attempt here to lay a foundation for such studies in larval zebrafish. Three distinct strategies were employed to assess restoration of the zebrafish descending motor control system after spinal injuries. First, we followed anatomical regeneration using the labeled-lesion technique. Second, we assessed functional recovery based on a suite of larval locomotor behaviors. Third, we used in vivo two-photon microscopy to observe axonal behaviors immediately after precision axotomies. The suite of visuomotor assays used documented a descending motor control system that proved fairly robust, even in the presence of substantial axonal injuries. In contrast, however, the motility and elongation of individual severed axons proved limited as did the larger scale regeneration of major brainstem nuclei into spinal cord.
    [Show full text]
  • Three-Dimensional Observations of Swarms of Antarctic Krill (Euphausia Superba) Made Using a Multi-Beam Echosounder
    ARTICLE IN PRESS Deep-Sea Research II ] (]]]]) ]]]–]]] Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Three-dimensional observations of swarms of Antarctic krill (Euphausia superba) made using a multi-beam echosounder Martin J. Cox a,n, Joseph D. Warren b, David A. Demer c, George R. Cutter c, Andrew S. Brierley a a Pelagic Ecology Research Group, Gatty Marine Laboratory, University of St. Andrews, Fife KY16 8LB, Scotland, UK b School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Hwy, Southampton, NY 11968, USA c Advanced Survey Technology Program, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA article info abstract Article history: Antarctic krill (Euphausia superba) aggregate in dense swarms. Previous investigations of krill swarms Accepted 30 October 2009 have used conventional single- or split-beam echosounders that, with post-processing, provide a two- dimensional (2-D) view of the water column, leaving the third dimension to be inferred. We used a Topical issue on ‘‘Krill Biology and Ecology.’’ multi-beam echosounder system (SM20, 200 kHz, Kongsberg Mesotech Ltd, Canada) from an inflatable The issue is compiled and guest-edited by the boat (length=5.5 m) to sample water-column backscatter, particularly krill swarms, directly in 2-D and, North Pacific Marine Science Organization (PICES), International Council for the Exploration of the with post-processing, to provide a three dimensional (3-D) view of entire krill swarms. The study took Sea (ICES), and Global Ocean Ecosystem place over six days (2–8 February 2006) in the vicinity of Livingston Island, South Shetland Islands, Dynamics (GLOBEC) project.
    [Show full text]
  • Individual Variation and Temporal Repeatability
    3102 The Journal of Experimental Biology 214, 3102-3110 © 2011. Published by The Company of Biologists Ltd doi:10.1242/jeb.056648 RESEARCH ARTICLE Behavioural and kinematic components of the fast-start escape response in fish: individual variation and temporal repeatability Stefano Marras1,*, Shaun S. Killen1,†, Guy Claireaux1,2, Paolo Domenici3 and David J. McKenzie1,‡ 1UMR 5554, Institut des Sciences de l’Evolution de Montpellier, Université de Montpellier 2, Station Méditerranéenne de l’Environnement Littoral, 2 Rue des Chantiers, F-34200 Sète, France, 2Université Européenne de Bretagne-Campus de Brest, UFR Sciences et Techniques, 6 Avenue Le Gorgeu, 29285-Cedex 3, Brest, France and 3CNR-IAMC, Località Sa Mardini, 09072 Torregrande, Oristano, Italy *Author for correspondence ([email protected]) †Present address: Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK ‡Present address: UMR 5119, Ecologie des Systèmes Marins Côtiers, Université de Montpellier 2, Place Eugène Bataillon, 34095 Montpellier cedex 5, France Accepted 14 June 2011 SUMMARY Inter-individual variation in physiological performance traits, which is stable over time, can be of potential ecological and evolutionary significance. The fish escape response is interesting in this regard because it is a performance trait for which inter- individual variation may determine individual survival. The temporal stability of such variation is, however, largely unexplored. We quantified individual variation of various components of the escape response in a population of European sea bass (Dicentrarchus labrax), considering both non-locomotor (responsiveness and latency) and locomotor (speed, acceleration, turning rate, turning angle and distance travelled in a fixed time, Desc) variables.
    [Show full text]