Detailed Description of TRUE Block Scale Structure #20 Based on Intercepts in Boreholes and Intercepts in the TASS Tunnel

Total Page:16

File Type:pdf, Size:1020Kb

Detailed Description of TRUE Block Scale Structure #20 Based on Intercepts in Boreholes and Intercepts in the TASS Tunnel R-12-09 Detailed description of TRUE Block Scale Structure #20 based on intercepts in boreholes and intercepts in the TASS tunnel Anders Winberg, Conterra Aaron Fox, Anders Pettersson Golder Associates Henrik Drake, Isochron Geoconsulting September 2013 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Phone +46 8 459 84 00 ISSN 1402-3091 Tänd ett lager: SKB R-12-09 P, R eller TR. ID 1389690 Detailed description of TRUE Block Scale Structure #20 based on intercepts in boreholes and intercepts in the TASS tunnel Anders Winberg, Conterra Aaron Fox, Anders Pettersson Golder Associates Henrik Drake, Isochron Geoconsulting September 2013 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors. SKB may draw modified conclusions, based on additional literature sources and/or expert opinions. A pdf version of this document can be downloaded from www.skb.se. Summary The primary goal of this study, targeted on the TRUE Block Scale Structure #20, was to produce an integrated description of a deformation zone at the centimetre to decimetre length scale, by com- bining observations from cored boreholes, image logging, tunnel mapping, fracture mineralogical sampling, hydraulic testing and hydraulic pressure responses. The resulting composite description includes comments on the lithologies associated with the deformation zone, a description of the visible fracturing, descriptions of relationships in the ductile fabric at macro and micro scales, the hydraulic connectivity and hydraulic properties of the deformation zone, and detailed mineralogical descriptions of brittle and ductile fabrics. The lithology of Structure #20 is dominated by a mix of Äspö diorite and fine-grained granite. The structure consists of a mix of fault rock; mylonite, cataclasite, fault gouge, occasional breccia and of various open, partly open, and sealed fractures. The structure is also found to show at least weak association with fine-grained granite intrusions which suggests attention needs to be paid to igneous intrusions, as they may follow pre-existing ductile shear zones or may be coincident with ongoing ductile shearing. Three categories of fracturing associated with Structure #20 are assumed to be applicable to defor- mation zones in general within the Äspö/Laxemar/Simpevarp region; brittle deformation in the core of the deformation zone; increased fracture intensity in the damage zones surrounding the deformation zone core; and epidote-filled fractures that form so-called “marker beds” for the structure. Structure #20 constitutes an oblique-slip fault with predominantly sinistral displacements developed from a ductile shear zone pre-cursor. Mineralogical kinematic indicators suggest both dextral and pure dip- slip. These kinematic indicators are mostly of ductile character so this statement is incomprehensive. However, brittle indicators exist as well and numerous generations of fracture fillings indicate multi- ple brittle reactivation. Structure #20 exhibits a fairly typical deformation zone configuration includ- ing a relatively narrow core composed of both ductile and brittle structures, surrounded by a damage zone largely characterized by increased fracture intensity. Results indicate that, at least over the scale of the investigation area, Structure #20 is largely planar, with only local-scale undulation. Mineralogical analysis of intercepts of Structure #20 in boreholes and the TASS tunnel show simi- lar general features regarding the fracture re-activation history and deformation events. This is evi- denced by small deviations in fracture mineral assemblages and whole-rock and mineral chemistry. The overall characteristics were similar between borehole intercepts but showed some heterogeneity. Wall rock alteration showed very similar features (alteration of Fe-Mg-minerals, fragmentation of feldspars, re-crystallisation of quartz). The extent of the alteration varied from decimetre to metre scale, depending on the intercepts.The thickness and amount of mylonite and cataclasite varied between different intercepts. The general mineral assemblages were; mylonite (ductile deformation) and cataclasite and extensional fractures (brittle deformation). Apart from geometrical extrapolation the intercept of Structure #20 with the TASS tunnel was also interpreted from pressure responses observed in the TRUE Block Scale borehole array during drill- ing of the TASS tunnel pilot boreholes. The resulting intercept corresponds well with the geometri- cally extrapolated intercept, suggesting that Structure #20 can be regarded as an essentially planar structure across its known extent. Transmissivity data evaluated from hydraulic tests performed in the TRUE Block Scale borehole array, the TASS tunnel pilot boreholes and short TASS grouting holes transecting Feature A were analysed. Analysis of statistics based on various means of pooling the data showed that the geometric mean and variance of the transmissivity of Structure #20 based on the TASS pilot and probe boreholes were close to those established based on on all available data on the structure, suggesting that the statistical sample for Structure #20 from the TASS pilot bore- holes (representing a length scale of metres) may be regarded as representative of the “global statisti- cal properties” of the structure (over length scale of several decametres). It was however noted that at best, this relationship is indicative for this type of NW conductive structures at Äspö (and possibly in the neighbouring Laxemar-Simpevarp area). SKB R-12-09 3 A simple flowchart was deviseded to distinguish and describe similar structures as a preliminary method of screening borehole data to determine if a particular fracture intercept is worthy of addi- tional investigation as a potential “large fracture”, the latter affecting the positioning of deposition holes/waste canisters through the (Full tunnel Perimeter Intersection) FPI-related design criteria. The results of the detailed geological and structural mapping were presented in conceptual synthesis images that add additional detail and structural-geological context. The synthesis is compatible with, and lend additional support to, the original micro-structural conceptualization reported by the TRUE Block Scale and TRUE Block Scale Continuation projects. Characterization efforts on individual major structures (MDZs/fractures) of the kind and type described in this work may turn out to be prohibitive in terms of time and costs. However, repeated targeted campaigns on representative type structures (and fractures) (e.g. representing typical orien- tations) may provide an important basis for constructing generalised conceptual models and may also help define a data base based on which “large fractures”, related to the FIP-related design criteria, may be identified. It was also noted that techniques employed in this work, HDR photography, UV photography and mineralogical kinematic indicators, may prove as valuable contribution to planned detailed site investigations. 4 SKB R-12-09 Contents 1 Introduction 7 1.1 Background 7 1.2 Objectives and scope 7 1.3 TRUE Block Scale hydrostructural model 8 1.4 Extrapolation of TRUE Block scale structures 9 1.5 Characterisation of TRUE Block Scale structures in conjunction TASS tunnel development 10 1.6 Selection of structures for further analysis 10 2 Methods 11 2.1 Analysis of hydrogeological information 11 2.2 Structural-geological mapping of drill cores 11 2.3 Photographical documentation in the TASS tunnel and associated analysis 13 2.3.1 Camera equipment and setup 14 2.4 Mineralogical sampling an analyses 14 2.4.1 Samples for fracture mineralogical investigations 15 2.5 Structural-geological tunnel mapping 16 3 Identification and characterisation of structures from hydrogeology 19 3.1 Objectives and scope 19 3.2 Overview of existing work 19 3.2.1 Tunnel sealing project 19 3.2.2 Planning for SWIW tests 20 3.3 Drilling progress versus time 20 3.4 Pressure responses observed during drilling 21 3.5 Hydraulic properties of selected structures 23 4 Geological information from cored boreholes 27 4.1 Review of mapping of Structure #20 27 4.2 Rock types 28 4.3 Fracturing 29 4.3.1 Fracture orientations 29 4.3.2 Fracture intensity 34 4.3.3 Fracture morphology 41 4.4 Structural geology 44 4.4.1 Drill core analysis 44 4.4.2 BIPS image interpretation of Structure #20 intercepts 48 4.4.3 Summary of Structure #20 characteristics in borehole data 67 4.5 Mineralogy/fracture