Tropical Arithmetics and Dot Product Representations of Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
21. Orthonormal Bases
21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else. -
Glossary of Linear Algebra Terms
INNER PRODUCT SPACES AND THE GRAM-SCHMIDT PROCESS A. HAVENS 1. The Dot Product and Orthogonality 1.1. Review of the Dot Product. We first recall the notion of the dot product, which gives us a familiar example of an inner product structure on the real vector spaces Rn. This product is connected to the Euclidean geometry of Rn, via lengths and angles measured in Rn. Later, we will introduce inner product spaces in general, and use their structure to define general notions of length and angle on other vector spaces. Definition 1.1. The dot product of real n-vectors in the Euclidean vector space Rn is the scalar product · : Rn × Rn ! R given by the rule n n ! n X X X (u; v) = uiei; viei 7! uivi : i=1 i=1 i n Here BS := (e1;:::; en) is the standard basis of R . With respect to our conventions on basis and matrix multiplication, we may also express the dot product as the matrix-vector product 2 3 v1 6 7 t î ó 6 . 7 u v = u1 : : : un 6 . 7 : 4 5 vn It is a good exercise to verify the following proposition. Proposition 1.1. Let u; v; w 2 Rn be any real n-vectors, and s; t 2 R be any scalars. The Euclidean dot product (u; v) 7! u · v satisfies the following properties. (i:) The dot product is symmetric: u · v = v · u. (ii:) The dot product is bilinear: • (su) · v = s(u · v) = u · (sv), • (u + v) · w = u · w + v · w. -
A Some Basic Rules of Tensor Calculus
A Some Basic Rules of Tensor Calculus The tensor calculus is a powerful tool for the description of the fundamentals in con- tinuum mechanics and the derivation of the governing equations for applied prob- lems. In general, there are two possibilities for the representation of the tensors and the tensorial equations: – the direct (symbolic) notation and – the index (component) notation The direct notation operates with scalars, vectors and tensors as physical objects defined in the three dimensional space. A vector (first rank tensor) a is considered as a directed line segment rather than a triple of numbers (coordinates). A second rank tensor A is any finite sum of ordered vector pairs A = a b + ... +c d. The scalars, vectors and tensors are handled as invariant (independent⊗ from the choice⊗ of the coordinate system) objects. This is the reason for the use of the direct notation in the modern literature of mechanics and rheology, e.g. [29, 32, 49, 123, 131, 199, 246, 313, 334] among others. The index notation deals with components or coordinates of vectors and tensors. For a selected basis, e.g. gi, i = 1, 2, 3 one can write a = aig , A = aibj + ... + cidj g g i i ⊗ j Here the Einstein’s summation convention is used: in one expression the twice re- peated indices are summed up from 1 to 3, e.g. 3 3 k k ik ik a gk ∑ a gk, A bk ∑ A bk ≡ k=1 ≡ k=1 In the above examples k is a so-called dummy index. Within the index notation the basic operations with tensors are defined with respect to their coordinates, e. -
The Dot Product
The Dot Product In this section, we will now concentrate on the vector operation called the dot product. The dot product of two vectors will produce a scalar instead of a vector as in the other operations that we examined in the previous section. The dot product is equal to the sum of the product of the horizontal components and the product of the vertical components. If v = a1 i + b1 j and w = a2 i + b2 j are vectors then their dot product is given by: v · w = a1 a2 + b1 b2 Properties of the Dot Product If u, v, and w are vectors and c is a scalar then: u · v = v · u u · (v + w) = u · v + u · w 0 · v = 0 v · v = || v || 2 (cu) · v = c(u · v) = u · (cv) Example 1: If v = 5i + 2j and w = 3i – 7j then find v · w. Solution: v · w = a1 a2 + b1 b2 v · w = (5)(3) + (2)(-7) v · w = 15 – 14 v · w = 1 Example 2: If u = –i + 3j, v = 7i – 4j and w = 2i + j then find (3u) · (v + w). Solution: Find 3u 3u = 3(–i + 3j) 3u = –3i + 9j Find v + w v + w = (7i – 4j) + (2i + j) v + w = (7 + 2) i + (–4 + 1) j v + w = 9i – 3j Example 2 (Continued): Find the dot product between (3u) and (v + w) (3u) · (v + w) = (–3i + 9j) · (9i – 3j) (3u) · (v + w) = (–3)(9) + (9)(-3) (3u) · (v + w) = –27 – 27 (3u) · (v + w) = –54 An alternate formula for the dot product is available by using the angle between the two vectors. -
