Study of Small-Scale Structures and Their Significance in Unravelling the Accretionary Character of Singhbhum Shear Zone, Jharkhand, India

Total Page:16

File Type:pdf, Size:1020Kb

Study of Small-Scale Structures and Their Significance in Unravelling the Accretionary Character of Singhbhum Shear Zone, Jharkhand, India J. Earth Syst. Sci. (2020) 129:227 Ó Indian Academy of Sciences https://doi.org/10.1007/s12040-020-01496-9 (0123456789().,-volV)(0123456789().,-volV) Study of small-scale structures and their significance in unravelling the accretionary character of Singhbhum shear zone, Jharkhand, India 1 2, ABHINABA ROY and ABDUL MATIN * 1Formerly Geological Survey of India, New Delhi, India. 2Formerly Department of Geology, University of Calcutta, Kolkata, India. *Corresponding author. e-mail: [email protected] MS received 1 April 2020; revised 22 July 2020; accepted 29 August 2020 Localized strain within tabular ductile shear zones is developed from micro- to meso- to even large scales to form complex structures. They grow in width and length through linkage of segments with progressive accumulation of strain and displacement, and Bnally produce shear zone networks characterized by anastomosing patterns. Singhbhum shear zone (SSZ) represents a large composite zone characterized by a collage of different dismembered lithotectonic segments, with heterogeneous structural features, within a matrix typical of a shear zone. Structural features indicate that the material properties of protoliths have a great role in controlling the mechanics of deformation. Meso- and micro-scale structural studies of the east-central part of the SSZ reveal ‘tectonic complex like’ (? deeper level equivalent of melange type complex) assemblage of dismembered lithoteconic units. Shear-induced foliations, S, C and C0, were developed while the main mylonitic foliation is represented by C-plane. Apart from that, shear lenses are exceptionally well developed in both meso- and micro-scale in most of the units, particularly in schistose rocks. They were formed from different processes during progressive simple shear, which includes (1) anastomosing C-planes, (2) intersection between C- and C0-planes, (3) disruption of stretched out longer limbs of asymmetric folds, and (4) cleavage duplex. Fabrics recorded in rocks indicate that there was a progressive change in the development of predominantly Cattening fabric (coaxial pure shear) in the northern part (outside the SSZ), to simple-shear non-coaxial type deformation producing shear fabric, dominating over the Cattening fabric, in the southern part (within the SSZ) that is in close proximity with the Singhbhum Craton. Although an overall plane strain simple shear model is apparent, occasional presence of extensional features along two directions of the mylonitic foliation, demonstrative of three- dimensional deformation (simple shear and Cattening: X [ Y [ 1 [ Z), may indicate the stretching nature of the SSZ. From the orientation of oblique grain shape fabric [ISAmax (h \ 45°)], there is slight deviation from simple shear, i.e., a sub-simple nature of plane strain shear could be inferred. However, in conformity with simple shear model the ubiquitously developed stretching lineation shows consistency in orientation being parallel to the movement direction. There is no evidence of transpression. Shear sense indicators invariably indicate up-dip ductile thrust movement with vergence top-to-the south. Microstructural deformational characteristics indicate that peak temperature attained during the deformation in shear zone was *600 °C. Prolonged period of metasomatism, induced by Cuid inCux, played an important role in strain softening during the development of SSZ. Keywords. Singhbhum shear zone; small-scale structure; shear lens; tectonic complex. 