mineralogy in cored boreholes 70 4.5.1 Description of fracture mineralogy in samples from the TASS pilot boreholes 70 4.5.2 Description of fracture mineralogy in samples from the TRUE Block Scale boreholes 83 4.5.3 Chemical analysis 88 4.5.4 Stable isotopes 92 4.6 Integrated description of Structure #20 from borehole information 93 5 Geological information from tunnel mapping 97 5.1 Objectives and scope 97 5.2 Tunnel image acquisition and initial processing 97 5.2.1 Photography at ordinary light (including HDR) 99 5.2.2 Photography in UV light 101 5.2.3 Lessons learned from tunnel imagery 104 5.3 Geological mapping of Structure #20 in the TASS tunnel 104 5.3.1 Analysis of fracture data from TMS 104 5.3.2 Mapping of Structure #20 in the TASS tunnel 105 SKB R-12-09 5 5.4 Tunnel maps from high-resolution photography 115 5.4.1 Methodology for using high-resolution images to map fracture traces 115 5.4.2 2D fracture trace maps 118 5.4.3 Limitations
Recommended publications
  • 24. Anelastic Strain Recovery and Elastic Properties of Oceanic Basaltic Rocks1
    Gradstein, F. M., Ludden, J. N., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 123 24. ANELASTIC STRAIN RECOVERY AND ELASTIC PROPERTIES OF OCEANIC BASALTIC ROCKS1 N. R. Brereton,2 P. N. Chroston,3 C. J. Evans,2 J. A. Hudson,4 and R. B. Whitmarsh5 ABSTRACT A knowledge of rock stress is fundamental for improving our understanding of oceanic crustal mechanisms and lithospheric dynamic processes. However, direct measurements of stress in the deep oceans, and in particular stress magnitudes, have proved to be technically difficult. Anelastic strain recovery measurements were conducted on 15 basalt core samples from Sites 765 and 766 during Leg 123. Three sets of experiments were performed: anelastic strain recovery monitoring, dynamic elastic property measure- ments, and thermal azimuthal anisotropy observations. In addition, a range of other tests and observations were recorded to characterize each of the samples. One common feature of the experimental results and observations is that apparently no consistent orientation trend exists, either between the different measurements on each core sample or between the same sets of measurements on the various core samples. However, some evidence of correspondence between velocity anisotropy and anelastic strain recovery exists, but this is not consistent for all the core samples investigated. Thermal azimuthal anisotropy observations, although showing no conclusive correlations with the other results, were of significant interest in that they clearly exhibited anisotropic behavior. The apparent reproducibility of this behavior may point toward the possibility of rocks that retain a "memory" of their stress history, which could be exploited to derive stress orientations from archived core.
    [Show full text]
  • Tectono-Metamorphic Evolution of the Northern Menderes Massif: Evidence from the Horst Between Gördes and Demirci Basins (West Anatolia, Turkey)
    TECTONO-METAMORPHIC EVOLUTION OF THE NORTHERN MENDERES MASSIF: EVIDENCE FROM THE HORST BETWEEN GÖRDES AND DEMİRCİ BASINS (WEST ANATOLIA, TURKEY) A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY ÇAĞRI BUĞDAYCIOĞLU IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGICAL ENGINEERING SEPTEMBER 2004 Approval of the Graduate School of Natural and Applied Sciences. I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science. This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science. Examining Committee Members Prof.Dr. Vedat Toprak (METU, GEOE) ___________________ Prof.Dr. Erdin Bozkurt (METU, GEOE) ___________________ Assoc.Prof.Dr. Bora Rojay (METU, GEOE) ___________________ Assoc.Prof.Dr. Kadir Dirik (HU, GEOE) ___________________ Assist.Prof.Dr. İsmail Ömer Yılmaz (METU, GEOE) ___________________ ii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Çağrı Buğdaycıoğlu Signature : iii ABSTRACT TECTONO-METAMORPHIC EVOLUTION OF THE NORTHERN MENDERES MASSIF: EVIDENCE FROM THE HORST BETWEEN GÖRDES AND DEMİRCİ BASINS (WEST ANATOLIA, TURKEY) Buğdaycıoğlu, Çağrı M.Sc., Department of Geological Engineering Supervisor : Prof.Dr. Erdin Bozkurt September 2004, 163 pages The Menderes Massif forms a large metamorphic culmination in western Turkey – an extensional province where continental lithosphere has been stretching following Palaeogene crustal thickening.
