Tensile Overpressure Compartments on Low-Angle Thrust Faults

Total Page:16

File Type:pdf, Size:1020Kb

Tensile Overpressure Compartments on Low-Angle Thrust Faults Sibson Earth, Planets and Space (2017) 69:113 DOI 10.1186/s40623-017-0699-y FULL PAPER Open Access Tensile overpressure compartments on low‑angle thrust faults Richard H. Sibson* Abstract Hydrothermal extension veins form by hydraulic fracturing under triaxial stress (principal compressive stresses, σ1 > σ2 > σ3) when the pore-fuid pressure, Pf, exceeds the least compressive stress by the rock’s tensile strength. Such veins form perpendicular to σ3, their incremental precipitation from hydrothermal fuid often refected in ‘crack- seal’ textures, demonstrating that the tensile overpressure state, σ3′ (σ3 Pf) < 0, was repeatedly met. Systematic arrays of extension veins develop locally in both sub-metamorphic and= metamorphic− assemblages defning tensile overpressure compartments where at some time Pf > σ3. In compressional regimes (σv σ3), subhorizontal extension veins may develop over vertical intervals <1 km or so below low-permeability sealing= horizons with tensile strengths 10 < To < 20 MPa. This is borne out by natural vein arrays. For a low-angle thrust, the vertical interval where the tensile overpressure state obtains may continue down-dip over distances of several kilometres in some instances. The over- pressure condition for hydraulic fracturing is comparable to that needed for frictional reshear of a thrust fault lying close to the maximum compression, σ1. Under these circumstances, especially where the shear zone material has varying competence (tensile strength), afecting the failure mode, dilatant fault–fracture mesh structures may develop throughout a tabular rock volume. Evidence for the existence of fault–fracture meshes around low-angle thrusts comes from exhumed ancient structures and from active structures. In the case of megathrust ruptures along sub- duction interfaces, force balance analyses, lack of evidence for shear heating, and evidence of total shear stress release during earthquakes suggest the interfaces are extremely weak (τ < 40 MPa), consistent with weakening by near- lithostatically overpressured fuids. Portions of the subduction interface, especially towards the down-dip termination of the seismogenic megathrust, are prone to episodes of slow-slip, non-volcanic tremor, low-frequency earthquakes, very-low-frequency earthquakes, etc., attributable to the activation of tabular fault–fracture meshes at low σ3′ around the thrust interface. Containment of near-lithostatic overpressures in such settings is precarious, fuid loss curtailing mesh activity. Introduction σv. Normal faulting prevails where the crust is under Material properties aside, the formation and reactiva- extension with σv = σ1; strike-slip faulting occurs where tion of brittle faults and fractures is largely governed by σv = σ2; and thrust faulting develops where the crust is the triaxial stress state within the rock mass and by the shortening under horizontal compression with σv = σ3. pore-fuid pressure, Pf, within the rock mass (Hubbert Information from borehole measurements (Townend and Rubey 1959; Jaeger and Cook 1979). Recognizing the and Zoback 2001), earthquake focal mechanisms (Célé- boundary condition of zero shear stress along the Earth’s rier 2008), and palaeostress inversions (Lisle et al. 2006) free surface (taken as horizontal), Anderson (1905) pos- demonstrates that ‘Andersonian’ stress states (one princi- tulated the existence of three basic stress regimes in the pal stress vertical and the other two horizontal) prevail crust depending which of the principal compressive over large areas of continental and oceanic crust (Zoback stresses (σ1 > σ2 > σ3) coincides with the vertical stress, 1992). Tese ‘Andersonian’ stress orientations provide useful reference states for general consideration, though signifcant departures undoubtedly occur. For exam- *Correspondence: [email protected] Department of Geology, University of Otago, Dunedin 9054, New Zealand ple, although a subduction interface shear zone (SISZ) © The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Sibson Earth, Planets and Space (2017) 69:113 Page 2 of 15 is, in essence, a large-scale thrust fault accommodating Controls on brittle failure of rock underthrusting of oceanic lithosphere, signifcant depar- Criteria for all modes of brittle failure in rock include tures from vertical and horizontal stress trajectories are the levels of diferential stress and pore-fuid pressure ′ expected from: (1) the kinematic control exerted by a [through the principle of efective stress, σn = (σn − Pf)]. weak plate boundary shear zone; (2) force balance anal- Te two drivers to failure, therefore, are (σ1 − σ3) and Pf, yses associated with a tapering accretionary wedge (e.g. which may act separately or together. In ‘classical’ rock Dahlen 1990); and (3) time variations in the stress feld mechanics (e.g. Secor 1965; Jaeger and Cook 1979; Sib- as a consequence of stress cycling associated with inter- son 2000), the composite Grifth–Coulomb failure curve ′ mittent megathrust rupturing along the SISZ (Hasegawa for intact rock in τ/σn space can be normalized to nomi- et al. 2012). nal rock tensile strength, To (half the cohesive strength). Hubbert and Rubey (1959) were the frst to apply the Te ratio of diferential stress to rock tensile strength simple principle of efective stress to rocks whereby (σ1 − σ3)/To then determines the potential mode of brit- pore-fuid pressure reduces all normal stresses to ‘efec- tle failure (Fig. 1). For ‘generic’ internal friction, μi 0.75 ′ = tive’ values, σn = (σn − Pf), suggesting also that fuid in the compressional feld, extension fractures form only overpressures were a means of reducing basal fric- when (σ1 − σ3)/To < 4, hybrid extensional-shear fractures tion allowing emplacement of thrust sheets along low- require 4 < (σ1 − σ3)/To < 5.66, and compressional shear angle overthrusts. Tey also defned a pore-fuid factor, fractures (faults) form when (σ1 − σ3)/To > 5.66 (Secor λv = Pf/σv, usefully relating the level of pore-fuid pres- 1965). Additionally, as noted above, the presence of exist- sure with respect to the vertical stress. Where fuid ing fractures appropriately oriented for reshear within pressure, Pf, in pore and/or fracture space is freely inter- the stress feld suppresses the formation of any new connected up to a water table at the earth’s surface, the extensional or hybrid extensional-shear fractures. Fluid pore-fuid pressure is hydrostatic (λv ~ 0.4). Pore-fuids circulation through a fractured rock mass may, how- are overpressured wherever pore-fuid pressures exceed ever, restore cohesive and tensile strength by hydrother- hydrostatic values (i.e. λv > 0.4). Fluid at a depth, z, is mal cementation (e.g. silicifcation), efectively restoring overpressured towards lithostatic values (λv → 1.0) when ‘intact’ character. Pf approaches the lithostatic load (σv = ρgz, where ρ is Hydraulic extension fracturing can thus only be average rock density and g the gravitational acceleration). induced: (a) within intact rock in the absence of cohe- Supralithostatic overpressures (λv > 1.0) occur where sionless faults suitably oriented for shear reactivation; (b) Pf > σv. in settings where existing fractures are severely misori- Formation and opening of extension fractures per- ented for reshear (containing the σ2 axis and lying at >c. pendicular to least compressive stress, σ3, in intact rock 60° to σ1); and (c) where existing fractures have regained occurs by hydraulic fracturing when cohesive strength through hydrothermal cementation, Pf = σ3 + To (1) etc. Rock tensile strength is thus critical in determining whether rock fails in tension or in shear under increased where To is rock tensile strength, provided (σ1 − σ3) < 4 fuid pressure. Under the same diferential stress, fuid- To inhibiting shear failure of the rock (Secor 1965; Ether- induced failure in heterogeneous material of mixed com- idge 1983). For competent sedimentary rocks and crys- petence (difering tensile strength) may therefore give talline rocks with To ~ 10 MPa and ~20 MPa, respectively rise to mixed-mode brittle failure with volumetric fault– (Lockner 1995), diferential stresses are restricted to <40 fracture meshes comprising interlinked shear and exten- and <80 MPa. A local absence of existing fractures suit- sional fractures distributed throughout the rock mass ably oriented for shear reactivation is also a prerequi- (Sibson 1996, 2000). site. Te tensile overpressure state (Pf > σ3) thus defnes portions of the rock mass with the potential for hydrau- Tensile overpressure compartments lic fracturing leading to the formation of extension vein Extension veins [often with ‘crack-seal’ infllings of arrays. quartz, calcite, etc., refecting incremental precipita- In compressional settings where σv = σ3, the tensile tion (Ramsay 1980)] thus diagnose the tensile overpres- ′ overpressure state (Pf > σ3) equates to the maximum sure state (σ3 = (σ3 − Pf) < 0, or Pf > σ3) once having sustainable overpressure and is close to lithostatic (Sib- been achieved within the rock mass. In extensional son 2003). It is conducive to the development and fuid (σv = σ1) and strike-slip (σv = σ2) stress regimes where activation of dilatant
Recommended publications
  • The Alpstein in Three Dimensions: Fold-And-Thrust Belt Visualization in the Helvetic Zone, Eastern Switzerland