227 Page 2 of 25 J. Earth Syst. Sci. (2020) 129:227 1. Introduction 1993; Mitra 1978, 1984, 1992; Newman and Mitra 1993 and references therein) and the intrinsic High strain zones or shear zones are historically material property, such as lithology, mineralogical described since the later part of the 19th century. composition, grain size, etc. (e.g., Schmid 1975; However, detailed analysis of shear zones, from Sibson 1977 and references therein). The defor- geometry to kinematics, has been a subject of mation mechanisms also vary along a shear zone active research since the later part of the last due to changing physical conditions along the zone century. Shear zones are localized planar or (Sibson et al. 1981; Wojtal and Mitra 1988). Tec- curviplanar zones with higher accumulation of tonic melange, which is often described in colli- strain, typically have a dominant component of sional tectonics, shows diverse elongate blocks and simple shear although a component of pure shear is irregularly foliated matrix (Moores and Twiss commonly present, separated from less strained or 1995). The term melange, has been used as a unstrained zones of wall rocks with a strain gradi- descriptive and non-genetic term (Wood 1974; ent across the zones (Fossen and Cavalcante 2017 Silver and Beutner 1980; Raymond 1975, 1984; and references within). Micro- and meso-scale Cowan 1986), that does not restrict to the type of structures in naturally deformed rocks are lithological units involved (e.g., sedimentary, immensely useful in overall understanding of metamorphic or igneous) and the contact rela- deformation including sequence of fabric develop- tionships between these diverse lithological units ment, state of strain, strain rate and its variation can be tectonic, stratigraphic or intrusive, and deformation history of polydeformed terrains, depending on the process of melange formation particularly of ductile shear zones. The term duc- (Festa et al. 2012). In view of similar observations, tile is restricted here to (temperature-dependent) Cowan (1978) suggested that tectonic melanges are crystal-plastic deformation (c.f., Twiss and Moores structurally equivalent to faults, along which the 2007). The total strain within a heterogeneously tectonic dislocation ‘has expanded from a plane deformed rock in a shear zone is partitioned (i.e., fault) to a zone of several meters to kilometers between the more deformed part and less deformed in width (i.e., tectonic melange)’. Tectonic events part of the shear zone. However, the investigation represent the most prominent triggering mecha- of Hudleston (1999) on this issue reveals that even nism inducing, directly or indirectly, stratal dis- the very simple and idealized shear zone networks ruption and mixing that produce a broad spectrum generate large spatial variations in strain geome- of chaotic rock bodies. try, strain magnitude and vorticity, and local In this paper, we present outcrop- to micro-scale interpretation within a large shear zone are unli- structures including fabric development in differ- kely to be representative of the bulk deformation in ent lithotectonic units of SSZ, deformation char- the macro-scale zone. In large-scale shear zone acteristics and their kinematics of development in complex, it is expected to have irregular geome- the backdrop of progressive evolution of the SSZ. tries, with less predictable variations in strain and We make an attempt to understand the type of coaxiality. shear (simple or sub-simple) in the history of Kilometre-scale shear zones usually represent deformation and to assess whether the SSZ repre- the boundaries between different tectonic terranes sents a Precambrian tectonic complex zone in (e.g., fold and thrust belt) (Boyer and Elliot 1982; continental tectonic set-up. The term progressive Boyer and Geiser 1987) with large translations deformation is used in this paper in a sense, where (e.g., Elliott and Johnson 1980; Boyer and Elliot movements took place in relatively short time 1982; McQuarrie and DeCelles 2001 and references intervals with the development of multiple sets of therein) and the complex deformation history is structures (Tobisch and Paterson 1988). The commonly depicted in small-scale structures, variation of the structures, control of material developed in response to a progressive evolution of property (lithology/rheology of the rocks), Cuids a regional-scale shear zone (Simpson and Schmid and the P–T condition in the development of dif- 1983; Choukroune et al. 1987; Hanmer and Pass- ferent kinds of structures in SSZ are elucidated. chier 1991; Druguet et al. 1997; Fossen and TikoA From the structural characteristics, it could be 1998; Piazolo and Passchier 2002; Carreras et al. established that the SSZ might represent a zone of 2005; Passchier and Trouw 2005). The mechanisms anastomosing and coalescent fault/shear zones of deformation in the evolution of large-scale shear producing an aggregate of discontinuous alloch- zones depend on physical conditions (e.g., Evans thonous