A Basic Operations of Tensor Algebra

Total Page:16

File Type:pdf, Size:1020Kb

A Basic Operations of Tensor Algebra A Basic Operations of Tensor Algebra The tensor calculus is a powerful tool for the description of the fundamentals in con- tinuum mechanics and the derivation of the governing equations for applied prob- lems. In general, there are two possibilities for the representation of the tensors and the tensorial equations: – the direct (symbolic, coordinate-free) notation and – the index (component) notation The direct notation operates with scalars, vectors and tensors as physical objects defined in the three-dimensional space (in this book we are limit ourselves to this case). A vector (first rank tensor) a is considered as a directed line segment rather than a triple of numbers (coordinates). A second rank tensor A is any finite sum of ordered vector pairs A = a ⊗ b + ...+ c ⊗ d. The scalars, vectors and tensors are handled as invariant (independent from the choice of the coordinate system) quantities. This is the reason for the use of the direct notation in the modern literature of mechanics and rheology, e.g. [32, 36, 53, 126, 134, 205, 253, 321, 343] among others. The basics of the direct tensor calculus are given in the classical textbooks of Wilson (founded upon the lecture notes of Gibbs) [331] and Lagally [183]. The index notation deals with components or coordinates of vectors and tensors. For a selected basis, e.g. gi, i = 1, 2, 3 one can write i i j i j ⊗ a = a gi, A = a b + ...+ c d gi gj Here the Einstein’s summation convention is used: in one expression the twice re- peated indices are summed up from 1 to 3, e.g. 3 3 k ≡ k ik ≡ ik a gk ∑ a gk, A bk ∑ A bk k=1 k=1 In the above examples k is a so-called dummy index. Within the index notation the basic operations with tensors are defined with respect to their coordinates, e. g. the sum of two vectors is computed as the sum of their coordinates ci = ai + bi. The introduced basis remains in the background. It must be noted that a change of the coordinate system leads to the change of the components of tensors. In this book we prefer the direct tensor notation over the index one. When solv- ing applied problems the tensor equations can be “translated into the language” 168 A Basic Operations of Tensor Algebra of matrices for a specified coordinate system. The purpose of this Appendix is to give a brief guide to notations and rules of the tensor calculus applied through- out this book. For more comprehensive overviews on tensor calculus we recom- mend [58, 99, 126, 197, 205, 319, 343]. The calculus of matrices is presented in [44, 114, 350], for example. Section A provides a summary of basic algebraic oper- ations with vectors and second rank tensors. Several rules from tensor analysis are given in Sect. B. Basic sets of invariants for different groups of symmetry transfor- mation are presented in Sect. C, where a novel approach to find the functional basis is discussed. A.1 Polar and Axial Vectors A vector in the three-dimensional Euclidean space is defined as a directed line segment with specified scalar-valued magnitude and direction. The magnitude (the length) of a vector a is denoted by |a|. Two vectors a and b are equal if they have the same direction and the same magnitude. The zero vector 0 has a magnitude equal to zero. In mechanics two types of vectors can be introduced. The vectors of the first type are directed line segments. These vectors are associated with translations in the three-dimensional space. Examples for polar vectors include the force, the displacement, the velocity, the acceleration, the momentum, etc. The second type is used to characterize spinor motions and related quantities, i.e. the moment, the angular velocity, the angular momentum, etc. Figure A.1a shows the so-called spin vector a∗ which represents a rotation about the given axis. The direction of rotation is specified by the circular arrow and the “magnitude” of rotation is the correspond- ing length. For the given spin vector a∗ the directed line segment a is introduced according to the following rules [343]: 1. the vector a is placed on the axis of the spin vector, 2. the magnitude of a is equal to the magnitude of a∗, 3. the vector a is directed according to the right-handed screw, Fig. A.1b, or the left-handed screw, Fig. A.1c a b c a a∗ a∗ a∗ a Fig. A.1 Spin vector and its representation by an axial vector. a Spin vector, b axial vector in the right-screw oriented reference frame, c axial vector in the left-screw oriented reference frame A.2 Operations with Vectors 169 The selection of one of the two cases in of the third item corresponds to the con- vention of orientation of the reference frame [343] (it should be not confused with the right- or left-handed triples of vectors or coordinate systems). The directed line segment is called a polar vector if it does not change by changing the orientation of the reference frame. The vector is called to be axial if it changes the sign by changing the orientation of the reference frame. The above definitions are valid for scalars and tensors of any rank too. The axial vectors (and tensors) are widely used