Locomotion Abilities to Exploit Beneficial Resources and Envi- 25 Ronments

Total Page:16

File Type:pdf, Size:1020Kb

Locomotion Abilities to Exploit Beneficial Resources and Envi- 25 Ronments 1 L AU8 2 Locomotion abilities to exploit beneficial resources and envi- 25 ronments. Some eventually became able to seek 26 3 Casey Gährs and Andrés Vidal-Gadea new resources when local supplies became 27 AU1 4 School of Biological Sciences exhausted, transporting themselves to new 28 AU2 5 Illinois State University, Normal, IL, USA environments. 29 Locomotion refers to an organism’s ability to 30 transport itself from one place to another. This is a 31 6 Synonyms task fraught with uncertainty and danger. Trading 32 a known environment for an opportunity to find a 33 7 Animal mobility; Animal movement; Animal better one is risky at best. Many animals are par- 34 8 progression ticularly vulnerable during locomotion. Their 35 available resources and attention become 36 repurposed to the completion of this goal, making 37 9 Definition them particularly vulnerable to energy depletion 38 and predation. Therefore, locomotion is a danger- 39 10 Locomotion refers to an organism’s ability to ous behavior not undertaken lightly. As such, it is 40 11 translate itself from one place to another. This often goal-oriented and used to increase fitness 41 12 can be accomplished by active and passive (e.g., securing nourishment, avoiding death/pre- 42 13 means. It spans from the use of simple molecular dation, reproduction). Because of the associated 43 14 machines to complex multi-organ systems acting risks, many animals locomote in short bouts when 44 15 in concert. approaching potentially dangerous environments. 45 This allows them to sample their environment for 46 dangers. The same animals, however, increase 47 16 Introduction their bout durations when traveling back toward 48 safety. 49 17 All organisms share a common ancestry along The evolutionary race for survival resulted in 50 18 with a set of enduring biological directives the production of highly diverse and complex 51 19 reflecting their relatedness. Chief among these is sensory systems to probe environments and loco- 52 20 the drive to persist by temporarily overcoming motor systems to convey animals to their destina- 53 21 overwhelming physical and energetic obstacles. tions quickly and safely. How animals accomplish 54 22 Organisms large and small, simple and complex, locomotion, and translate themselves from one 55 23 labor to survive long enough to produce viable place to another, depends on factors such as their 56 24 offspring. To accomplish this, they evolved # Springer Nature Switzerland AG 2018 J. Vonk, T. K. Shackelford (eds.), Encyclopedia of Animal Cognition and Behavior, https://doi.org/10.1007/978-3-319-47829-6_1450-1 2 Locomotion 57 evolutionary history, the physics of their environ- challenges and of its inheritance passed down 105 58 ment, and the biological drive being satisfied. through evolution. We will next look at some of 106 59 Many animals living near the interface of dis- the challenges this behavior evolved to surmount 107 60 tinct physical environments (e.g., land and water) before looking within organisms at its mechanics. 108 61 evolved the ability to exploit multiple environ- 62 ments (e.g., one for sustenance and another for 63 locomotion). For example, many insects and birds Goals of Animal Locomotion 109 64 walk when foraging but switch to flight when 65 traveling between feeding sites as a more energet- Why do animals move? As mentioned above, one 110 66 ically efficient form of locomotion. Crayfish and of the primary drives common to all life forms is 111 67 young lobsters walk on the bottom of springs and the directive to survive to reproduce. Thus, loco- 112 68 oceans but will swim away from predators using motion can be understood as an animal’s attempt 113 69 their powerful tails. Each distinct type of locomo- to improve the odds of this outcome. Some over- 114 70 tion is made possible by dramatic feats of special- arching goals driving locomotion include (i) 115 71 ization in the animals’ nervous system, skeleton, avoiding death (self-preservation), (ii) finding 116 72 and musculature. While there are many examples mates (for sexually reproductive animals), and 117 73 of transition between environments over evolu- (iii) ensuring the survival of offspring. These are 118 74 tionary time, most animals are specialized for certainly not all the reasons why animals move. 119 75 locomotion through one physical niche through- Additionally, some of these goals (e.g., self- 120 76 out their lives. Those capable of locomotion preservation) include unique locomotor goals 121 77 through multiple environments must reconfigure within them. For example, self-preservation 122 78 their motor outputs to match the properties of each includes escaping predators but also energy pro- 123 79 environment. curement. We will discuss some of these goals, as 124 80 When studying simple processes, it is often the (often competing) demands they place on ani- 125 81 possible to divide them into their components mals have driven the evolution of the distinct 126 82 and to dissect and understand the role of each types of locomotion we appreciate in the natural 127 83 part independent of the whole. Often, single world. 