    Swiss J Geosci (2014) 107:177–195 DOI 10.1007/s00015-014-0168-6 The Alpstein in three dimensions: fold-and-thrust belt visualization in the Helvetic zone, eastern Switzerland Paola Sala • O. Adrian Pfiffner • Marcel Frehner Received: 14 August 2013 / Accepted: 9 September 2014 / Published online: 11 December 2014 Ó Swiss Geological Society 2014 Abstract To investigate the geometrical relationships determined from line-length balancing. The model also between folding and thrust faulting, we built a 3D geo- clearly shows the lateral extension, the trend, and the logical model of the Helvetic fold-and-thrust belt in eastern variation in displacement along the principal faults. The Switzerland from several existing and two newly drawn reconstruction of horizons in 3D allows the investigation of cross-sections in the Sa¨ntis area. We partly redrew existing cross-sections in any given direction. The 3D model is cross-sections and validated them by checking for line useful for developing and understanding how the internal length balance; to fill areas with no data we drew additional nappe structures, namely folds and thrust faults, change cross-sections. The model was built based on surface along strike due to palaeogeographic and stratigraphic interpolation of the formation interfaces and thrusts variations. Lateral stratigraphy variations correlate with between the cross-sections, which allowed generating eight different deformation responses of the nappe. Changes can main surfaces. In addition, we used cave data to validate occur either abruptly across transverse faults or in a more the final model in depth. The main structural elements in gradual manner. the Sa¨ntis area, the Sa¨ntis Thrust and the Sax-Schwende Fault, are also implemented in the model.
    [Show full text]
  • 24. Anelastic Strain Recovery and Elastic Properties of Oceanic Basaltic Rocks1
    Gradstein, F. M., Ludden, J. N., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 123 24. ANELASTIC STRAIN RECOVERY AND ELASTIC PROPERTIES OF OCEANIC BASALTIC ROCKS1 N. R. Brereton,2 P. N. Chroston,3 C. J. Evans,2 J. A. Hudson,4 and R. B. Whitmarsh5 ABSTRACT A knowledge of rock stress is fundamental for improving our understanding of oceanic crustal mechanisms and lithospheric dynamic processes. However, direct measurements of stress in the deep oceans, and in particular stress magnitudes, have proved to be technically difficult. Anelastic strain recovery measurements were conducted on 15 basalt core samples from Sites 765 and 766 during Leg 123. Three sets of experiments were performed: anelastic strain recovery monitoring, dynamic elastic property measure- ments, and thermal azimuthal anisotropy observations. In addition, a range of other tests and observations were recorded to characterize each of the samples. One common feature of the experimental results and observations is that apparently no consistent orientation trend exists, either between the different measurements on each core sample or between the same sets of measurements on the various core samples. However, some evidence of correspondence between velocity anisotropy and anelastic strain recovery exists, but this is not consistent for all the core samples investigated. Thermal azimuthal anisotropy observations, although showing no conclusive correlations with the other results, were of significant interest in that they clearly exhibited anisotropic behavior. The apparent reproducibility of this behavior may point toward the possibility of rocks that retain a "memory" of their stress history, which could be exploited to derive stress orientations from archived core.
    [Show full text]
  • Tectono-Metamorphic Evolution of the Northern Menderes Massif: Evidence from the Horst Between Gördes and Demirci Basins (West Anatolia, Turkey)
    TECTONO-METAMORPHIC EVOLUTION OF THE NORTHERN MENDERES MASSIF: EVIDENCE FROM THE HORST BETWEEN GÖRDES AND DEMİRCİ BASINS (WEST ANATOLIA, TURKEY) A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY ÇAĞRI BUĞDAYCIOĞLU IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGICAL ENGINEERING SEPTEMBER 2004 Approval of the Graduate School of Natural and Applied Sciences. I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science. This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science. Examining Committee Members Prof.Dr. Vedat Toprak (METU, GEOE) ___________________ Prof.Dr. Erdin Bozkurt (METU, GEOE) ___________________ Assoc.Prof.Dr. Bora Rojay (METU, GEOE) ___________________ Assoc.Prof.Dr. Kadir Dirik (HU, GEOE) ___________________ Assist.Prof.Dr. İsmail Ömer Yılmaz (METU, GEOE) ___________________ ii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Çağrı Buğdaycıoğlu Signature : iii ABSTRACT TECTONO-METAMORPHIC EVOLUTION OF THE NORTHERN MENDERES MASSIF: EVIDENCE FROM THE HORST BETWEEN GÖRDES AND DEMİRCİ BASINS (WEST ANATOLIA, TURKEY) Buğdaycıoğlu, Çağrı M.Sc., Department of Geological Engineering Supervisor : Prof.Dr. Erdin Bozkurt September 2004, 163 pages The Menderes Massif forms a large metamorphic culmination in western Turkey – an extensional province where continental lithosphere has been stretching following Palaeogene crustal thickening.