in the rigid body dynamics, e.g. [342], in the theories of rods, plates and shells, e.g. [28], in the asymmetric theory of elasticity, e.g. [238], as well as in dynamics of micro-polar media, e.g. [111]. When dealing with polar and axial vectors it should be remembered that they have different physical meanings. Therefore, a sum of a polar and an axial vector has no sense. A.2 Operations with Vectors A.2.1 Addition For a given pair of vectors a and b of the same type the sum c = a + b is defined according to one of the rules in Fig. A.2. The sum has the following properties • a + b = b + a (commutativity), • (a + b)+c = a +(b + c) (associativity), • a + 0 = a A.2.2 Multiplication by a Scalar For any vector a and for any scalar α a vector b = αa is defined in such a way that •|b| = |α||a|, • for α > 0 the direction of b coincides with that of a, • for α < 0 the direction of b is opposite to that of a. For α = 0 the product yields the zero vector, i.e. 0 = 0a. It is easy to verify that α(a + b)=αa + αb, (α + β)a = αa + βa a b b c c b a a Fig. A.2 Addition of two vectors. a Parallelogram rule, b triangle rule 170 A Basic Operations of Tensor Algebra a b b b ϕ ϕ a a 2π − ϕ a na = (b · a)n |a| a Fig. A.3 Scalar product of two vectors. a Angles between two vectors, b unit vector and projection A.2.3 Scalar (Dot) Product of Two Vectors For any pair of vectors a and b a scalar α is defined by α = a · b = |a||b| cos ϕ, where ϕ is the angle between the vectors a and b.Asϕ one can use any of the two angles between the vectors, Fig. A.3a. The properties of the scalar product are • a · b = b · a (commutativity), • a · (b + c)=a · b + a · c (distributivity) Two nonzero vectors are said to be orthogonal if their scalar product is zero. The unit vector directed along the vector a is defined by (see Fig. A.3b) a na = a |a| · The projection of the vector b onto the vector a is the vector (b · a)na,Fig.A.3b. The length of the projection is |bcos ϕ|. A.2.4 Vector (Cross) Product of Two Vectors For the ordered pair of vectors a and b the vector c = a × b is defined in two following steps [343]: • the spin vector c∗ is defined in such a way that the axis is orthogonal to the plane spanned on a and b,Fig.A.4a, the circular arrow shows the direction of the “shortest” rotation from a to b, Fig. A.4b, the length is |a||b| sin ϕ, where ϕ is the angle of the “shortest” rotation from a to b, A.3 Bases 171 a b c c c∗ ϕ ϕ ϕ a b a b a b Fig. A.4 Vector product of two vectors. a Plane spanned on two vectors, b spin vector, c axial vector in the right-screw oriented reference frame • from the resulting spin vector the directed line segment c is constructed according to one of the rules listed in Sect. A.1. The properties of the vector product are a × b = −b × a, a × (b + c)=a × b + a × c The type of the vector c = a × b can be established for the known types of the vectors a and b, [343]. If a and b are polar vectors the result of the cross product will be the axial vector. An example is the moment of momentum for a mass point m defined by r × (mv˙ ), where r is the position of the mass point and v is the velocity of the mass point. The next example is the formula for the distribution of velocities in a rigid body v = ω × r. Here the cross product of the axial vector ω (angular velocity) with the polar vector r (position vector) results in the polar vector v.
Recommended publications
  • Common Course Outline MATH 257 Linear Algebra 4 Credits
    Common Course Outline MATH 257 Linear Algebra 4 Credits The Community College of Baltimore County Description MATH 257 – Linear Algebra is one of the suggested elective courses for students majoring in Mathematics, Computer Science or Engineering. Included are geometric vectors, matrices, systems of linear equations, vector spaces, linear transformations, determinants, eigenvectors and inner product spaces. 4 Credits: 5 lecture hours Prerequisite: MATH 251 with a grade of “C” or better Overall Course Objectives Upon successfully completing the course, students will be able to: 1. perform matrix operations; 2. use Gaussian Elimination, Cramer’s Rule, and the inverse of the coefficient matrix to solve systems of Linear Equations; 3. find the inverse of a matrix by Gaussian Elimination or using the adjoint matrix; 4. compute the determinant of a matrix using cofactor expansion or elementary row operations; 5. apply Gaussian Elimination to solve problems concerning Markov Chains; 6. verify that a structure is a vector space by checking the axioms; 7. verify that a subset is a subspace and that a set of vectors is a basis; 8. compute the dimensions of subspaces; 9. compute the matrix representation of a linear transformation; 10. apply notions of linear transformations to discuss rotations and reflections of two dimensional space; 11. compute eigenvalues and find their corresponding eigenvectors; 12. diagonalize a matrix using eigenvalues; 13. apply properties of vectors and dot product to prove results in geometry; 14. apply notions of vectors, dot product and matrices to construct a best fitting curve; 15. construct a solution to real world problems using problem methods individually and in groups; 16.