128 84 chains of cause-and-effect hierarchies make easy 85 work of understanding the process by sequentially Self-Preservation 129 86 dealing with each aspect of the whole. Animal Many distinct locomotor activities have the goal 130 87 locomotion defies this type of approach. Locomo- of maintaining an organism’s viability. The exact 131 88 tion is not the final output of a chain of events; locomotor behaviors depend on the animal, but 132 89 rather, it emerges from the tightly concerted inter- minimally they involve (a) procuring and 133 90 action of numerous organismal systems ingesting other organisms, (b) avoiding ingestion 134 91 (Alexander 2003). Thus, our compartmentalized by other organisms, and (c) avoiding environmen- 135 92 approach to its study is more a reflection of our tal risks (e.g., temperature extremes). Each of 136 93 own limitations than a characteristic of the process these tasks presents unique challenges that are 137 94 we will now discuss. often in conflict with one another. For example, 138 95 Thus, while the following sections attempt to searching for food often places animals at 139 96 simplify our task by dealing with intuitive increased risk of predation. 140 97 (dissectible) aspects of animal locomotion, the Animals are unable to manufacture their own 141 98 reader should remain aware that these separations complex organic compounds for nutritional pur- 142 99 are artificial and for our benefit. Furthermore, poses (i.e., they are heterotrophic). Instead, they 143 100 animal locomotion is not the product of a machine must obtain their nutrients by ingesting other 144 101 optimized for the performance of a task, but rather organisms in their environment. Some animals, 145 102 the survivable output of the cumulative history of such as sponges, corals, and tunicates, are sessile 146 103 a species. As such, it can only be fully understood and able to capture sufficient nutrients as they 147 104 in the context of an animal’s life history move pass them. Even here, most of these animals 148 Locomotion 3 149 have short motile stages where their larvae seek Therefore, many escape behaviors rely on a 195 150 promising environments before becoming sessile. few, fast (<0.3 ms), electrical synapses. 196 151 Large, complex animals are unable to reliably (c) Using large diameter nerve fibers and 197 152 capture sufficient resources without investing myelination to maximize the impulse velocity. 198 153 energy to seek them out regularly. 154 Each vital locomotor activity often requires There are many examples of escape behaviors 199 155 distinct neural specializations. Finding food making use of these neural optimizations. The 200 156 (or mates) requires extreme feats of sensory detec- Mauthner cell in fish and amphibians is a large 201 157 tion involving computationally expensive special- neuron that makes extensive use of electrical syn- 202 158 ized search strategies. For example, moths use a apses to produce fast escape responses. Similarly, 203 159 strategy called casting when following phero- large diameter neurons and/or electrical synapses 204 160 mone plumes in search of mates. Similarly, dogs also mediate the tail-flip escape response in cray- 205 161 tracking scents employ active sensing, sampling fish, escape jet propulsion of squids, escape jumps 206 162 their environment at regular intervals. In both in fruit flies, and more. Similarly, myelination of 207 163 examples, sensory inputs are integrated over escape neurons in some copepod species allows 208 164 time to deduce the scent’s source. these animals to perform faster, energetically effi- 209 165 Locomotion during the search phase of mate or cient, escapes than they could perform otherwise. 210 166 food procurement needs to be slow enough to Animals that succeed in consuming (and avoid 211 167 allow the nervous system enough time to sample being consumed by) other organisms are still 212 168 the environment and resolve (often tenuous) gra- faced with the task of surviving changing envi- 213 169 dients. During this type of locomotion, sensory ronmental parameters. The magnitude of this task 214 170 processing can be the rate limiting factor. Increas- varies significantly across species. For animals 215 171 ing the organism’s investment in its sensory sys- unable to regulate their temperature (i.e., ecto- 216 172 tem can result in higher neural acuity, sampling therms), or those living in harsh environments 217 173 speed, and resolution. However, this also carries (e.g., deserts), the task might pose greater risk 218 174 heavy energetic costs, which animals must bal- than predation or starvation. Because many envi- 219 175 ance with their needs.