    [Show full text]
  • Stress and Fluid Control on De Collement Within Competent Limestone
    Journal of Structural Geology 22 (2000) 349±371 www.elsevier.nl/locate/jstrugeo Stress and ¯uid control on de collement within competent limestone Antonio Teixell a,*, David W. Durney b, Maria-Luisa Arboleya a aDepartament de Geologia, Universitat AutoÁnoma de Barcelona, 08193 Bellaterra, Spain bDepartment of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia Received 5 October 1998; accepted 23 September 1999 Abstract The Larra thrust of the Pyrenees is a bedding-parallel de collement located within a competent limestone unit. It forms the ¯oor of a thrust system of hectometric-scale imbrications developed beneath a synorogenic basin. The fault rock at the de collement is a dense stack of mainly bedding-parallel calcite veins with variable internal deformation by twinning and recrystallization. Veins developed as extension fractures parallel to a horizontal maximum compressive stress, cemented by cavity-type crystals. Conditions during vein formation are interpreted in terms of a compressional model where crack-arrays develop at applied stresses approaching the shear strength of the rock and at ¯uid pressures equal to or less than the overburden pressure. The cracks developed in response to high dierential stress, which was channelled in the strong limestone, and high ¯uid pressure in or below the thrust plane. Ductile deformation, although conspicuous, cannot account for the kilometric displacement of the thrust, which was mostly accommodated by slip on water sills constituted by open cracks. A model of cyclic dierential brittle contraction, stress reorientation, slip and ductile relaxation at a rheological step in the limestone is proposed as a mechanism for episodic de collement movement.
    [Show full text]
  • 9. Deformation Structures and Magnetic Fabrics at Site 1178
    Mikada, H., Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results Volume 190/196 9. DEFORMATION STRUCTURES AND MAGNETIC FABRICS AT SITE 1178: 1Ujiie, K., Hisamitsu, T., Maltman, IMPLICATION FOR DEFORMATION HISTORY A.J., Morgan, J.K., Sánchez-Gómez, M., and Tobin, H.J., 2003. Deformation RECORDED IN ACCRETED SEDIMENTS structures and magnetic fabrics at Site 1178: implication for deformation history recorded in accreted sediments AT AN EVOLVED PORTION OF THE NANKAI at an evolved portion of the Nankai CCRETIONARY RISM1 accretionary prism. In Mikada, H., A P Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.), Proc. Kohtaro Ujiie,2 Toshio Hisamitsu,3 Alex J. Maltman,4 ODP, Sci. Results, 190/196, 1–15 [Online]. Available from World Wide 5 6 and 7 Julia K. Morgan, Mario Sánchez-Gómez, Harold J. Tobin Web: <http://www-odp.tamu.edu/ publications/190196SR/VOLUME/ CHAPTERS/202.PDF>. [Cited YYYY- MM-DD] 2Institute for Frontier Research on Earth Evolution, Japan Marine Science and Technology Center, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan. [email protected] 3Institute for Frontier Research on ABSTRACT Earth Evolution, Japan Marine Science and Technology Center, 2-15 During Leg 190, accreted sediments at an evolved portion of the Natsushima-cho, Yokosuka 237-0061, Nankai accretionary prism were penetrated. Deformation structures and Japan. 4 anisotropy of magnetic susceptibility (AMS) data from Site 1178 indi- Institute of Geography and Earth Sciences, University of Wales, cate that structural and magnetic fabrics formed at the frontal part of Aberystwyth, Aberystwyth SY23 3DB, the prism have been preserved, even ~65 km landward of the deforma- United Kingdom.
    [Show full text]
  • Study of Small-Scale Structures and Their Significance in Unravelling the Accretionary Character of Singhbhum Shear Zone, Jharkhand, India
    J. Earth Syst. Sci. (2020) 129:227 Ó Indian Academy of Sciences https://doi.org/10.1007/s12040-020-01496-9 (0123456789().,-volV)(0123456789().,-volV) Study of small-scale structures and their significance in unravelling the accretionary character of Singhbhum shear zone, Jharkhand, India 1 2, ABHINABA ROY and ABDUL MATIN * 1Formerly Geological Survey of India, New Delhi, India. 2Formerly Department of Geology, University of Calcutta, Kolkata, India. *Corresponding author. e-mail: [email protected] MS received 1 April 2020; revised 22 July 2020; accepted 29 August 2020 Localized strain within tabular ductile shear zones is developed from micro- to meso- to even large scales to form complex structures. They grow in width and length through linkage of segments with progressive accumulation of strain and displacement, and Bnally produce shear zone networks characterized by anastomosing patterns. Singhbhum shear zone (SSZ) represents a large composite zone characterized by a collage of different dismembered lithotectonic segments, with heterogeneous structural features, within a matrix typical of a shear zone. Structural features indicate that the material properties of protoliths have a great role in controlling the mechanics of deformation. Meso- and micro-scale structural studies of the east-central part of the SSZ reveal ‘tectonic complex like’ (? deeper level equivalent of melange type complex) assemblage of dismembered lithoteconic units. Shear-induced foliations, S, C and C0, were developed while the main mylonitic foliation is represented by C-plane. Apart from that, shear lenses are exceptionally well developed in both meso- and micro-scale in most of the units, particularly in schistose rocks. They were formed from different processes during progressive simple shear, which includes (1) anastomosing C-planes, (2) intersection between C- and C0-planes, (3) disruption of stretched out longer limbs of asymmetric folds, and (4) cleavage duplex.