    [Show full text]
  • 21. Orthonormal Bases
    21. Orthonormal Bases The canonical/standard basis 011 001 001 B C B C B C B0C B1C B0C e1 = B.C ; e2 = B.C ; : : : ; en = B.C B.C B.C B.C @.A @.A @.A 0 0 1 has many useful properties. • Each of the standard basis vectors has unit length: q p T jjeijj = ei ei = ei ei = 1: • The standard basis vectors are orthogonal (in other words, at right angles or perpendicular). T ei ej = ei ej = 0 when i 6= j This is summarized by ( 1 i = j eT e = δ = ; i j ij 0 i 6= j where δij is the Kronecker delta. Notice that the Kronecker delta gives the entries of the identity matrix. Given column vectors v and w, we have seen that the dot product v w is the same as the matrix multiplication vT w. This is the inner product on n T R . We can also form the outer product vw , which gives a square matrix. 1 The outer product on the standard basis vectors is interesting. Set T Π1 = e1e1 011 B C B0C = B.C 1 0 ::: 0 B.C @.A 0 01 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 0 . T Πn = enen 001 B C B0C = B.C 0 0 ::: 1 B.C @.A 1 00 0 ::: 01 B C B0 0 ::: 0C = B. .C B. .C @. .A 0 0 ::: 1 In short, Πi is the diagonal square matrix with a 1 in the ith diagonal position and zeros everywhere else.
    [Show full text]
  • Generic Properties of Symmetric Tensors
    2006 – 1/48 – P.Comon Generic properties of Symmetric Tensors Pierre COMON I3S - CNRS other contributors: Bernard MOURRAIN INRIA institute Lek-Heng LIM, Stanford University I3S 2006 – 2/48 – P.Comon Tensors & Arrays Definitions Table T = {Tij..k} Order d of T def= # of its ways = # of its indices def Dimension n` = range of the `th index T is Square when all dimensions n` = n are equal T is Symmetric when it is square and when its entries do not change by any permutation of indices I3S 2006 – 3/48 – P.Comon Tensors & Arrays Properties Outer (tensor) product C = A ◦ B: Cij..` ab..c = Aij..` Bab..c Example 1 outer product between 2 vectors: u ◦ v = u vT Multilinearity. An order-3 tensor T is transformed by the multi-linear map {A, B, C} into a tensor T 0: 0 X Tijk = AiaBjbCkcTabc abc Similarly: at any order d. I3S 2006 – 4/48 – P.Comon Tensors & Arrays Example Example 2 Take 1 v = −1 Then 1 −1 −1 1 v◦3 = −1 1 1 −1 This is a “rank-1” symmetric tensor I3S 2006 – 5/48 – P.Comon Usefulness of symmetric arrays CanD/PARAFAC vs ICA .. .. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... CanD/PARAFAC: = + ... + . ... ... ... ... ... ... ... ... I3S 2006 – 6/48 – P.Comon Usefulness of symmetric arrays CanD/PARAFAC vs ICA .. .. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... CanD/PARAFAC: = + ... + . ... ... ... ... ... ... ... ... PARAFAC cannot be used when: • Lack of diversity I3S 2006 – 7/48 – P.Comon Usefulness of symmetric arrays CanD/PARAFAC vs ICA .. .. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... CanD/PARAFAC: = + ... + . ... ... ... ... ... ... ... ... PARAFAC cannot be used when: • Lack of diversity • Proportional slices I3S 2006 – 8/48 – P.Comon Usefulness of symmetric arrays CanD/PARAFAC vs ICA .