Recommended publications
  • Comparisons of Perceived Exertion of Elliptical Training Versus Treadmill
    COMPARISONS OF PERCEIVED EXERTION ON ELLIPTICAL TRAINING VERSUS TREADMILL EXERCISE A Thesis Presented to the Faculty of the College of Education Morehead State University In Partial Fulfillment of the Requirements for the Degree Master of Arts by Marcisha Brazley July, 2002 Mf,IJ._ TIIEiS!S {,,( 3.11012.... B 'Z 'J..7 c. COMPARISONS OF PERCEIVED EXERTION ON ELLIPTICAL TRAINING VERSUS TREADMILL EXERCISE Marcisha Brazley, M.A. Morehead State University, 2002 Director of Thesis: --'--=----''---c=.---''-'---..,_,,-"--"-"'.=..c--"'~-Ao.,-.Q?,.j:!sr j;; ,,{, 0, Statement of the Problem: The relationship between rates of perceived exertion (RPE) during elliptical trainer exercise and treadmill exercise is undefined. Therefore, the purpose of this investigation was to compare and determine whether there are differences in RPE with respect to submaximal workloads between elliptical trainer exercise and treadmill exercise. Sources of d,ata: Five normotensive males, age 21 to 25 years (22.4 ± 1.7) and six normotensive females, age 20 to 23 years (21 ±1.2), VO2 max values 30-59 ml/min/kg were recruited from the Health, Physical Education, and Exercise Science classes at Morehead State University (M.S.U.) and the Wellness Center at Morehead State University. Methods: Each subject completed one graded exercise test on a treadmill as determined by a Bruce protocol. On a separate day, each subject completed one graded exercise test, as determined by a predetermined protocol, on a Precor® EFX544 elliptical cross trainer. The second test was conducted at least 48 hours after the first test. Rate of perceived exertion and heart rate values were recorded after every three minutes of each exercise session.
    [Show full text]
  • Skeletal Muscle Tissue in Movement and Health: Positives and Negatives Stan L
    © 2016. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2016) 219, 183-188 doi:10.1242/jeb.124297 REVIEW Skeletal muscle tissue in movement and health: positives and negatives Stan L. Lindstedt* ABSTRACT This observation prompted the Swiss scientist von Haller (credited ‘ ’ The history of muscle physiology is a wonderful lesson in ‘the as the Father of Neurobiology ) to suggest that it was irritability, not scientific method’; our functional hypotheses have been limited by a humor, which is transmitted to the muscle through the nerve. For a our ability to decipher (observe) muscle structure. The simplistic wonderful comprehensive examination of muscle history, the ‘ ’ understanding of how muscles work made a large leap with the definitive source is the book Machina Carnis by Needham (1971). remarkable insights of A. V. Hill, who related muscle force and power The first Professor of Physiology in the USA (Columbia to shortening velocity and energy use. However, Hill’s perspective University) was the Civil War surgeon J. C. Dalton, who authored ‘ was largely limited to isometric and isotonic contractions founded on the first USA textbook of physiology ( Treatise on Human ’ isolated muscle properties that do not always reflect how muscles Physiology ). He observed that irritability (which he noted could function in vivo. Robert Josephson incorporated lengthening be triggered with an electric shock) is an inherent property of the ‘ ’ contractions into a work loop analysis that shifted the focus to muscle fiber, not communicated to it by other parts (Dalton, ‘ ’ dynamic muscle function, varying force, length and work done both 1864). The consequence of this irritability is that muscles produce by and on muscle during a single muscle work cycle.