    [Show full text]
  • Fluid Flow and Rock Alteration Along the Glarus Thrust
    1661-8726/08/020251-18 Swiss J. Geosci. 101 (2008) 251–268 DOI 10.1007/s00015-008-1265-1 Birkhäuser Verlag, Basel, 2008 Fluid flow and rock alteration along the Glarus thrust JEAN-PIERRE HÜRZELER 1 & RAINER ABART 2 Key words: Glarus thrust, rock alteration, strain localization, Lochseiten calc tectonite ABSTRACT Chemical alteration of rocks along the Glarus overthrust reflects different the footwall units. In the northern sections of the thrust, the Lochseiten calc- stages of fluid rock interaction associated with thrusting. At the base of the tectonite has a distinct chemical and stable isotope signature, which suggests Verrucano in the hanging wall of the thrust, sodium was largely removed dur- that it is largely derived from Infrahelvetic slices, i.e. decapitated fragments of ing an early stage of fluid-rock interaction, which is ascribed to thrust-paral- the footwall limestone from the southern sections of the thrust, which were lel fluid flow in a damage zone immediately above the thrust. This alteration tectonically emplaced along the thrust further north. Only at the Lochseiten leads to the formation of white mica at the expense of albite-rich plagioclase type locality the original chemical and stable isotope signatures of the calc- and potassium feldspar. This probably enhanced mechanical weakening of the tectonite were completely obliterated during intense reworking by dissolution Verrucano base allowing for progressive strain localization. At a later stage and re-precipitation. of thrusting, fluid-mediated chemical exchange between the footwall and the hanging wall lithologies produced a second generation of alteration phenom- ena. Reduction of ferric iron oxides at the base of the Verrucano indicates DEDICATION fluid supply from the underlying flysch units in the northern section of the thrust.
    [Show full text]
  • The Glarus Thrust: Excursion Guide and Report of a Field Trip of the Swiss Tectonic Studies Group (Swiss Geological Society, 14.–16
    1661-8726/08/020323-18 Swiss J. Geosci. 101 (2008) 323–340 DOI 10.1007/s00015-008-1259-z Birkhäuser Verlag, Basel, 2008 The Glarus thrust: excursion guide and report of a field trip of the Swiss Tectonic Studies Group (Swiss Geological Society, 14.–16. 09. 2006) MARCO HERWEGH 1, *, JEAN-PIERRE HÜRZELER 2, O. ADRIAN PFIFFNER 1, STEFAN M. SCHMID 2, RAINER ABART 3 & ANDREAS EBERT 1 Key words: Helvetics, Glarus thrust, deformation mechanism, mylonite, brittle deformation, geochemical alteration, fluid pathway PARTICIPANTS Ansorge Jörg (ETHZ) Nyffenegger Franziska (Fachhochschule Burgdorf, University of Bern) den Brok Bas (EAWAG-EMPA) Pfiffner Adrian (University of Bern) Dèzes Pierre (SANW) Schreurs Guido (University of Bern) Gonzalez Laura (University of Bern) Schmalholz Stefan (ETHZ) Herwegh Marco (University of Bern) Schmid Stefan (University of Basel) Hürzeler Jean-Pierre (University of Basel) Wiederkehr Michael (University of Basel) Imper David (GeoPark) Wilson Christopher (Melbourne University) Mancktelow Neil (ETHZ) Wilson Lilian (Melbourne University) Mullis Josef (University of Basel) ABSTRACT This excursion guide results form a field trip to the Glarus nappe complex or- and fluid flow, and (iii) the link between large-scale structures, microstruc- ganized by the Swiss Tectonic Studies Group in 2006. The aim of the excursion tures, and geochemical aspects. Despite 150 years of research in the Glarus was to discuss old and recent concepts related to the evolution of the Glarus nappe complex and the new results discussed during the excursion,