    [Show full text]
  • Vectors, Matrices and Coordinate Transformations
    S. Widnall 16.07 Dynamics Fall 2009 Lecture notes based on J. Peraire Version 2.0 Lecture L3 - Vectors, Matrices and Coordinate Transformations By using vectors and defining appropriate operations between them, physical laws can often be written in a simple form. Since we will making extensive use of vectors in Dynamics, we will summarize some of their important properties. Vectors For our purposes we will think of a vector as a mathematical representation of a physical entity which has both magnitude and direction in a 3D space. Examples of physical vectors are forces, moments, and velocities. Geometrically, a vector can be represented as arrows. The length of the arrow represents its magnitude. Unless indicated otherwise, we shall assume that parallel translation does not change a vector, and we shall call the vectors satisfying this property, free vectors. Thus, two vectors are equal if and only if they are parallel, point in the same direction, and have equal length. Vectors are usually typed in boldface and scalar quantities appear in lightface italic type, e.g. the vector quantity A has magnitude, or modulus, A = |A|. In handwritten text, vectors are often expressed using the −→ arrow, or underbar notation, e.g. A , A. Vector Algebra Here, we introduce a few useful operations which are defined for free vectors. Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α > 0.
    [Show full text]
  • Multivector Differentiation and Linear Algebra 0.5Cm 17Th Santaló
    Multivector differentiation and Linear Algebra 17th Santalo´ Summer School 2016, Santander Joan Lasenby Signal Processing Group, Engineering Department, Cambridge, UK and Trinity College Cambridge [email protected], www-sigproc.eng.cam.ac.uk/ s jl 23 August 2016 1 / 78 Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. 2 / 78 Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. 3 / 78 Functional Differentiation: very briefly... Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. 4 / 78 Summary Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... 5 / 78 Overview The Multivector Derivative. Examples of differentiation wrt multivectors. Linear Algebra: matrices and tensors as linear functions mapping between elements of the algebra. Functional Differentiation: very briefly... Summary 6 / 78 We now want to generalise this idea to enable us to find the derivative of F(X), in the A ‘direction’ – where X is a general mixed grade multivector (so F(X) is a general multivector valued function of X). Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi. Then, provided A has same grades as X, it makes sense to define: F(X + tA) − F(X) A ∗ ¶XF(X) = lim t!0 t The Multivector Derivative Recall our definition of the directional derivative in the a direction F(x + ea) − F(x) a·r F(x) = lim e!0 e 7 / 78 Let us use ∗ to denote taking the scalar part, ie P ∗ Q ≡ hPQi.
    [Show full text]
  • 1.2 Topological Tensor Calculus
    PH211 Physical Mathematics Fall 2019 1.2 Topological tensor calculus 1.2.1 Tensor fields Finite displacements in Euclidean space can be represented by arrows and have a natural vector space structure, but finite displacements in more general curved spaces, such as on the surface of a sphere, do not. However, an infinitesimal neighborhood of a point in a smooth curved space1 looks like an infinitesimal neighborhood of Euclidean space, and infinitesimal displacements dx~ retain the vector space structure of displacements in Euclidean space. An infinitesimal neighborhood of a point can be infinitely rescaled to generate a finite vector space, called the tangent space, at the point. A vector lives in the tangent space of a point. Note that vectors do not stretch from one point to vector tangent space at p p space Figure 1.2.1: A vector in the tangent space of a point. another, and vectors at different points live in different tangent spaces and so cannot be added. For example, rescaling the infinitesimal displacement dx~ by dividing it by the in- finitesimal scalar dt gives the velocity dx~ ~v = (1.2.1) dt which is a vector. Similarly, we can picture the covector rφ as the infinitesimal contours of φ in a neighborhood of a point, infinitely rescaled to generate a finite covector in the point's cotangent space. More generally, infinitely rescaling the neighborhood of a point generates the tensor space and its algebra at the point. The tensor space contains the tangent and cotangent spaces as a vector subspaces. A tensor field is something that takes tensor values at every point in a space.