    [Show full text]
  • Energy and Training Module ITU Competitive Coach
    37 energy and training module ITU Competitive Coach Produced by the International Triathlon Union, 2007 38 39 energy & training Have you ever wondered why some athletes shoot off the start line while others take a moment to react? Have you every experienced a “burning” sensation in your muscles on the bike? Have athletes ever claimed they could ‘keep going forever!’? All of these situations involve the use of energy in the body. Any activity the body performs requires work and work requires energy. A molecule called ATP (adenosine triphosphate) is the “energy currency” of the body. ATP powers most cellular processes that require energy including muscle contraction required for sport performance. Where does ATP come from and how is it used? ATP is produced by the breakdown of fuel molecules—carbohydrates, fats, and proteins. During physical activity, three different processes work to split ATP molecules, which release energy for muscles to use in contraction, force production, and ultimately sport performance. These processes, or “energy systems”, act as pathways for the production of energy in sport. The intensity and duration of physical activity determines which pathway acts as the dominant fuel source. Immediate energy system Fuel sources ATP Sport E.g. carbohydrates, energy performance proteins, fats “currency” Short term energy system E.g. swimming, cycling, running, transitions Long term energy system During what parts of a triathlon might athletes use powerful, short, bursts of speed? 1 2 What duration, intensity, and type of activities in a triathlon cause muscles to “burn”? When in a triathlon do athletes have to perform an action repeatedly for longer than 10 or 15 3 minutes at a moderate pace? 40 energy systems Long Term (Aerobic) System The long term system produces energy through aerobic (with oxygen) pathways.
    [Show full text]
  • Evolutionary and Homeostatic Changes in Morphology of Visual Dendrites of Mauthner Cells in Astyanax Blind Cavefish
    bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.094680; this version posted May 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Research Article 2 Evolutionary and homeostatic changes in morphology of visual dendrites of 3 Mauthner cells in Astyanax blind cavefish 4 5 Zainab Tanvir1, Daihana Rivera1, Kristen E. Severi1, Gal Haspel1, Daphne Soares1* 6 7 1 Federated Department of Biological Sciences, New Jersey Institute of Technology, Newark NJ 8 07102 9 10 11 12 Short Title: Astyanax Mauthner cell ventral dendrites 13 14 15 *Corresponding Author 16 Daphne Soares 17 Biological Sciences 18 New Jersey Institute of Technology 19 100 Summit street 20 Newark, NJ, 07102, USA 21 Tel: 973 596 6421 22 Fax: 23 E-mail: [email protected] 24 Keywords: Evolution, neuron, fish, homeostasis, adaptation 25 26 Abstract bioRxiv preprint doi: https://doi.org/10.1101/2020.05.13.094680; this version posted May 15, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 27 Mauthner cells are the largest neurons in the hindbrain of teleost fish and most amphibians. Each 28 cell has two major dendrites thought to receive segregated streams of sensory input: the lateral 29 dendrite receives mechanosensory input while the ventral dendrite receives visual input.
    [Show full text]
  • Energy Expenditure During Acute Weight Training Exercises in Healthy Participants: a Preliminary Study
    applied sciences Article Energy Expenditure during Acute Weight Training Exercises in Healthy Participants: A Preliminary Study Muhammad Adeel 1,2, Chien-Hung Lai 3,4, Chun-Wei Wu 2, Jiunn-Horng Kang 3,4, Jian-Chiun Liou 2, Hung-Chou Chen 3,5 , Meng-Jyun Hong 2 and Chih-Wei Peng 1,2,6,* 1 International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; [email protected] 2 School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan; [email protected] (C.-W.W.); [email protected] (J.-C.L.); [email protected] (M.-J.H.) 3 Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; [email protected] (C.-H.L.); [email protected] (J.-H.K.); [email protected] (H.-C.C.) 4 Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei 110, Taiwan 5 Department of Physical Medicine and Rehabilitation, Shuang Ho Hospital, Taipei Medical University, New Taipei City 235, Taiwan 6 School of Gerontology Health Management, College of Nursing, Taipei Medical University, Taipei 110, Taiwan * Correspondence: [email protected]; Tel./Fax: +886-2-2736-1661 (ext. 3070) Abstract: Energy expenditure during weight training exercises produces great fitness and health benefits for humans, but few studies have investigated energy expenditure directly during weight training. Therefore, in this study, we aimed to determine energy costs during three training sessions Citation: Adeel, M.; Lai, C.-H.; Wu, consisting of three different exercises.