    [Show full text]
  • Structural Geology of the Aiken River Deformation Zone, Manitoba (NTS 64A1 and 2) by Y.D
    GS-18 Structural geology of the Aiken River deformation zone, Manitoba (NTS 64A1 and 2) by Y.D. Kuiper1, S. Lin1, C.O. Böhm and M.T. Corkery Kuiper, Y.D., Lin, S., Böhm, C.O. and Corkery, M.T. 2004: Structural geology of the Aiken River deformation zone, Manitoba (NTS 64A1 and 2); in Report of Activities 2004, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, p. 201–208. Summary The Aiken River deformation zone shows evidence for dextral, north-side-up movement. Some of this movement may be related to movement on the gold-hosting Assean Lake deforma- tion zone to the north, suggesting that the Aiken River deformation zone may also have potential for mineralization. This paper discusses the transition of structures from the Central Split Lake Block into the Aiken River deformation zone. The Split Lake Block shows moderately to steeply southeast-plunging folds. Toward the shear zone, the following modifications occur: 1) folds tighten; 2) shear fabrics develop on the fold limbs but not the fold hinges; 3) fold axes start rotating, which is the initiation of sheath-fold development; and 4) dextral, north-side-up shear fabrics are pervasive and sheath folds are present. This sequence of changes may indicate that the pure shear component of this transpressive shear zone is accommodated over a wider area than the simple shear component. Introduction The Aiken River deformation zone forms the boundary between the Split Lake Block to the north and the Pikwitonei Granulite Domain to the south (Figure GS-18-1). Three and a half weeks of structural mapping were carried out in the Split Lake–Aiken River area in 2003 (Kuiper et al., 2003).
    [Show full text]
  • Brittle Microtectonics: Principles and Practice PURPOSE and SCOPE
    Journal of Structural Geology, Vol. 7. Nos. 3/4, pp, 4.3-7to 457. 1985 lllt~l ~i4 I/,~5 $1~3 (l(J ÷ {).0tl Printed in Great Britain ~ It~;~ Pcr~ml~m Pro',', lad Brittle microtectonics: principles and practice P. L. HANCOCK Department of Geology, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, U.K. (Received 8 February 1984; accepted in revised form 17 August 1984) Abstract--Brittle microtectonics as defined here is the application of mesofracture analysis to the solution of tectonic problems. For the determination of regionally significant stress or strain trajectories the ideal suite of structures comprises kinematic indicators such as mesofaults, shear zones, arrays of en echelon cracks, kink bands, stylofites and fibrous veins. However, in many tectonic settings joints are the only widespread structures capable of being analysed. The principal criteria for classifying joints into extension, hybrid and shear classes are fracture-system architecture and symmetry, surface morphology, dihedral angles and thin-section characteristics. The architecture of orthogonal extension joints is commonly T-shaped, the younger joint abutting the older one. Neighbouring conjugate hybrid or shear joints generally define X, Y or V shapes but some X patterns are artefacts of unrelated cross-cutting fractures. Conjugate joints enclosing dihedral angles of less than 45 ° are common; they are interpreted as hybrid failure surfaces initiated in the shear--extension fracture transition. The orientations of many joint sets in platforms are related to far-field stresses generated during plate motion and the subsidence, uplift and inversion of basins. Even within a single joint set there is commonly field evidence to show that it developed during a multiphase failure sequence..Some joints are younger than folds but where a system was established before the close of folding the surfaces commonly become the sites of slip, dilation or pressure solution, and are thus transformed into structures no longer classed as joints.
