Inner Product Spaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math 651 Homework 1 - Algebras and Groups Due 2/22/2013
Math 651 Homework 1 - Algebras and Groups Due 2/22/2013 1) Consider the Lie Group SU(2), the group of 2 × 2 complex matrices A T with A A = I and det(A) = 1. The underlying set is z −w jzj2 + jwj2 = 1 (1) w z with the standard S3 topology. The usual basis for su(2) is 0 i 0 −1 i 0 X = Y = Z = (2) i 0 1 0 0 −i (which are each i times the Pauli matrices: X = iσx, etc.). a) Show this is the algebra of purely imaginary quaternions, under the commutator bracket. b) Extend X to a left-invariant field and Y to a right-invariant field, and show by computation that the Lie bracket between them is zero. c) Extending X, Y , Z to global left-invariant vector fields, give SU(2) the metric g(X; X) = g(Y; Y ) = g(Z; Z) = 1 and all other inner products zero. Show this is a bi-invariant metric. d) Pick > 0 and set g(X; X) = 2, leaving g(Y; Y ) = g(Z; Z) = 1. Show this is left-invariant but not bi-invariant. p 2) The realification of an n × n complex matrix A + −1B is its assignment it to the 2n × 2n matrix A −B (3) BA Any n × n quaternionic matrix can be written A + Bk where A and B are complex matrices. Its complexification is the 2n × 2n complex matrix A −B (4) B A a) Show that the realification of complex matrices and complexifica- tion of quaternionic matrices are algebra homomorphisms. -
Equivalence of A-Approximate Continuity for Self-Adjoint
Equivalence of A-Approximate Continuity for Self-Adjoint Expansive Linear Maps a,1 b, ,2 Sz. Gy. R´ev´esz , A. San Antol´ın ∗ aA. R´enyi Institute of Mathematics, Hungarian Academy of Sciences, Budapest, P.O.B. 127, 1364 Hungary bDepartamento de Matem´aticas, Universidad Aut´onoma de Madrid, 28049 Madrid, Spain Abstract Let A : Rd Rd, d 1, be an expansive linear map. The notion of A-approximate −→ ≥ continuity was recently used to give a characterization of scaling functions in a multiresolution analysis (MRA). The definition of A-approximate continuity at a point x – or, equivalently, the definition of the family of sets having x as point of A-density – depend on the expansive linear map A. The aim of the present paper is to characterize those self-adjoint expansive linear maps A , A : Rd Rd for which 1 2 → the respective concepts of Aµ-approximate continuity (µ = 1, 2) coincide. These we apply to analyze the equivalence among dilation matrices for a construction of systems of MRA. In particular, we give a full description for the equivalence class of the dyadic dilation matrix among all self-adjoint expansive maps. If the so-called “four exponentials conjecture” of algebraic number theory holds true, then a similar full description follows even for general self-adjoint expansive linear maps, too. arXiv:math/0703349v2 [math.CA] 7 Sep 2007 Key words: A-approximate continuity, multiresolution analysis, point of A-density, self-adjoint expansive linear map. 1 Supported in part in the framework of the Hungarian-Spanish Scientific and Technological Governmental Cooperation, Project # E-38/04. -
Introduction to Linear Bialgebra
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. -
A New Description of Space and Time Using Clifford Multivectors
A new description of space and time using Clifford multivectors James M. Chappell† , Nicolangelo Iannella† , Azhar Iqbal† , Mark Chappell‡ , Derek Abbott† †School of Electrical and Electronic Engineering, University of Adelaide, South Australia 5005, Australia ‡Griffith Institute, Griffith University, Queensland 4122, Australia Abstract Following the development of the special theory of relativity in 1905, Minkowski pro- posed a unified space and time structure consisting of three space dimensions and one time dimension, with relativistic effects then being natural consequences of this space- time geometry. In this paper, we illustrate how Clifford’s geometric algebra that utilizes multivectors to represent spacetime, provides an elegant mathematical framework for the study of relativistic phenomena. We show, with several examples, how the application of geometric algebra leads to the correct relativistic description of the physical phenomena being considered. This approach not only provides a compact mathematical representa- tion to tackle such phenomena, but also suggests some novel insights into the nature of time. Keywords: Geometric algebra, Clifford space, Spacetime, Multivectors, Algebraic framework 1. Introduction The physical world, based on early investigations, was deemed to possess three inde- pendent freedoms of translation, referred to as the three dimensions of space. This naive conclusion is also supported by more sophisticated analysis such as the existence of only five regular polyhedra and the inverse square force laws. If we lived in a world with four spatial dimensions, for example, we would be able to construct six regular solids, and in arXiv:1205.5195v2 [math-ph] 11 Oct 2012 five dimensions and above we would find only three [1]. -
LECTURES on PURE SPINORS and MOMENT MAPS Contents 1