Concept of a Dyad and Dyadic: Consider Two Vectors a and B Dyad: It Consists of a Pair of Vectors a B for Two Vectors a a N D B
1/11/2010 CHAPTER 1 Introductory Concepts • Elements of Vector Analysis • Newton’s Laws • Units • The basis of Newtonian Mechanics • D’Alembert’s Principle 1 Science of Mechanics: It is concerned with the motion of material bodies. • Bodies have different scales: Microscropic, macroscopic and astronomic scales. In mechanics - mostly macroscopic bodies are considered. • Speed of motion - serves as another important variable - small and high (approaching speed of light). 2 1 1/11/2010 • In Newtonian mechanics - study motion of bodies much bigger than particles at atomic scale, and moving at relative motions (speeds) much smaller than the speed of light. • Two general approaches: – Vectorial dynamics: uses Newton’s laws to write the equations of motion of a system, motion is described in physical coordinates and their derivatives; – Analytical dynamics: uses energy like quantities to define the equations of motion, uses the generalized coordinates to describe motion. 3 1.1 Vector Analysis: • Scalars, vectors, tensors: – Scalar: It is a quantity expressible by a single real number. Examples include: mass, time, temperature, energy, etc. – Vector: It is a quantity which needs both direction and magnitude for complete specification. – Actually (mathematically), it must also have certain transformation properties. 4 2 1/11/2010 These properties are: vector magnitude remains unchanged under rotation of axes. ex: force, moment of a force, velocity, acceleration, etc. – geometrically, vectors are shown or depicted as directed line segments of proper magnitude and direction. 5 e (unit vector) A A = A e – if we use a coordinate system, we define a basis set (iˆ , ˆj , k ˆ ): we can write A = Axi + Ay j + Azk Z or, we can also use the A three components and Y define X T {A}={Ax,Ay,Az} 6 3 1/11/2010 – The three components Ax , Ay , Az can be used as 3-dimensional vector elements to specify the vector. -
Derivation of the Two-Dimensional Dot Product
Derivation of the two-dimensional dot product Content 1. Motivation ....................................................................................................................................... 1 2. Derivation of the dot product in R2 ................................................................................................. 1 2.1. Area of a rectangle ...................................................................................................................... 2 2.2. Area of a right-angled triangle .................................................................................................... 2 2.3. Pythagorean Theorem ................................................................................................................. 2 2.4. Area of a general triangle using the law of cosines ..................................................................... 3 2.5. Derivation of the dot product from the law of cosines ............................................................... 5 3. Geometric Interpretation ................................................................................................................ 5 3.1. Basics ........................................................................................................................................... 5 3.2. Projection .................................................................................................................................... 6 4. Summary......................................................................................................................................... -
Inner Product Spaces
CHAPTER 6 Woman teaching geometry, from a fourteenth-century edition of Euclid’s geometry book. Inner Product Spaces In making the definition of a vector space, we generalized the linear structure (addition and scalar multiplication) of R2 and R3. We ignored other important features, such as the notions of length and angle. These ideas are embedded in the concept we now investigate, inner products. Our standing assumptions are as follows: 6.1 Notation F, V F denotes R or C. V denotes a vector space over F. LEARNING OBJECTIVES FOR THIS CHAPTER Cauchy–Schwarz Inequality Gram–Schmidt Procedure linear functionals on inner product spaces calculating minimum distance to a subspace Linear Algebra Done Right, third edition, by Sheldon Axler 164 CHAPTER 6 Inner Product Spaces 6.A Inner Products and Norms Inner Products To motivate the concept of inner prod- 2 3 x1 , x 2 uct, think of vectors in R and R as x arrows with initial point at the origin. x R2 R3 H L The length of a vector in or is called the norm of x, denoted x . 