    [Show full text]
  • Geometry and Deformation History of Mylonitic Rocks and Silicified Zones Along the Mesozoic Connecticut Valley Border Fault, Western Massachusetts
    ALUN MASS/AMHERST ‘ 31206600765055e fi A ed ‘ : . te a ‘ : Rea A) ll Od ir Ler yie 5 : ‘ 5 3 : $iifaedst! * ‘ 1 5 me ah a - aor peel segs oS rt shay nyt 1 . : Sybey see Patil Pr ae CEs a os ey ee , Ste ee nts yee ee Tp sl pa) seat D Bataade ee . {FM ave ay og : 5 jos atrs DeVere ns era See) ; Lyesverr POET d ’ i oy Verereiaihey ' . hous : Pathak heche u) PE oS Dalle ene ot a eae it) pica Cris MoM te ELA MLA die 3 LE GEE Ad Ch APTN ORE FEV EE AYO AY AE k par ‘ Date Mowe : : sere (no, phe ey Teast ahd ¢ ity a 23% .4% Ay ts eater ee) pa To Pe Ste ophgraeaiek sdpre aay arena ' Pig by ’ ‘ ‘ yee vere Sry on Fic $e x bdalld cet antec Feb Ata eno ae PUTSNT tet W ee SANTEE eT VOTRE ey J Gf, sees 5 ’ ; . ty : ‘ : 4 DSC LE ih DR Jat SOK AT CR Ra gir al Ao Id, eval tat WC SORES caer y Et poy asses ist dre sg ety" : hie Fis bi : u ; y erie } he 5 wie UPD SO ata th Puede? Lae an to Peres) Gee ems i ar aac rn a neha dyhatype aT aint Spark ey sap ea ee tial petty GUS hstghe Vecye peponeagon ererervet Tp aig paar ” gieteMewner F Phe : reba S : rypiech, : ‘ Oh oll lac ah lil tet nt octane stare? re ee eee a eee ry ' tas 7 : ep oy gk bil an i ‘ nea Ay ce iC ie : ' : : ae ' oe arch ire? es rk .
    [Show full text]
  • Quantitative Finite Strain Analysis of the Quartz Mylonites Within the Three
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Austrian Journal of Earth Sciences Jahr/Year: 2018 Band/Volume: 111 Autor(en)/Author(s): Kanjanapayont Pitsanupong, Ponmanee Peekamon, Grasemann Bernhard, Klötzli Urs S., Nantasin Prayath Artikel/Article: Quantitative finite strain analysis of the quartz mylonites within the Three Pagodas shear zone, western Thailand 171-179 download https://content.sciendo.com/view/journals/ajes/ajes-overview.xml Austrian Journal of Earth Sciences Vienna 2018 Volume 111/2 171 - 179 DOI: 10.17738/ajes.2018.0011 Quantitative finite strain analysis of the quartz mylonites within the Three Pagodas shear zone, western Thailand Pitsanupong KANJANAPAYONT1)*), Peekamon PONMANEE1), Bernhard GRASEMANN2), Urs KLÖTZLI3) & Prayath NANTASIN4) 1) Basin Analysis and Structural Evolution Special Task Force for Activating Research (BASE STAR), Department of Geology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; 2) Department of Geodynamics and Sedimentology, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; 3) Department of Lithospheric Research, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; 4) Department of Earth Sciences, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; *) Corresponding author: [email protected] KEYWORDS Finite strain; Kinematic vorticity; Sinistral; Three Pagodas shear zone; Thailand Abstract The NW–trending Three Pagodas shear zone exposes a high–grade metamorphic complex named Thabsila gneiss in the Kanchanaburi region, western Thailand. The quartz mylonites within this strike–slip zone were selected for strain analysis. 2–dimensional strain analysis indicates that the averaged strain ratio (Rs) for the lower greenschist facies increment of XZ– plane is Rs = 1.60–1.97 by using the Fry’s method.