LECTURES ON PURE SPINORS AND MOMENT MAPS E. MEINRENKEN Contents 1. Introduction 1 2. Volume forms on conjugacy classes 1 3. Clifford algebras and spinors 3 4. Linear Dirac geometry 8 5. The Cartan-Dirac structure 11 6. Dirac structures 13 7. Group-valued moment maps 16 References 20 1. Introduction This article is an expanded version of notes for my lectures at the summer school on `Poisson geometry in mathematics and physics' at Keio University, Yokohama, June 5{9 2006. The plan of these lectures was to give an elementary introduction to the theory of Dirac structures, with applications to Lie group valued moment maps. Special emphasis was given to the pure spinor approach to Dirac structures, developed in Alekseev-Xu [7] and Gualtieri [20]. (See [11, 12, 16] for the more standard approach.) The connection to moment maps was made in the work of Bursztyn-Crainic [10]. Parts of these lecture notes are based on a forthcoming joint paper [1] with Anton Alekseev and Henrique Bursztyn. I would like to thank the organizers of the school, Yoshi Maeda and Guiseppe Dito, for the opportunity to deliver these lectures, and for a greatly enjoyable meeting. I also thank Yvette Kosmann-Schwarzbach and the referee for a number of helpful comments. 2. Volume forms on conjugacy classes We will begin with the following FACT, which at first sight may seem quite unrelated to the theme of these lectures: FACT. Let G be a simply connected semi-simple real Lie group. Then every conjugacy class in G carries a canonical invariant volume form. -
21. Orthonormal Bases
21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else. -
On the Second Dual of the Space of Continuous Functions
ON THE SECOND DUAL OF THE SPACE OF CONTINUOUS FUNCTIONS BY SAMUEL KAPLAN Introduction. By "the space of continuous functions" we mean the Banach space C of real continuous functions on a compact Hausdorff space X. C, its first dual, and its second dual are not only Banach spaces, but also vector lattices, and this aspect of them plays a central role in our treatment. In §§1-3, we collect the properties of vector lattices which we need in the paper. In §4 we add some properties of the first dual of C—the space of Radon measures on X—denoted by L in the present paper. In §5 we imbed C in its second dual, denoted by M, and then identify the space of all bounded real functions on X with a quotient space of M, in fact with a topological direct summand. Thus each bounded function on X represents an entire class of elements of M. The value of an element/ of M on an element p. of L is denoted as usual by/(p.)- If/lies in C then of course f(u) =p(f) (usually written J fdp), and thus the multiplication between Afand P is an extension of the multiplication between L and C. Now in integration theory, for each pEL, there is a stand- ard "extension" of ffdu to certain of the bounded functions on X (we confine ourselves to bounded functions in this paper), which are consequently called u-integrable. The question arises: how is this "extension" related to the multi- plication between M and L. -
FUNCTIONAL ANALYSIS 1. Banach and Hilbert Spaces in What
FUNCTIONAL ANALYSIS PIOTR HAJLASZ 1. Banach and Hilbert spaces In what follows K will denote R of C. Definition. A normed space is a pair (X, k · k), where X is a linear space over K and k · k : X → [0, ∞) is a function, called a norm, such that (1) kx + yk ≤ kxk + kyk for all x, y ∈ X; (2) kαxk = |α|kxk for all x ∈ X and α ∈ K; (3) kxk = 0 if and only if x = 0. Since kx − yk ≤ kx − zk + kz − yk for all x, y, z ∈ X, d(x, y) = kx − yk defines a metric in a normed space. In what follows normed paces will always be regarded as metric spaces with respect to the metric d. A normed space is called a Banach space if it is complete with respect to the metric d. Definition. Let X be a linear space over K (=R or C). The inner product (scalar product) is a function h·, ·i : X × X → K such that (1) hx, xi ≥ 0; (2) hx, xi = 0 if and only if x = 0; (3) hαx, yi = αhx, yi; (4) hx1 + x2, yi = hx1, yi + hx2, yi; (5) hx, yi = hy, xi, for all x, x1, x2, y ∈ X and all α ∈ K. As an obvious corollary we obtain hx, y1 + y2i = hx, y1i + hx, y2i, hx, αyi = αhx, yi , Date: February 12, 2009. 1 2 PIOTR HAJLASZ for all x, y1, y2 ∈ X and α ∈ K. For a space with an inner product we define kxk = phx, xi . Lemma 1.1 (Schwarz inequality). -
Orthonormal Bases in Hilbert Space APPM 5440 Fall 2017 Applied Analysis