lithounits. This is comparable to a large J. Earth Syst. Sci. (2020) 129:227 Page 3 of 25 227 scale lithotectonic unit developed in deeper (duc- et al. 1975; Bhattacharya 1978; Mukhopadhyay tile) level counterpart of a shallow (brittle) level 1984; Ghosh and Sengupta 1987a, b; Mukhopad- tectonic melange zone. In our view, the SSZ does hyay and Deb 1995; Joy and Saha 1998, 2000; not readily Bt into the definition of an ideal ‘tec- Matin et al. 2012; Banerjee and Matin 2013 and tonic melange’. The different stages of the devel- references therein). They emphasized that the SSZ, opment of deformational fabrics and the sense of with a protracted history of progressive deforma- shear in all the discontinuous lithounits are enu- tion, had been reactivated several times (c.f., merated in the paper. This study has important Ghosh and Sengupta 1987a, b; Mukhopadhyay and implications forming a ‘melange-like tectonic Deb 1995; Matin et al. 2012). Tectonic slices/ complex’ belt in Precambrian terrain. wedges of basement
Recommended publications
  • 24. Anelastic Strain Recovery and Elastic Properties of Oceanic Basaltic Rocks1
    Gradstein, F. M., Ludden, J. N., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 123 24. ANELASTIC STRAIN RECOVERY AND ELASTIC PROPERTIES OF OCEANIC BASALTIC ROCKS1 N. R. Brereton,2 P. N. Chroston,3 C. J. Evans,2 J. A. Hudson,4 and R. B. Whitmarsh5 ABSTRACT A knowledge of rock stress is fundamental for improving our understanding of oceanic crustal mechanisms and lithospheric dynamic processes. However, direct measurements of stress in the deep oceans, and in particular stress magnitudes, have proved to be technically difficult. Anelastic strain recovery measurements were conducted on 15 basalt core samples from Sites 765 and 766 during Leg 123. Three sets of experiments were performed: anelastic strain recovery monitoring, dynamic elastic property measure- ments, and thermal azimuthal anisotropy observations. In addition, a range of other tests and observations were recorded to characterize each of the samples. One common feature of the experimental results and observations is that apparently no consistent orientation trend exists, either between the different measurements on each core sample or between the same sets of measurements on the various core samples. However, some evidence of correspondence between velocity anisotropy and anelastic strain recovery exists, but this is not consistent for all the core samples investigated. Thermal azimuthal anisotropy observations, although showing no conclusive correlations with the other results, were of significant interest in that they clearly exhibited anisotropic behavior. The apparent reproducibility of this behavior may point toward the possibility of rocks that retain a "memory" of their stress history, which could be exploited to derive stress orientations from archived core.
    [Show full text]
  • Tectono-Metamorphic Evolution of the Northern Menderes Massif: Evidence from the Horst Between Gördes and Demirci Basins (West Anatolia, Turkey)
    TECTONO-METAMORPHIC EVOLUTION OF THE NORTHERN MENDERES MASSIF: EVIDENCE FROM THE HORST BETWEEN GÖRDES AND DEMİRCİ BASINS (WEST ANATOLIA, TURKEY) A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY ÇAĞRI BUĞDAYCIOĞLU IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGICAL ENGINEERING SEPTEMBER 2004 Approval of the Graduate School of Natural and Applied Sciences. I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science. This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science. Examining Committee Members Prof.Dr. Vedat Toprak (METU, GEOE) ___________________ Prof.Dr. Erdin Bozkurt (METU, GEOE) ___________________ Assoc.Prof.Dr. Bora Rojay (METU, GEOE) ___________________ Assoc.Prof.Dr. Kadir Dirik (HU, GEOE) ___________________ Assist.Prof.Dr. İsmail Ömer Yılmaz (METU, GEOE) ___________________ ii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Çağrı Buğdaycıoğlu Signature : iii ABSTRACT TECTONO-METAMORPHIC EVOLUTION OF THE NORTHERN MENDERES MASSIF: EVIDENCE FROM THE HORST BETWEEN GÖRDES AND DEMİRCİ BASINS (WEST ANATOLIA, TURKEY) Buğdaycıoğlu, Çağrı M.Sc., Department of Geological Engineering Supervisor : Prof.Dr. Erdin Bozkurt September 2004, 163 pages The Menderes Massif forms a large metamorphic culmination in western Turkey – an extensional province where continental lithosphere has been stretching following Palaeogene crustal thickening.