    [Show full text]
  • Loudness-Dependent Behavioral Responses and Habituation to Sound by the Longfin Squid (Doryteuthis Pealeii)
    1 2 Loudness-dependent behavioral responses and habituation to sound by the 3 longfin squid (Doryteuthis pealeii) 4 5 6 T. Aran Mooney1*, Julia E. Samson1, 2, Andrea D. Schlunk1 and Samantha Zacarias1 7 8 9 1Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA 10 2Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA 11 12 13 *Corresponding author: [email protected], (508) 289-2714 14 15 16 Keywords: noise, bioacoustics, soundscape, auditory scene, invertebrate 17 18 19 20 1 21 Abstract 22 Sound is an abundant cue in the marine environment, yet we know little regarding the 23 frequency range and levels which induce behavioral responses in ecologically key marine 24 invertebrates. Here we address the range of sounds that elicit unconditioned behavioral responses 25 in squid Doryteuthis pealeii, the types of responses generated, and how responses change over 26 multiple sound exposures. A variety of response types were evoked, from inking and jetting to 27 body pattern changes and fin movements. Squid responded to sounds from 80-1000 Hz, with 28 response rates diminishing at the higher and lower ends of this frequency range. Animals 29 responded to the lowest sound levels in the 200-400 Hz range. Inking, an escape response, was 30 confined to the lower frequencies and highest sound levels; jetting was more widespread. 31 Response latencies were variable but typically occurred after 0.36 s (mean) for jetting and 0.14 s 32 for body pattern changes; pattern changes occurred significantly faster. These results 33 demonstrate that squid can exhibit a range of behavioral responses to sound include fleeing, 34 deimatic and protean behaviors, all of which are associated with predator evasion.
    [Show full text]
  • The Effects of Motion on Trunk Biomechanics
    Clinical Biomechanics 15 (2000) 703±717 www.elsevier.com/locate/clinbiomech Review paper The eects of motion on trunk biomechanics K.G. Davis, W.S. Marras * Biodynamics Laboratory, Room 210, 210 Baker Systems, 1971 Neil Avenue, The Ohio State University, Columbus, OH 43210, USA Received 15 June 2000; accepted 16 June 2000 Abstract Objective. To review the literature that evaluates the in¯uence of trunk motion on trunk strength and structural loading. Background. In recent years, trunk dynamics have been identi®ed as potential risk factors for developing low-back disorders. Consequently, a better understanding of the underlying mechanisms involved in trunk motion is needed. Methods. This review summarizes the results of 53 studies that have evaluated trunk motion and its impact on several biome- chanical outcome measures. The biomechanical measures consisted of trunk strength, intra-abdominal pressure, muscle activity, imposed trunk moments, and spinal loads. Each of these biomechanical measures was discussed in relation to the existing knowledge within each plane of motion (extension, ¯exion, lateral ¯exion, twisting, and asymmetric extension). Results. Trunk strength was drastically reduced as dynamic motion increased, and males were impacted more than females. Intra- abdominal pressure seemed to only be aected by trunk dynamics at high levels of force. Trunk moments were found to increase monotonically with increased trunk motion. Both agonistic and antagonistic muscle activities were greater as dynamic character- istics increased. As a result, the three-dimensional spinal loads increase signi®cantly for dynamic exertions as compared to isometric conditions. Conclusions. Trunk motion has a dramatic aect on the muscle coactivity, which seems to be the underlying source for the decrease strength capability as well as the increased muscle force, IAP, and spinal loads.