    [Show full text]
  • Stress and Fluid Control on De Collement Within Competent Limestone
    Journal of Structural Geology 22 (2000) 349±371 www.elsevier.nl/locate/jstrugeo Stress and ¯uid control on de collement within competent limestone Antonio Teixell a,*, David W. Durney b, Maria-Luisa Arboleya a aDepartament de Geologia, Universitat AutoÁnoma de Barcelona, 08193 Bellaterra, Spain bDepartment of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia Received 5 October 1998; accepted 23 September 1999 Abstract The Larra thrust of the Pyrenees is a bedding-parallel de collement located within a competent limestone unit. It forms the ¯oor of a thrust system of hectometric-scale imbrications developed beneath a synorogenic basin. The fault rock at the de collement is a dense stack of mainly bedding-parallel calcite veins with variable internal deformation by twinning and recrystallization. Veins developed as extension fractures parallel to a horizontal maximum compressive stress, cemented by cavity-type crystals. Conditions during vein formation are interpreted in terms of a compressional model where crack-arrays develop at applied stresses approaching the shear strength of the rock and at ¯uid pressures equal to or less than the overburden pressure. The cracks developed in response to high dierential stress, which was channelled in the strong limestone, and high ¯uid pressure in or below the thrust plane. Ductile deformation, although conspicuous, cannot account for the kilometric displacement of the thrust, which was mostly accommodated by slip on water sills constituted by open cracks. A model of cyclic dierential brittle contraction, stress reorientation, slip and ductile relaxation at a rheological step in the limestone is proposed as a mechanism for episodic de collement movement.
    [Show full text]
  • 9. Deformation Structures and Magnetic Fabrics at Site 1178
    Mikada, H., Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results Volume 190/196 9. DEFORMATION STRUCTURES AND MAGNETIC FABRICS AT SITE 1178: 1Ujiie, K., Hisamitsu, T., Maltman, IMPLICATION FOR DEFORMATION HISTORY A.J., Morgan, J.K., Sánchez-Gómez, M., and Tobin, H.J., 2003. Deformation RECORDED IN ACCRETED SEDIMENTS structures and magnetic fabrics at Site 1178: implication for deformation history recorded in accreted sediments AT AN EVOLVED PORTION OF THE NANKAI at an evolved portion of the Nankai CCRETIONARY RISM1 accretionary prism. In Mikada, H., A P Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.), Proc. Kohtaro Ujiie,2 Toshio Hisamitsu,3 Alex J. Maltman,4 ODP, Sci. Results, 190/196, 1–15 [Online]. Available from World Wide 5 6 and 7 Julia K. Morgan, Mario Sánchez-Gómez, Harold J. Tobin Web: <http://www-odp.tamu.edu/ publications/190196SR/VOLUME/ CHAPTERS/202.PDF>. [Cited YYYY- MM-DD] 2Institute for Frontier Research on Earth Evolution, Japan Marine Science and Technology Center, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan. [email protected] 3Institute for Frontier Research on ABSTRACT Earth Evolution, Japan Marine Science and Technology Center, 2-15 During Leg 190, accreted sediments at an evolved portion of the Natsushima-cho, Yokosuka 237-0061, Nankai accretionary prism were penetrated. Deformation structures and Japan. 4 anisotropy of magnetic susceptibility (AMS) data from Site 1178 indi- Institute of Geography and Earth Sciences, University of Wales, cate that structural and magnetic fabrics formed at the frontal part of Aberystwyth, Aberystwyth SY23 3DB, the prism have been preserved, even ~65 km landward of the deforma- United Kingdom.