    [Show full text]
  • Chapter 8 Large Strains
    Chapter 8 Large Strains Introduction Most geological deformation, whether distorted fossils or fold and thrust belt shortening, accrues over a long period of time and can no longer be analyzed with the assumptions of infinitesimal strain. Fortunately, these large, or finite strains have the same starting point that infinitesimal strain does: the deformation and dis- placement gradient tensors. However, we must clearly distinguish between gradi- ents in position or displacement with respect to the initial (material) or to the final (spatial) state and several assumptions from the last Chapter — small angles, addi- tion of successive phases or steps in the deformation — no longer hold. Finite strain can get complicated very quickly with many different tensors to worry about. Most of our emphasis here will be on the practical measurement of finite strain rather than the details of the theory but we do have to review a few basic concepts first, so that we can appreciate the differences between finite and infinitesimal strain. Some of these differences have a profound impact on how we analyze de- formation. CHAPTER 8 FINITE STRAIN Comparison to Infinitesimal Strain A Plethora of Finite Strain Tensors There are lots of finite strain tensors and they come in pairs: one referenced to the initial state and the other referenced to the final state. The derivation of these tensors is usually based on Figure 7.3 and is tedious but straightforward; we will skip the derivation here but you can see it in Allmendinger et al. (2012) or any good continuum mechanics text. The first tensor is the Lagrangian strain tensor: 1 ⎡ ∂ui ∂u j ∂uk ∂uk ⎤ 1 " Lij = ⎢ + + ⎥ = ⎣⎡Eij + E ji + EkiEkj ⎦⎤ (8.1) 2 ⎣∂ X j ∂ Xi ∂ Xi ∂ X j ⎦ 2 where Eij is the displacement gradient tensor from the last Chapter.
    [Show full text]
  • Gy403 Structural Geology Kinematic Analysis Kinematics
    GY403 STRUCTURAL GEOLOGY KINEMATIC ANALYSIS KINEMATICS • Translation- described by a vector quantity • Rotation- described by: • Axis of rotation point • Magnitude of rotation (degrees) • Sense of rotation (reference frame; clockwise or anticlockwise) • Dilation- volume change • Loss of volume = negative dilation • Increase of volume = positive dilation • Distortion- change in original shape RIGID VS. NON-RIGID BODY DEFORMATION • Rigid Body Deformation • Translation: fault slip • Rotation: rotational fault • Non-rigid Body Deformation • Dilation: burial of sediment/rock • Distortion: ductile deformation (permanent shape change) TRANSLATION EXAMPLES • Slip along a planar fault • 360 meters left lateral slip • 50 meters normal dip slip • Classification: normal left-lateral slip fault 30 Net Slip Vector X(S) 40 70 N 50m dip slip X(N) 360m strike slip 30 40 0 100m ROTATIONAL FAULT • Fault slip is described by an axis of rotation • Rotation is anticlockwise as viewed from the south fault block • Amount of rotation is 50 degrees Axis W E 50 FAULT SEPARATION VS. SLIP • Fault separation: the apparent slip as viewed on a planar outcrop. • Fault slip: must be measured with net slip vector using a linear feature offset by the fault. 70 40 150m D U 40 STRAIN ELLIPSOID X • A three-dimensional ellipsoid that describes the magnitude of dilational and distortional strain. • Assume a perfect sphere before deformation. • Three mutually perpendicular axes X, Y, and Z. • X is maximum stretch (S ) and Z is minimum stretch (S ). X Z Y Z • There are unique directions
    [Show full text]
  • Ductile Deformation - Concepts of Finite Strain
    327 Ductile deformation - Concepts of finite strain Deformation includes any process that results in a change in shape, size or location of a body. A solid body subjected to external forces tends to move or change its displacement. These displacements can involve four distinct component patterns: - 1) A body is forced to change its position; it undergoes translation. - 2) A body is forced to change its orientation; it undergoes rotation. - 3) A body is forced to change size; it undergoes dilation. - 4) A body is forced to change shape; it undergoes distortion. These movement components are often described in terms of slip or flow. The distinction is scale- dependent, slip describing movement on a discrete plane, whereas flow is a penetrative movement that involves the whole of the rock. The four basic movements may be combined. - During rigid body deformation, rocks are translated and/or rotated but the original size and shape are preserved. - If instead of moving, the body absorbs some or all the forces, it becomes stressed. The forces then cause particle displacement within the body so that the body changes its shape and/or size; it becomes deformed. Deformation describes the complete transformation from the initial to the final geometry and location of a body. Deformation produces discontinuities in brittle rocks. In ductile rocks, deformation is macroscopically continuous, distributed within the mass of the rock. Instead, brittle deformation essentially involves relative movements between undeformed (but displaced) blocks. Finite strain jpb, 2019 328 Strain describes the non-rigid body deformation, i.e. the amount of movement caused by stresses between parts of a body.