    [Show full text]
  • Insights Into Heterogeneous Shear Zone Evolution
    DUCTILE SHEAR ZONES Ductile Shear Zones From Micro‐ to Macro‐scales Edited by Soumyajit Mukherjee Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India Kieran F. Mulchrone Department of Applied Mathematics, University College, Cork, Ireland This edition first published 2016 © 2016 by John Wiley & Sons, Ltd Registered Office John Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK Editorial Offices 9600 Garsington Road, Oxford, OX4 2DQ, UK The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK 111 River Street, Hoboken, NJ 07030‐5774, USA For details of our global editorial offices, for customer services and for information about how to apply for permission to reuse the copyright material in this book please see our website at www.wiley.com/wiley‐blackwell. The right of the author to be identified as the author of this work has been asserted in accordance with the UK Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book. Limit of Liability/Disclaimer of Warranty: While the publisher and author(s) have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
    [Show full text]
  • Characterizing the Southwestern Extent of the Norumbega Fault System, a Mid-Paleozoic Crustal-Scale Strike-Slip Fault System In
    CHARACTERIZING THE SOUTHWESTERN EXTENT OF THE NORUMBEGA FAULT SYSTEM, A MID-PALEOZOIC CRUSTAL-SCALE STRIKE-SLIP FAULT SYSTEM IN THE NEW ENGLAND APPALACHIANS by Emilie Gentry A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date __________________________ Signed: __________________________ Emilie Gentry Signed: __________________________ Yvette D. Kuiper Thesis Advisor Golden, Colorado Date __________________________ Signed: __________________________ Dr. M. Steve Enders Professor and Head Department of Geology and Geological Engineering ii ABSTRACT The >300 km long, northeast-trending dextral transpressive Norumbega fault system in Maine and New Brunswick is defined by a tens of kilometers wide zone of multiple dextral shear zones. Based on published 40Ar/39Ar hornblende data and U-Pb zircon and monazite ages, dextral shear along the fault system initiated by ~380 Ma. The location and nature of the southwestern termination of the Norumbega fault system was investigated in this study. Previously, no fault system in New Hampshire or eastern Massachusetts has been recognized with an orientation, timing, and motion sense consistent with those of the NFS. Detailed structural mapping was carried out along topographic lineaments and mapped shear zones in New Hampshire and Massachusetts to test whether the NFS extends into those areas. The Rye Complex in southeastern coastal NH was the only location investigated that presented field characteristics consistent with the NFS. The Nannie Island shear zone in southeastern NH is along strike with the NFS, but contains both sinistral and dextral shear sense indicators and has a lower metamorphic grade.
    [Show full text]
  • STRUCTURAL EVOLUTION of the BABADAG FAULT ZONE in DENIZLI GRABEN, SOUTH WESTERN TURKEY by ESRA BURCU OZDEMIR Bachelor of Engin
    STRUCTURAL EVOLUTION OF THE BABADAG FAULT ZONE IN DENIZLI GRABEN, SOUTH WESTERN TURKEY BY ESRA BURCU OZDEMIR Bachelor of Engineering, Ankara University, Faculty of Engineering Ankara, Turkey 2002 Submitted to the faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December 2005 STRUCTURAL EVOLUTION OF THE BABADAG FAULT ZONE IN DENIZLI GRABEN, SOUTH WESTERN TURKEY Thesis Approved: Dr. Ibrahim Cemen __________________________________ Thesis Advisor Dr. Elizabeth Catlos __________________________________ Dr. Surinder Sahai __________________________________ Dr. Gordon Emslie __________________________________ Dean of the Graduate College ii ACKNOWLEDGEMENTS Firstly, I express my deepest gratitude to my hero, Osman Ozdemir, whom I have always admired and want to be like. I thank my mother, Merym Meral Ozdemir, and my dearest sister, Nadire Ozdemir for their constant love. My family has been there and always supported me during my life. I thank my thesis advisor, Dr. Ibrahim Cemen for his great help and support. Without his enthusiasm for geology and guidance, I would not have made it this far. I also thank the rest of my committee, Dr. Elizabeth Catlos for her unwavering support and encouragement but the most her friendship throughout my graduate career and Dr. Surinder Sahai for his constant help and consideration with my project. I also owe my thanks to Dr. Mete Hancer from Pamukkale University, Turkey for helping during my fieldwork. I would like to thank all the students and my friends of the Geology department. My officemate, Wesley Kruger, Emre Diniz, Cenk Ozerdem and Ali Jaffri have my deepest appreciation for their valuable reviews of this thesis report and for their understanding and support.
    [Show full text]