    [Show full text]
  • Study of Small-Scale Structures and Their Significance in Unravelling the Accretionary Character of Singhbhum Shear Zone, Jharkhand, India
    J. Earth Syst. Sci. (2020) 129:227 Ó Indian Academy of Sciences https://doi.org/10.1007/s12040-020-01496-9 (0123456789().,-volV)(0123456789().,-volV) Study of small-scale structures and their significance in unravelling the accretionary character of Singhbhum shear zone, Jharkhand, India 1 2, ABHINABA ROY and ABDUL MATIN * 1Formerly Geological Survey of India, New Delhi, India. 2Formerly Department of Geology, University of Calcutta, Kolkata, India. *Corresponding author. e-mail: [email protected] MS received 1 April 2020; revised 22 July 2020; accepted 29 August 2020 Localized strain within tabular ductile shear zones is developed from micro- to meso- to even large scales to form complex structures. They grow in width and length through linkage of segments with progressive accumulation of strain and displacement, and Bnally produce shear zone networks characterized by anastomosing patterns. Singhbhum shear zone (SSZ) represents a large composite zone characterized by a collage of different dismembered lithotectonic segments, with heterogeneous structural features, within a matrix typical of a shear zone. Structural features indicate that the material properties of protoliths have a great role in controlling the mechanics of deformation. Meso- and micro-scale structural studies of the east-central part of the SSZ reveal ‘tectonic complex like’ (? deeper level equivalent of melange type complex) assemblage of dismembered lithoteconic units. Shear-induced foliations, S, C and C0, were developed while the main mylonitic foliation is represented by C-plane. Apart from that, shear lenses are exceptionally well developed in both meso- and micro-scale in most of the units, particularly in schistose rocks. They were formed from different processes during progressive simple shear, which includes (1) anastomosing C-planes, (2) intersection between C- and C0-planes, (3) disruption of stretched out longer limbs of asymmetric folds, and (4) cleavage duplex.
    [Show full text]
  • Structural Geology of the Aiken River Deformation Zone, Manitoba (NTS 64A1 and 2) by Y.D
    GS-18 Structural geology of the Aiken River deformation zone, Manitoba (NTS 64A1 and 2) by Y.D. Kuiper1, S. Lin1, C.O. Böhm and M.T. Corkery Kuiper, Y.D., Lin, S., Böhm, C.O. and Corkery, M.T. 2004: Structural geology of the Aiken River deformation zone, Manitoba (NTS 64A1 and 2); in Report of Activities 2004, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, p. 201–208. Summary The Aiken River deformation zone shows evidence for dextral, north-side-up movement. Some of this movement may be related to movement on the gold-hosting Assean Lake deforma- tion zone to the north, suggesting that the Aiken River deformation zone may also have potential for mineralization. This paper discusses the transition of structures from the Central Split Lake Block into the Aiken River deformation zone. The Split Lake Block shows moderately to steeply southeast-plunging folds. Toward the shear zone, the following modifications occur: 1) folds tighten; 2) shear fabrics develop on the fold limbs but not the fold hinges; 3) fold axes start rotating, which is the initiation of sheath-fold development; and 4) dextral, north-side-up shear fabrics are pervasive and sheath folds are present. This sequence of changes may indicate that the pure shear component of this transpressive shear zone is accommodated over a wider area than the simple shear component. Introduction The Aiken River deformation zone forms the boundary between the Split Lake Block to the north and the Pikwitonei Granulite Domain to the south (Figure GS-18-1). Three and a half weeks of structural mapping were carried out in the Split Lake–Aiken River area in 2003 (Kuiper et al., 2003).
    [Show full text]
  • Brittle Microtectonics: Principles and Practice PURPOSE and SCOPE
    Journal of Structural Geology, Vol. 7. Nos. 3/4, pp, 4.3-7to 457. 1985 lllt~l ~i4 I/,~5 $1~3 (l(J ÷ {).0tl Printed in Great Britain ~ It~;~ Pcr~ml~m Pro',', lad Brittle microtectonics: principles and practice P. L. HANCOCK Department of Geology, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, U.K. (Received 8 February 1984; accepted in revised form 17 August 1984) Abstract--Brittle microtectonics as defined here is the application of mesofracture analysis to the solution of tectonic problems. For the determination of regionally significant stress or strain trajectories the ideal suite of structures comprises kinematic indicators such as mesofaults, shear zones, arrays of en echelon cracks, kink bands, stylofites and fibrous veins. However, in many tectonic settings joints are the only widespread structures capable of being analysed. The principal criteria for classifying joints into extension, hybrid and shear classes are fracture-system architecture and symmetry, surface morphology, dihedral angles and thin-section characteristics. The architecture of orthogonal extension joints is commonly T-shaped, the younger joint abutting the older one. Neighbouring conjugate hybrid or shear joints generally define X, Y or V shapes but some X patterns are artefacts of unrelated cross-cutting fractures. Conjugate joints enclosing dihedral angles of less than 45 ° are common; they are interpreted as hybrid failure surfaces initiated in the shear--extension fracture transition. The orientations of many joint sets in platforms are related to far-field stresses generated during plate motion and the subsidence, uplift and inversion of basins. Even within a single joint set there is commonly field evidence to show that it developed during a multiphase failure sequence..Some joints are younger than folds but where a system was established before the close of folding the surfaces commonly become the sites of slip, dilation or pressure solution, and are thus transformed into structures no longer classed as joints.