    [Show full text]
  • Stress and Fluid Control on De Collement Within Competent Limestone
    Journal of Structural Geology 22 (2000) 349±371 www.elsevier.nl/locate/jstrugeo Stress and ¯uid control on de collement within competent limestone Antonio Teixell a,*, David W. Durney b, Maria-Luisa Arboleya a aDepartament de Geologia, Universitat AutoÁnoma de Barcelona, 08193 Bellaterra, Spain bDepartment of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia Received 5 October 1998; accepted 23 September 1999 Abstract The Larra thrust of the Pyrenees is a bedding-parallel de collement located within a competent limestone unit. It forms the ¯oor of a thrust system of hectometric-scale imbrications developed beneath a synorogenic basin. The fault rock at the de collement is a dense stack of mainly bedding-parallel calcite veins with variable internal deformation by twinning and recrystallization. Veins developed as extension fractures parallel to a horizontal maximum compressive stress, cemented by cavity-type crystals. Conditions during vein formation are interpreted in terms of a compressional model where crack-arrays develop at applied stresses approaching the shear strength of the rock and at ¯uid pressures equal to or less than the overburden pressure. The cracks developed in response to high dierential stress, which was channelled in the strong limestone, and high ¯uid pressure in or below the thrust plane. Ductile deformation, although conspicuous, cannot account for the kilometric displacement of the thrust, which was mostly accommodated by slip on water sills constituted by open cracks. A model of cyclic dierential brittle contraction, stress reorientation, slip and ductile relaxation at a rheological step in the limestone is proposed as a mechanism for episodic de collement movement.
    [Show full text]
  • Geometry and Kinematics of Bivergent Extension in the Southern Cycladic Archipelago: Constraining an Extensional Hinge Zone on S
    RESEARCH ARTICLE Geometry and Kinematics of Bivergent Extension in 10.1029/2020TC006641 the Southern Cycladic Archipelago: Constraining an Key Points: Extensional Hinge Zone on Sikinos Island, Aegean Sea, • New and novel (re)interpretation of extension-related structures in Greece Cycladic Blueschist Unit • Extensional structures resulted from Uwe Ring1 and Johannes Glodny2 high degree of pure-shear flattening during general-shear deformation 1Department of Geological Sciences, Stockholm University, Stockholm, Sweden, 2GFZ German Research Centre for • Structures are interpreted to reflect Geosciences, Potsdam, Germany an extensional hinge zone in southern Cyclades Abstract We report the results of a field study on Sikinos Island in the Aegean extensional province Supporting Information: of Greece and propose a hinge zone controlling incipient bivergent extension in the southern Cyclades. Supporting Information may be found A first deformation event led to top-S thrusting of the Cycladic Blueschist Unit (CBU) onto the Cycladic in the online version of this article. basement in the Oligocene. The mean kinematic vorticity number (Wm) during this event is between 0.56 and 0.63 in the CBU, and 0.72 to 0.84 in the basement, indicating general-shear deformation with about Correspondence to: equal components of pure and simple shear. The strain geometry was close to plane strain. Subsequent U. Ring, [email protected] lower-greenschist-facies extensional shearing was also by general-shear deformation; however, the pure- shear component was distinctly greater (Wm = 0.3–0.41). The degree of subvertical pure-shear flattening Citation: increases structurally upward and explains alternating top-N and top-S shear senses over large parts of Ring, U., & Glodny, J.
    [Show full text]
  • 2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations
    2 Review of Stress, Linear Strain and Elastic Stress- Strain Relations 2.1 Introduction In metal forming and machining processes, the work piece is subjected to external forces in order to achieve a certain desired shape. Under the action of these forces, the work piece undergoes displacements and deformation and develops internal forces. A measure of deformation is defined as strain. The intensity of internal forces is called as stress. The displacements, strains and stresses in a deformable body are interlinked. Additionally, they all depend on the geometry and material of the work piece, external forces and supports. Therefore, to estimate the external forces required for achieving the desired shape, one needs to determine the displacements, strains and stresses in the work piece. This involves solving the following set of governing equations : (i) strain-displacement relations, (ii) stress- strain relations and (iii) equations of motion. In this chapter, we develop the governing equations for the case of small deformation of linearly elastic materials. While developing these equations, we disregard the molecular structure of the material and assume the body to be a continuum. This enables us to define the displacements, strains and stresses at every point of the body. We begin our discussion on governing equations with the concept of stress at a point. Then, we carry out the analysis of stress at a point to develop the ideas of stress invariants, principal stresses, maximum shear stress, octahedral stresses and the hydrostatic and deviatoric parts of stress. These ideas will be used in the next chapter to develop the theory of plasticity.