    [Show full text]
  • A Review of the Diversity in Motor Control, Kinematics and Behaviour Paolo Domenici1,* and Melina E
    © 2019. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2019) 222, jeb166009. doi:10.1242/jeb.166009 REVIEW Escape responses of fish: a review of the diversity in motor control, kinematics and behaviour Paolo Domenici1,* and Melina E. Hale2 ABSTRACT 1978a; Weihs, 1973) and neural control (Eaton et al., 1977; Eaton and The study of fish escape responses has provided important insights Hackett, 1984), and it focused on a small number of species (mainly into the accelerative motions and fast response times of these animals. goldfish, trout and pike). As a result, fish escapes were seen as In addition, the accessibility of the underlying neural circuits has made stereotyped responses (Webb, 1984a). This basic high-acceleration the escape response a fundamental model in neurobiology. Fish escape response was described as occurring in three stages: stage 1 ‘ ’ escape responses were originally viewed as highly stereotypic all-or- (see Glossary), the preparatory stage, in which the body bends none behaviours. However, research on a wide variety of species has rapidly with minimal translation of the centre of mass; stage 2 (see ‘ ’ shown considerable taxon-specific and context-dependent variability Glossary), the propulsive stroke, when the fish accelerates away from in the kinematics and neural control of escape. In addition, escape-like its initial position; and stage 3, in which the fish either continues motions have been reported: these resemble escape responses swimming or starts gliding (Weihs, 1973). The first two stages have kinematically, but occur in situations that do not involve a response to a been the focus of most literature on escape response kinematics threatening stimulus.
    [Show full text]
  • Fundamentals of Biomechanics Duane Knudson
    Fundamentals of Biomechanics Duane Knudson Fundamentals of Biomechanics Second Edition Duane Knudson Department of Kinesiology California State University at Chico First & Normal Street Chico, CA 95929-0330 USA [email protected] Library of Congress Control Number: 2007925371 ISBN 978-0-387-49311-4 e-ISBN 978-0-387-49312-1 Printed on acid-free paper. © 2007 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 987654321 springer.com Contents Preface ix NINE FUNDAMENTALS OF BIOMECHANICS 29 Principles and Laws 29 Acknowledgments xi Nine Principles for Application of Biomechanics 30 QUALITATIVE ANALYSIS 35 PART I SUMMARY 36 INTRODUCTION REVIEW QUESTIONS 36 CHAPTER 1 KEY TERMS 37 INTRODUCTION TO BIOMECHANICS SUGGESTED READING 37 OF UMAN OVEMENT H M WEB LINKS 37 WHAT IS BIOMECHANICS?3 PART II WHY STUDY BIOMECHANICS?5 BIOLOGICAL/STRUCTURAL BASES
    [Show full text]
  • Three-Dimensional Observations of Swarms of Antarctic Krill (Euphausia Superba) Made Using a Multi-Beam Echosounder
    ARTICLE IN PRESS Deep-Sea Research II 57 (2010) 508–518 Contents lists available at ScienceDirect Deep-Sea Research II journal homepage: www.elsevier.com/locate/dsr2 Three-dimensional observations of swarms of Antarctic krill (Euphausia superba) made using a multi-beam echosounder Martin J. Cox a,n, Joseph D. Warren b, David A. Demer c, George R. Cutter c, Andrew S. Brierley a a Pelagic Ecology Research Group, Gatty Marine Laboratory, University of St. Andrews, Fife KY16 8LB, Scotland, UK b School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk Hwy, Southampton, NY 11968, USA c Advanced Survey Technology Program, Southwest Fisheries Science Center, 8604 La Jolla Shores Drive, La Jolla, CA 92037, USA article info abstract Article history: Antarctic krill (Euphausia superba) aggregate in dense swarms. Previous investigations of krill swarms Accepted 30 October 2009 have used conventional single- or split-beam echosounders that, with post-processing, provide a two- Available online 11 November 2009 dimensional (2-D) view of the water column, leaving the third dimension to be inferred. We used a multi-beam echosounder system (SM20, 200 kHz, Kongsberg Mesotech Ltd, Canada) from an inflatable Topical issue on ‘‘Krill Biology and Ecology.’’ boat (length=5.5 m) to sample water-column backscatter, particularly krill swarms, directly in 2-D and, The issue is compiled and guest-edited by the North Pacific Marine Science Organization (PICES), with post-processing, to provide a three dimensional (3-D) view of entire krill swarms. The study took International Council for the Exploration of the place over six days (2–8 February 2006) in the vicinity of Livingston Island, South Shetland Islands, Sea (ICES), and Global Ocean Ecosystem Antarctica (62.41S, 60.71W).