    [Show full text]
  • Geometry and Deformation History of Mylonitic Rocks and Silicified Zones Along the Mesozoic Connecticut Valley Border Fault, Western Massachusetts
    ALUN MASS/AMHERST ‘ 31206600765055e fi A ed ‘ : . te a ‘ : Rea A) ll Od ir Ler yie 5 : ‘ 5 3 : $iifaedst! * ‘ 1 5 me ah a - aor peel segs oS rt shay nyt 1 . : Sybey see Patil Pr ae CEs a os ey ee , Ste ee nts yee ee Tp sl pa) seat D Bataade ee . {FM ave ay og : 5 jos atrs DeVere ns era See) ; Lyesverr POET d ’ i oy Verereiaihey ' . hous : Pathak heche u) PE oS Dalle ene ot a eae it) pica Cris MoM te ELA MLA die 3 LE GEE Ad Ch APTN ORE FEV EE AYO AY AE k par ‘ Date Mowe : : sere (no, phe ey Teast ahd ¢ ity a 23% .4% Ay ts eater ee) pa To Pe Ste ophgraeaiek sdpre aay arena ' Pig by ’ ‘ ‘ yee vere Sry on Fic $e x bdalld cet antec Feb Ata eno ae PUTSNT tet W ee SANTEE eT VOTRE ey J Gf, sees 5 ’ ; . ty : ‘ : 4 DSC LE ih DR Jat SOK AT CR Ra gir al Ao Id, eval tat WC SORES caer y Et poy asses ist dre sg ety" : hie Fis bi : u ; y erie } he 5 wie UPD SO ata th Puede? Lae an to Peres) Gee ems i ar aac rn a neha dyhatype aT aint Spark ey sap ea ee tial petty GUS hstghe Vecye peponeagon ererervet Tp aig paar ” gieteMewner F Phe : reba S : rypiech, : ‘ Oh oll lac ah lil tet nt octane stare? re ee eee a eee ry ' tas 7 : ep oy gk bil an i ‘ nea Ay ce iC ie : ' : : ae ' oe arch ire? es rk .
    [Show full text]
  • Quantitative Finite Strain Analysis of the Quartz Mylonites Within the Three
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Austrian Journal of Earth Sciences Jahr/Year: 2018 Band/Volume: 111 Autor(en)/Author(s): Kanjanapayont Pitsanupong, Ponmanee Peekamon, Grasemann Bernhard, Klötzli Urs S., Nantasin Prayath Artikel/Article: Quantitative finite strain analysis of the quartz mylonites within the Three Pagodas shear zone, western Thailand 171-179 download https://content.sciendo.com/view/journals/ajes/ajes-overview.xml Austrian Journal of Earth Sciences Vienna 2018 Volume 111/2 171 - 179 DOI: 10.17738/ajes.2018.0011 Quantitative finite strain analysis of the quartz mylonites within the Three Pagodas shear zone, western Thailand Pitsanupong KANJANAPAYONT1)*), Peekamon PONMANEE1), Bernhard GRASEMANN2), Urs KLÖTZLI3) & Prayath NANTASIN4) 1) Basin Analysis and Structural Evolution Special Task Force for Activating Research (BASE STAR), Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; 2) Department of Geodynamics and Sedimentology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; 3) Department of Lithospheric Research, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; 4) Department of Earth Sciences, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; *) Corresponding author: [email protected] KEYWORDS Finite strain; Kinematic vorticity; Sinistral; Three Pagodas shear zone; Thailand Abstract The NW–trending Three Pagodas shear zone exposes a high–grade metamorphic complex named Thabsila gneiss in the Kanchanaburi region, western Thailand. The quartz mylonites within this strike–slip zone were selected for strain analysis. 2–dimensional strain analysis indicates that the averaged strain ratio (Rs) for the lower greenschist facies increment of XZ– plane is Rs = 1.60–1.97 by using the Fry’s method.
    [Show full text]