2 k k Thus for x .x1; x2/ R , we have The length of this vector x is p D2 2 2 x x1 x2 . p 2 2 x1 x2 . k k D C 3 C Similarly, if x .x1; x2; x3/ R , p 2D 2 2 2 then x x1 x2 x3 . k k D C C Even though we cannot draw pictures in higher dimensions, the gener- n n alization to R is obvious: we define the norm of x .x1; : : : ; xn/ R D 2 by p 2 2 x x1 xn : k k D C C The norm is not linear on Rn. -
1 Vectors & Tensors
1 Vectors & Tensors The mathematical modeling of the physical world requires knowledge of quite a few different mathematics subjects, such as Calculus, Differential Equations and Linear Algebra. These topics are usually encountered in fundamental mathematics courses. However, in a more thorough and in-depth treatment of mechanics, it is essential to describe the physical world using the concept of the tensor, and so we begin this book with a comprehensive chapter on the tensor. The chapter is divided into three parts. The first part covers vectors (§1.1-1.7). The second part is concerned with second, and higher-order, tensors (§1.8-1.15). The second part covers much of the same ground as done in the first part, mainly generalizing the vector concepts and expressions to tensors. The final part (§1.16-1.19) (not required in the vast majority of applications) is concerned with generalizing the earlier work to curvilinear coordinate systems. The first part comprises basic vector algebra, such as the dot product and the cross product; the mathematics of how the components of a vector transform between different coordinate systems; the symbolic, index and matrix notations for vectors; the differentiation of vectors, including the gradient, the divergence and the curl; the integration of vectors, including line, double, surface and volume integrals, and the integral theorems. The second part comprises the definition of the tensor (and a re-definition of the vector); dyads and dyadics; the manipulation of tensors; properties of tensors, such as the trace, transpose, norm, determinant and principal values; special tensors, such as the spherical, identity and orthogonal tensors; the transformation of tensor components between different coordinate systems; the calculus of tensors, including the gradient of vectors and higher order tensors and the divergence of higher order tensors and special fourth order tensors. -
The Dot Product
Lecture 3: The Dot Product 3.1 The angle between vectors 2 Suppose x = (x1; x2) and y = (y1; y2) are two vectors in R , neither of which is the zero vector 0. Let α and β be the angles between x and y and the positive horizontal axis, respectively, measured in the counterclockwise direction. Supposing α β, let θ = α β. Then θ is the angle between x and y measured in the counterclockwise≥ direction. From− the subtraction formula for cosine we have cos(θ) = cos(α β) = cos(α) cos(β) + sin(α) sin(β): − Now x cos(α) = 1 ; x j j y cos(β) = 1 ; y j j x sin(α) = 2 ; x j j and y sin(β) = 2 : y j j Thus, we have x y x y x y + x y cos(θ) = 1 1 + 2 2 = 1 1 2 2 : x y x y x y j jj j j jj j j jj j θ α β The angle between two vectors in R2 Example Let θ be the smallest angle between x = (2; 1) and y = (1; 3), measured in the counterclockwise direction. Then (2)(1) + (1)(3) 5 1 cos(θ) = = = : x y p5p10 p2 j jj j 3-1 Lecture 3: The Dot Product 3-2 Hence 1 1 π θ = cos− = : p2 4 With more work it is possible to show that if x = (x1; x2; x3) and y = (y1; y2; y3) are two vectors in R3, neither of which is the zero vector 0, and θ is the smallest positive angle between x and y, then x y + x y + x y cos(θ) = 1 1 2 2 3 3 x y j jj j 3.2 The dot product n Definition If x = (x1; x2; : : : ; xn) and y = (y1; y2; : : : ; yn) are vectors in R , then the dot product of x and y, denoted x y, is given by · x y = x1y1 + x2y2 + + xnyn: · ··· Note that the dot product of two vectors is a scalar, not another vector. -
16 the Transpose