    [Show full text]
  • Tensor Products
    Tensor products Joel Kamnitzer April 5, 2011 1 The definition Let V, W, X be three vector spaces. A bilinear map from V × W to X is a function H : V × W → X such that H(av1 + v2, w) = aH(v1, w) + H(v2, w) for v1,v2 ∈ V, w ∈ W, a ∈ F H(v, aw1 + w2) = aH(v, w1) + H(v, w2) for v ∈ V, w1, w2 ∈ W, a ∈ F Let V and W be vector spaces. A tensor product of V and W is a vector space V ⊗ W along with a bilinear map φ : V × W → V ⊗ W , such that for every vector space X and every bilinear map H : V × W → X, there exists a unique linear map T : V ⊗ W → X such that H = T ◦ φ. In other words, giving a linear map from V ⊗ W to X is the same thing as giving a bilinear map from V × W to X. If V ⊗ W is a tensor product, then we write v ⊗ w := φ(v ⊗ w). Note that there are two pieces of data in a tensor product: a vector space V ⊗ W and a bilinear map φ : V × W → V ⊗ W . Here are the main results about tensor products summarized in one theorem. Theorem 1.1. (i) Any two tensor products of V, W are isomorphic. (ii) V, W has a tensor product. (iii) If v1,...,vn is a basis for V and w1,...,wm is a basis for W , then {vi ⊗ wj }1≤i≤n,1≤j≤m is a basis for V ⊗ W .
    [Show full text]
  • Vector Analysis
    DOING PHYSICS WITH MATLAB VECTOR ANANYSIS Ian Cooper School of Physics, University of Sydney [email protected] DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS cemVectorsA.m Inputs: Cartesian components of the vector V Outputs: cylindrical and spherical components and [3D] plot of vector cemVectorsB.m Inputs: Cartesian components of the vectors A B C Outputs: dot products, cross products and triple products cemVectorsC.m Rotation of XY axes around Z axis to give new of reference X’Y’Z’. Inputs: rotation angle and vector (Cartesian components) in XYZ frame Outputs: Cartesian components of vector in X’Y’Z’ frame mscript can be modified to calculate the rotation matrix for a [3D] rotation and give the Cartesian components of the vector in the X’Y’Z’ frame of reference. Doing Physics with Matlab 1 SPECIFYING a [3D] VECTOR A scalar is completely characterised by its magnitude, and has no associated direction (mass, time, direction, work). A scalar is given by a simple number. A vector has both a magnitude and direction (force, electric field, magnetic field). A vector can be specified in terms of its Cartesian or cylindrical (polar in [2D]) or spherical coordinates. Cartesian coordinate system (XYZ right-handed rectangular: if we curl our fingers on the right hand so they rotate from the X axis to the Y axis then the Z axis is in the direction of the thumb). A vector V in specified in terms of its X, Y and Z Cartesian components ˆˆˆ VVVV x,, y z VViVjVk x y z where iˆˆ,, j kˆ are unit vectors parallel to the X, Y and Z axes respectively.
    [Show full text]
  • On Manifolds of Tensors of Fixed Tt-Rank
    ON MANIFOLDS OF TENSORS OF FIXED TT-RANK SEBASTIAN HOLTZ, THORSTEN ROHWEDDER, AND REINHOLD SCHNEIDER Abstract. Recently, the format of TT tensors [19, 38, 34, 39] has turned out to be a promising new format for the approximation of solutions of high dimensional problems. In this paper, we prove some new results for the TT representation of a tensor U ∈ Rn1×...×nd and for the manifold of tensors of TT-rank r. As a first result, we prove that the TT (or compression) ranks ri of a tensor U are unique and equal to the respective seperation ranks of U if the components of the TT decomposition are required to fulfil a certain maximal rank condition. We then show that d the set T of TT tensors of fixed rank r forms an embedded manifold in Rn , therefore preserving the essential theoretical properties of the Tucker format, but often showing an improved scaling behaviour. Extending a similar approach for matrices [7], we introduce certain gauge conditions to obtain a unique representation of the tangent space TU T of T and deduce a local parametrization of the TT manifold. The parametrisation of TU T is often crucial for an algorithmic treatment of high-dimensional time-dependent PDEs and minimisation problems [33]. We conclude with remarks on those applications and present some numerical examples. 1. Introduction The treatment of high-dimensional problems, typically of problems involving quantities from Rd for larger dimensions d, is still a challenging task for numerical approxima- tion. This is owed to the principal problem that classical approaches for their treatment normally scale exponentially in the dimension d in both needed storage and computa- tional time and thus quickly become computationally infeasable for sensible discretiza- tions of problems of interest.