Orthonormal Bases in Hilbert Space APPM 5440 Fall 2017 Applied Analysis Stephen Becker November 18, 2017(v4); v1 Nov 17 2014 and v2 Jan 21 2016 Supplementary notes to our textbook (Hunter and Nachtergaele). These notes generally follow Kreyszig’s book. The reason for these notes is that this is a simpler treatment that is easier to follow; the simplicity is because we generally do not consider uncountable nets, but rather only sequences (which are countable). I have tried to identify the theorems from both books; theorems/lemmas with numbers like 3.3-7 are from Kreyszig. Note: there are two versions of these notes, with and without proofs. The version without proofs will be distributed to the class initially, and the version with proofs will be distributed later (after any potential homework assignments, since some of the proofs maybe assigned as homework). This version does not have proofs. 1 Basic Definitions NOTE: Kreyszig defines inner products to be linear in the first term, and conjugate linear in the second term, so hαx, yi = αhx, yi = hx, αy¯ i. In contrast, Hunter and Nachtergaele define the inner product to be linear in the second term, and conjugate linear in the first term, so hαx,¯ yi = αhx, yi = hx, αyi. We will follow the convention of Hunter and Nachtergaele, so I have re-written the theorems from Kreyszig accordingly whenever the order is important. Of course when working with the real field, order is completely unimportant. Let X be an inner product space. Then we can define a norm on X by kxk = phx, xi, x ∈ X. -
Lecture 4: April 8, 2021 1 Orthogonality and Orthonormality
Mathematical Toolkit Spring 2021 Lecture 4: April 8, 2021 Lecturer: Avrim Blum (notes based on notes from Madhur Tulsiani) 1 Orthogonality and orthonormality Definition 1.1 Two vectors u, v in an inner product space are said to be orthogonal if hu, vi = 0. A set of vectors S ⊆ V is said to consist of mutually orthogonal vectors if hu, vi = 0 for all u 6= v, u, v 2 S. A set of S ⊆ V is said to be orthonormal if hu, vi = 0 for all u 6= v, u, v 2 S and kuk = 1 for all u 2 S. Proposition 1.2 A set S ⊆ V n f0V g consisting of mutually orthogonal vectors is linearly inde- pendent. Proposition 1.3 (Gram-Schmidt orthogonalization) Given a finite set fv1,..., vng of linearly independent vectors, there exists a set of orthonormal vectors fw1,..., wng such that Span (fw1,..., wng) = Span (fv1,..., vng) . Proof: By induction. The case with one vector is trivial. Given the statement for k vectors and orthonormal fw1,..., wkg such that Span (fw1,..., wkg) = Span (fv1,..., vkg) , define k u + u = v − hw , v i · w and w = k 1 . k+1 k+1 ∑ i k+1 i k+1 k k i=1 uk+1 We can now check that the set fw1,..., wk+1g satisfies the required conditions. Unit length is clear, so let’s check orthogonality: k uk+1, wj = vk+1, wj − ∑ hwi, vk+1i · wi, wj = vk+1, wj − wj, vk+1 = 0. i=1 Corollary 1.4 Every finite dimensional inner product space has an orthonormal basis. -
Glossary of Linear Algebra Terms
INNER PRODUCT SPACES AND THE GRAM-SCHMIDT PROCESS A. HAVENS 1. The Dot Product and Orthogonality 1.1. Review of the Dot Product. We first recall the notion of the dot product, which gives us a familiar example of an inner product structure on the real vector spaces Rn. This product is connected to the Euclidean geometry of Rn, via lengths and angles measured in Rn. Later, we will introduce inner product spaces in general, and use their structure to define general notions of length and angle on other vector spaces. Definition 1.1. The dot product of real n-vectors in the Euclidean vector space Rn is the scalar product · : Rn × Rn ! R given by the rule n n ! n X X X (u; v) = uiei; viei 7! uivi : i=1 i=1 i n Here BS := (e1;:::; en) is the standard basis of R . With respect to our conventions on basis and matrix multiplication, we may also express the dot product as the matrix-vector product 2 3 v1 6 7 t î ó 6 . 7 u v = u1 : : : un 6 . 7 : 4 5 vn It is a good exercise to verify the following proposition. Proposition 1.1. Let u; v; w 2 Rn be any real n-vectors, and s; t 2 R be any scalars. The Euclidean dot product (u; v) 7! u · v satisfies the following properties. (i:) The dot product is symmetric: u · v = v · u. (ii:) The dot product is bilinear: • (su) · v = s(u · v) = u · (sv), • (u + v) · w = u · w + v · w. -
A Some Basic Rules of Tensor Calculus
A Some Basic Rules of Tensor Calculus The tensor calculus is a powerful tool for the description of the fundamentals in con- tinuum mechanics and the derivation of the governing equations for applied prob- lems. In general, there are two possibilities for the representation of the tensors and the tensorial equations: – the direct (symbolic) notation and – the index (component) notation The direct notation operates with scalars, vectors and tensors as physical objects defined in the three dimensional space. A vector (first rank tensor) a is considered as a directed line segment rather than a triple of numbers (coordinates). A second rank tensor A is any finite sum of ordered vector pairs A = a b + ... +c d. The scalars, vectors and tensors are handled as invariant (independent⊗ from the choice⊗ of the coordinate system) objects. This is the reason for the use of the direct notation in the modern literature of mechanics and rheology, e.g. [29, 32, 49, 123, 131, 199, 246, 313, 334] among others. The index notation deals with components or coordinates of vectors and tensors. For a selected basis, e.g. gi, i = 1, 2, 3 one can write a = aig , A = aibj + ... + cidj g g i i ⊗ j Here the Einstein’s summation convention is used: in one expression the twice re- peated indices are summed up from 1 to 3, e.g. 3 3 k k ik ik a gk ∑ a gk, A bk ∑ A bk ≡ k=1 ≡ k=1 In the above examples k is a so-called dummy index. Within the index notation the basic operations with tensors are defined with respect to their coordinates, e.