    [Show full text]
  • Power and Efficiency of Insect Flight Muscle
    J. exp. Biol. 115, 293-304 (1985) 293 Printed in Great Britain © The Company of Biologists limited 1985 POWER AND EFFICIENCY OF INSECT FLIGHT MUSCLE BY C. P. ELLINGTON Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, England SUMMARY The efficiency and mechanical power output of insect flight muscle have been estimated from a study of hovering flight. The maximum power output, calculated from the muscle properties, is adequate for the aerodynamic power requirements. However, the power output is insufficient to oscillate the wing mass as well unless there is good elastic storage of the inertial energy, and this is consistent with reports of elastic components in the flight system. A comparison of the mechanical power output with the metabolic power input to the flight muscles suggests that the muscle efficiency is quite low: less than 10%. INTRODUCTION In recent years the mechanical analysis of animal locomotion has become increasingly sophisticated, resulting in accurate estimates of the sustained, aerobic mechanical power output required of the locomotor muscles. These estimates have been compared with the metabolic power input, as measured by the rate of oxygen consumption, to determine the muscle efficiency. Two major studies, one on running birds and mammals (Heglund, Fedak, Taylor & Cavagna, 1982) and the other on hovering insects (Ellington, 1984), have both concluded that the muscle efficiency can be much lower than the commonly expected 20-30%. The results for terrestrial locomotion are discussed elsewhere in this volume (Heglund, 1985), and I shall review the power and efficiency of insect flight muscle during hovering, a type of flight so energetically demanding that only hummingbirds and insects can sustain it aerobically.
    [Show full text]
  • Exercise Exacerbates Decline in the Musculature of an Animal Model of Duchenne Muscular Dystrophy
    bioRxiv preprint doi: https://doi.org/10.1101/360388; this version posted July 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Exercise exacerbates decline in the musculature of an animal model of Duchenne muscular dystrophy Hughes KJ*, Rodriguez A*, Schuler A, Rodemoyer B, Barickman L, Cuciarone K, Kullman A, Lim C, Gutta N, Vemuri S, Andriulis V, Niswonger D, Vidal-Gadea AG1 School of Biological Sciences, Illinois State University, Normal, IL, [email protected] *these authors contributed equally to this work. ABSTRACT Duchenne muscular dystrophy (DMD) is a genetic disorder caused by loss of the protein dystrophin. In humans, DMD has early onset, causes developmental delays, muscle necrosis, loss of ambulation, and early death. Current animal models have been challenged by their inability to model the early onset and severity of the disease. Thus it remains unresolved if increased sarcoplasmic calcium observed in dystrophic muscles follows or leads the mechanical insults caused by the muscle’s disrupted contractile machinery. This knowledge has important applications for patients, as potential physiotherapeutic treatments may either help or exacerbate symptoms, depending on how dystrophic muscles differ from healthy ones. Recently we showed how burrowing dystrophic (dys-1) C. elegans recapitulate many salient phenotypes of DMD, including loss of mobility and muscle necrosis. Here we report dys-1 worms display early pathogenesis, including dysregulated sarcoplasmic calcium, and increased lethality. Sarcoplasmic calcium dysregulation in dys-1 worms precedes overt structural phenotypes (e.g. mitochondrial, and contractile machinery damage) and can be mitigated by silencing calmodulin expression.
    [Show full text]