The Transpose Learning Goals: to expose some properties of the transpose We would like to see what happens with our factorization if we get zeroes in the pivot positions and have to employ row exchanges. To do this we need to look at permutation matrices. But to study these effectively, we need to know something about the transpose. So the transpose of a matrix is what you get by swapping rows for columns. In symbols, T ⎡2 −1⎤ T ⎡ 2 0 4⎤ ⎢ ⎥ A ij = Aji. By example, ⎢ ⎥ = 0 3 . ⎣−1 3 5⎦ ⎢ ⎥ ⎣⎢4 5 ⎦⎥ Let’s take a look at how the transpose interacts with algebra: T T T T • (A + B) = A + B . This is simple in symbols because (A + B) ij = (A + B)ji = Aji + Bji = Y T T T A ij + B ij = (A + B )ij. In practical terms, it just doesn’t matter if we add first and then flip or flip first and then add • (AB)T = BTAT. We can do this in symbols, but it really doesn’t help explain why this is n true: (AB)T = (AB) = T T = (BTAT) . To get a better idea of what is ij ji ∑a jkbki = ∑b ika kj ij k =1 really going on, look at what happens if B is a single column b. Then Ab is a combination of the columns of A. If we transpose this, we get a row which is a combination of the rows of AT. In other words, (Ab)T = bTAT. Then we get the whole picture of (AB)T by placing several columns side-by-side, which is putting a whole bunch of rows on top of each other in BT. -
VISUALIZING EXTERIOR CALCULUS Contents Introduction 1 1. Exterior
VISUALIZING EXTERIOR CALCULUS GREGORY BIXLER Abstract. Exterior calculus, broadly, is the structure of differential forms. These are usually presented algebraically, or as computational tools to simplify Stokes' Theorem. But geometric objects like forms should be visualized! Here, I present visualizations of forms that attempt to capture their geometry. Contents Introduction 1 1. Exterior algebra 2 1.1. Vectors and dual vectors 2 1.2. The wedge of two vectors 3 1.3. Defining the exterior algebra 4 1.4. The wedge of two dual vectors 5 1.5. R3 has no mixed wedges 6 1.6. Interior multiplication 7 2. Integration 8 2.1. Differential forms 9 2.2. Visualizing differential forms 9 2.3. Integrating differential forms over manifolds 9 3. Differentiation 11 3.1. Exterior Derivative 11 3.2. Visualizing the exterior derivative 13 3.3. Closed and exact forms 14 3.4. Future work: Lie derivative 15 Acknowledgments 16 References 16 Introduction What's the natural way to integrate over a smooth manifold? Well, a k-dimensional manifold is (locally) parametrized by k coordinate functions. At each point we get k tangent vectors, which together form an infinitesimal k-dimensional volume ele- ment. And how should we measure this element? It seems reasonable to ask for a function f taking k vectors, so that • f is linear in each vector • f is zero for degenerate elements (i.e. when vectors are linearly dependent) • f is smooth These are the properties of a differential form. 1 2 GREGORY BIXLER Introducing structure to a manifold usually follows a certain pattern: • Create it in Rn. -
Linear Algebra and Geometric Transformations in 2D
Linear algebra and geometric transformations in 2D Computer Graphics CSE 167 Lecture 2 CSE 167: Computer Graphics • Linear algebra – Vectors – Matrices • Points as vectors • Geometric transformations in 2D – Homogeneous coordinates CSE 167, Winter 2018 2 Vectors • Represent magnitude and direction in multiple dimensions • Examples – Translation of a point – Surface normal vectors (vectors orthogonal to surface) CSE 167, Winter 2018 3 Based on slides courtesy of Jurgen Schulze Vectors and arithmetic Examples using Vectors are 3‐vectors column vectors Vectors must be the same length CSE 167, Winter 2018 4 Magnitude of a vector • The magnitude of a vector is its norm Example using 3‐vector • A vector if magnitude 1 is called a unit vector • A vector can be unitized by dividing by its norm CSE 167, Winter 2018 5 Dot product of two vectors Angle between two vectors CSE 167, Winter 2018 6 Cross product of two 3‐vectors • The cross product of two 3‐vectors a and b results in another 3‐vector that is orthogonal (using right hand rule) to the two vectors CSE 167, Winter 2018 7 Cross product of two 3‐vectors CSE 167, Winter 2018 8 Matrices • 2D array of numbers A = CSE 167, Winter 2018 9 Matrix addition • Matrices must be the same size • Matrix subtraction is similar CSE 167, Winter 2018 10 Matrix‐scalar multiplication CSE 167, Winter 2018 11 Matrix‐matrix multiplication CSE 167, Winter 2018 12 Matrix‐vector multiplication • Same as matrix‐matrix multiplication – Example: 3x3 matrix multiplied with 3‐vector CSE 167, Winter 2018 13 Transpose • AT