    [Show full text]
  • 9. Deformation Structures and Magnetic Fabrics at Site 1178
    Mikada, H., Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.) Proceedings of the Ocean Drilling Program, Scientific Results Volume 190/196 9. DEFORMATION STRUCTURES AND MAGNETIC FABRICS AT SITE 1178: 1Ujiie, K., Hisamitsu, T., Maltman, IMPLICATION FOR DEFORMATION HISTORY A.J., Morgan, J.K., Sánchez-Gómez, M., and Tobin, H.J., 2003. Deformation RECORDED IN ACCRETED SEDIMENTS structures and magnetic fabrics at Site 1178: implication for deformation history recorded in accreted sediments AT AN EVOLVED PORTION OF THE NANKAI at an evolved portion of the Nankai CCRETIONARY RISM1 accretionary prism. In Mikada, H., A P Moore, G.F., Taira, A., Becker, K., Moore, J.C., and Klaus, A. (Eds.), Proc. Kohtaro Ujiie,2 Toshio Hisamitsu,3 Alex J. Maltman,4 ODP, Sci. Results, 190/196, 1–15 [Online]. Available from World Wide 5 6 and 7 Julia K. Morgan, Mario Sánchez-Gómez, Harold J. Tobin Web: <http://www-odp.tamu.edu/ publications/190196SR/VOLUME/ CHAPTERS/202.PDF>. [Cited YYYY- MM-DD] 2Institute for Frontier Research on Earth Evolution, Japan Marine Science and Technology Center, 3173-25 Showa-machi, Kanazawa-ku, Yokohama 236-0001, Japan. [email protected] 3Institute for Frontier Research on ABSTRACT Earth Evolution, Japan Marine Science and Technology Center, 2-15 During Leg 190, accreted sediments at an evolved portion of the Natsushima-cho, Yokosuka 237-0061, Nankai accretionary prism were penetrated. Deformation structures and Japan. 4 anisotropy of magnetic susceptibility (AMS) data from Site 1178 indi- Institute of Geography and Earth Sciences, University of Wales, cate that structural and magnetic fabrics formed at the frontal part of Aberystwyth, Aberystwyth SY23 3DB, the prism have been preserved, even ~65 km landward of the deforma- United Kingdom.
    [Show full text]
  • Download Download
    e-ISSN 2580 - 0752 BULLETIN OF GEOLOGY Fakultas Ilmu dan Teknologi Kebumian (FITB) Institut Teknologi Bandung (ITB) STRUCTURAL CONTROL RELATED WITH MEDIUM-TO-VERY HIGH Au GRADE AT PIT B EAST AND B WEST, TUJUH BUKIT MINE, EAST JAVA ILHAM AJI DERMAWAN1, ANDRI SLAMET SUBANDRIO1, ALFEND RUDYAWAN1, ARYA DWI SANJAYA2, RAMA MAHARIEF2, KRISMA ANDITYA2, RIZFAN HASNUR2, M. SATYA MUTTAQIEN2, CICIH LARASATI WIDYA FITRI2, ANDI PAHLEVI2, DEDY DAULAY2, AGUS PURWANTO2, ADI ADRIANSYAH SJOEKRI2 1. Program Studi Teknik Geologi, Fakultas Ilmu dan Teknologi Kebumian, Institut Teknologi Bandung (ITB), Jl. Ganesha No.10, Bandung, Jawa Barat, Indonesia. Email: [email protected] 2. PT Bumi Suksesindo, Desa Sumberagung, Kecamatan Pesanggaran, Kabupaten Banyuwangi, Provinsi Jawa Timur, Indonesia. Sari – Tujuh Bukit secara umum disusun oleh batuan vulkanik dan vulkaniklastik Formasi Batuampar berumur Oligosen Akhir sampai Miosen Tengah. Setelah terjadi aktivitas tektonomagmatisme pada Pliosen, satuan tersebut teralterasi dan menjadi host rock bagi mineralisasi ekonomis yang juga terbentuk pada Pliosen. Daerah penelitian berada di tambang terbuka Pit B East dan B West. Kavling yang mencakup kedua pit tersebut memiliki luas ± 700 x 500 m2, terletak pada koordinat ± 9045100 – 9045600 mU dan ± 174400 – 175100 mT sistem proyeksi koordinat UTM WGS 1984 zona 50S. Penelitian ini membahas tentang kontrol struktur yang berperan dalam pembentukan karakteristik alterasi dan mineralisasi Au sistem epitermal sulfidasi tinggi yang berkembang di Pit B East dan B West, tambang Tujuh Bukit. Struktur geologi yang dominan berkembang berupa sistem sesar mendatar berumur Pliosen, berarah relatif NW-SE dan N-S, dengan arah tegasan utama NNW-SSE mengikuti model pure shear. Terdapat pula sesar normal berarah relatif NW-SE dan sesar naik berarah relatif ENE-WSW.