    [Show full text]
  • Parallel Spinors and Connections with Skew-Symmetric Torsion in String Theory*
    ASIAN J. MATH. © 2002 International Press Vol. 6, No. 2, pp. 303-336, June 2002 005 PARALLEL SPINORS AND CONNECTIONS WITH SKEW-SYMMETRIC TORSION IN STRING THEORY* THOMAS FRIEDRICHt AND STEFAN IVANOV* Abstract. We describe all almost contact metric, almost hermitian and G2-structures admitting a connection with totally skew-symmetric torsion tensor, and prove that there exists at most one such connection. We investigate its torsion form, its Ricci tensor, the Dirac operator and the V- parallel spinors. In particular, we obtain partial solutions of the type // string equations in dimension n = 5, 6 and 7. 1. Introduction. Linear connections preserving a Riemannian metric with totally skew-symmetric torsion recently became a subject of interest in theoretical and mathematical physics. For example, the target space of supersymmetric sigma models with Wess-Zumino term carries a geometry of a metric connection with skew-symmetric torsion [23, 34, 35] (see also [42] and references therein). In supergravity theories, the geometry of the moduli space of a class of black holes is carried out by a metric connection with skew-symmetric torsion [27]. The geometry of NS-5 brane solutions of type II supergravity theories is generated by a metric connection with skew-symmetric torsion [44, 45, 43]. The existence of parallel spinors with respect to a metric connection with skew-symmetric torsion on a Riemannian spin manifold is of importance in string theory, since they are associated with some string solitons (BPS solitons) [43]. Supergravity solutions that preserve some of the supersymmetry of the underlying theory have found many applications in the exploration of perturbative and non-perturbative properties of string theory.
    [Show full text]
  • Determinants Math 122 Calculus III D Joyce, Fall 2012
    Determinants Math 122 Calculus III D Joyce, Fall 2012 What they are. A determinant is a value associated to a square array of numbers, that square array being called a square matrix. For example, here are determinants of a general 2 × 2 matrix and a general 3 × 3 matrix. a b = ad − bc: c d a b c d e f = aei + bfg + cdh − ceg − afh − bdi: g h i The determinant of a matrix A is usually denoted jAj or det (A). You can think of the rows of the determinant as being vectors. For the 3×3 matrix above, the vectors are u = (a; b; c), v = (d; e; f), and w = (g; h; i). Then the determinant is a value associated to n vectors in Rn. There's a general definition for n×n determinants. It's a particular signed sum of products of n entries in the matrix where each product is of one entry in each row and column. The two ways you can choose one entry in each row and column of the 2 × 2 matrix give you the two products ad and bc. There are six ways of chosing one entry in each row and column in a 3 × 3 matrix, and generally, there are n! ways in an n × n matrix. Thus, the determinant of a 4 × 4 matrix is the signed sum of 24, which is 4!, terms. In this general definition, half the terms are taken positively and half negatively. In class, we briefly saw how the signs are determined by permutations.
    [Show full text]
  • Matrices and Tensors
    APPENDIX MATRICES AND TENSORS A.1. INTRODUCTION AND RATIONALE The purpose of this appendix is to present the notation and most of the mathematical tech- niques that are used in the body of the text. The audience is assumed to have been through sev- eral years of college-level mathematics, which included the differential and integral calculus, differential equations, functions of several variables, partial derivatives, and an introduction to linear algebra. Matrices are reviewed briefly, and determinants, vectors, and tensors of order two are described. The application of this linear algebra to material that appears in under- graduate engineering courses on mechanics is illustrated by discussions of concepts like the area and mass moments of inertia, Mohr’s circles, and the vector cross and triple scalar prod- ucts. The notation, as far as possible, will be a matrix notation that is easily entered into exist- ing symbolic computational programs like Maple, Mathematica, Matlab, and Mathcad. The desire to represent the components of three-dimensional fourth-order tensors that appear in anisotropic elasticity as the components of six-dimensional second-order tensors and thus rep- resent these components in matrices of tensor components in six dimensions leads to the non- traditional part of this appendix. This is also one of the nontraditional aspects in the text of the book, but a minor one. This is described in §A.11, along with the rationale for this approach. A.2. DEFINITION OF SQUARE, COLUMN, AND ROW MATRICES An r-by-c matrix, M, is a rectangular array of numbers consisting of r rows and c columns: ¯MM..
    [Show full text]