    [Show full text]
  • Formation of Melange in Afore/And Basin Overthrust Setting: Example from the Taconic Orogen
    Printed in U.S.A. Geological Society of America Special Paper 198 1984 Formation of melange in afore/and basin overthrust setting: Example from the Taconic Orogen F. W. Vollmer* William Bosworth* Department of Geological Sciences State University of New York at Albany Albany, New York 12222 ABSTRACT The Taconic melanges of eastern New York developed through the progressive deformation of a synorogenic flysch sequence deposited within a N-S elongate foreland basin. This basin formed in front of the Taconic Allochthon as it was emplaced onto the North American continental shelf during the medial Ordovician Taconic Orogeny. The flysch was derived from, and was subsequently overridden by the allochthon, resulting in the formation of belts of tectonic melange. An east to west decrease in deformation intensity allows interpretation of the structural history of the melange and study of the flysch-melange transition. The formation of the melange involved: isoclinal folding, boudinage and disruption of graywacke-shale sequences due to ductility contrasts; sub­ aqueous slumping and deposition of olistoliths which were subsequently tectonized and incorporated into the melange; and imbrication of the overthrust and underthrust sedi­ mentary sections into the melange. The characteristic microstructure of the melange is a phacoidal conjugate-shear cleavage, which is intimately associated with high strains and bedding disruption. Rootless isoclines within the melange have apparently been rotated into an east-west shear direction, consistent with fault, fold, and cleavage orientations within the flysch. The melange zones are best modeled as zones of high shear strain developed during the emplacement of the Taconic Allochthon. Total displacement across these melange zones is estimated to be in excess of 60 kilometers.
    [Show full text]
  • Field and Microstructure Study of Transpressive Jogdadi Shear Zone
    Field and Microstructure study of Transpressive Jogdadi shear zone near Ambaji, Aravalli- Delhi Mobile Belt, NW India and its tectonic implication on the exhumation of granulite Sudheer Kumar Tiwari, Tapas Kumar Biswal ([email protected], [email protected]) Indian Institute of Technology Bombay, Mumbai- 400076 Table1: Mean kinematic vorticity (WM) and percentage(%) of Pure shear for (A) Jogdadi and Surela Abstract 2. Geological map of study area 4. Microstructures shear zone N Aravalli- Delhi mobile belt is situated in the nortwestern part of Indian (A) NW SE (A) (B) shield. It comprises tectono- magmatic histories fromfrom Archean to W E Percentage (%) of Percentage (%) of A B C Sample No. Range of WM Sample No. Range of WM neoproterozoic age. It possesses three tectono- magmatic metamorphic Pure shear Pure shear C2 belts namely Bhilwara Supergroup (3000 Ma), Aravalli Supergorup (1800 Ma) S N A5 0.48- 0.53 65- 70 SA2 0.71- 0.80 42- 50 and Delhi Supergroup (1100 -750Ma). The Delhi Supergroup is divided in two (B) parts North Delhi and South Delhi; North Delhi (1100 Ma to 850 Ma) is older W E A21 0.47- 0.57 63- 71 MYL 0.73- 0.80 42- 49 than South Delhi (850 Ma to 750 Ma). The study area falls in the South Delhi JSZ A29 0.70- 0.73 48- 52 SC2 0.76- 0.82 40- 47 terrane; BKSK granulites are the major unit in this terrane. BKSK granulites S comprise gabbro- norite-basic granulite, pelitic granulite, calcareous granulite N A34 0.58- 0.61 59- 62 SE5 0.76- 0.79 44- 47 and occur within the surrounding of low grade rocks as meta- rhyolite, (C) quartzite, mica schist and amphibolites.
    [Show full text]