Geometry and Deformation History of Mylonitic Rocks and Silicified Zones Along the Mesozoic Connecticut Valley Border Fault, Western Massachusetts

Total Page:16

File Type:pdf, Size:1020Kb

Geometry and Deformation History of Mylonitic Rocks and Silicified Zones Along the Mesozoic Connecticut Valley Border Fault, Western Massachusetts ALUN MASS/AMHERST ‘ 31206600765055e fi A ed ‘ : . te a ‘ : Rea A) ll Od ir Ler yie 5 : ‘ 5 3 : $iifaedst! * ‘ 1 5 me ah a - aor peel segs oS rt shay nyt 1 . : Sybey see Patil Pr ae CEs a os ey ee , Ste ee nts yee ee Tp sl pa) seat D Bataade ee . {FM ave ay og : 5 jos atrs DeVere ns era See) ; Lyesverr POET d ’ i oy Verereiaihey ' . hous : Pathak heche u) PE oS Dalle ene ot a eae it) pica Cris MoM te ELA MLA die 3 LE GEE Ad Ch APTN ORE FEV EE AYO AY AE k par ‘ Date Mowe : : sere (no, phe ey Teast ahd ¢ ity a 23% .4% Ay ts eater ee) pa To Pe Ste ophgraeaiek sdpre aay arena ' Pig by ’ ‘ ‘ yee vere Sry on Fic $e x bdalld cet antec Feb Ata eno ae PUTSNT tet W ee SANTEE eT VOTRE ey J Gf, sees 5 ’ ; . ty : ‘ : 4 DSC LE ih DR Jat SOK AT CR Ra gir al Ao Id, eval tat WC SORES caer y Et poy asses ist dre sg ety" : hie Fis bi : u ; y erie } he 5 wie UPD SO ata th Puede? Lae an to Peres) Gee ems i ar aac rn a neha dyhatype aT aint Spark ey sap ea ee tial petty GUS hstghe Vecye peponeagon ererervet Tp aig paar ” gieteMewner F Phe : reba S : rypiech, : ‘ Oh oll lac ah lil tet nt octane stare? re ee eee a eee ry ' tas 7 : ep oy gk bil an i ‘ nea Ay ce iC ie : ' : : ae ' oe arch ire? es rk . \ *) , ? alc rte tie Pt ‘ : ay ‘ iar ST eT EES, ‘ : PETS : : ras i (ies a1 Jeeta le $ v d : istry TT CO ie LP cx LA Given jaa gga’ t ; pty com ee ae 3 eehst) ‘ he Fey) PLT RS ET yrarstasaty . G5 i : ae oa ' pen ; ‘ . ; ‘ sya ae, PURPLE . 4 M ‘ i reid ieghae i Le he ie : ¥4Ge ; oma . b eiagtt a F i , : t eae eee Rs ‘ ; Me 5 (i Hi Set : 25 Snes 0 Be é . A . : reat ree ‘ of nity 1 ey eG E : . : ae Lyin ’ : CU fe at t . tote ‘ nee Vee rs Pius tee bes ae aa ' 1 re pike Weeryeinys ? ' rr? 5 ‘ ‘ . Lai aired iecey EG i earais : 2 : , oe aot ee ‘ Dy fi ee) ny 2 : OKOEES ULeAD ? i 1 : 5 ’ oupre > 3 Y ‘ a u Ph bid 3 ' . LP Y i q Linke avainey ; if ; it v2, aomder: eats : . : . a > ' . dey ee" oe Gee si ter se ew tp eset z . : ‘ ‘ Teva a tee CO th ie bes ' : 1 igen, : . ‘ hye Ce eeu Ce ed EL ey GEOMETRY AND DEFORMATION HISTORY OF MYLONITIC ROCKS AND SILICIFIED ZONES ALONG THE MESOZOIC CONNECTICUT VALLEY BORDER FAULT, WESTERN MASSACHUSETTS A Thesis Presented by Lynne E. Stopen Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE MAY 1988 Department of Geology and Geography GEOMETRY AND DEFORMATION HISTORY OF MYLONITIC ROCKS AND SILICIFIED ZONES ALONG THE MESOZOIC CONNECTICUT VALLEY BORDER FAULT, WESTERN MASSACHUSETTS A Thesis Presented by Lynne E. Stopen Approved as to style and content by: ProL. Peter ‘Robinson, Chairman of Committee Anadl U Gls Prof. Donald U. Wise, Member | aes Prof. Stearns A. Morse, Member nals U. lar Prof. Donald U. Wise, Department Head Department of Geology and Geography ACKNOWLEDGMENTS The author would like to express sincere appreciation to Peter Robinson who suggested the project and acted as advisor. Also, to Donald U. Wise and Stearns A. Morse who were committee members. Other people important to the completion of this project are the author's parents who provided much support, Timothy O'Donoghue for his computor skills, Richard Newton from the Digital Processing Lab, Stephen Schmidt, whose photographic skills were greatly appreciated, and John O'Keefe who helped with word processing and format. Also to Jerry Garcia and Bob Weir who said it so well with "what a long strange trip its been." ABSTRACT GEOMETRY AND DEFORMATION HISTORY OF MYLONITIC ROCKS AND SILICIFIED ZONES ALONG THE MESOZOIC CONNECTICUT VALLEY BORDER FAULT, WESTERN MASSACHUSETTS MAY, 1988 LYNNE E. STOPEN, B.S., UNIVERSITY OF MASSACHUSETTS M.S., UNIVERSITY OF MASSACHUSETTS Directed by: Professor Peter Robinson The Connecticut Valley border fault is a major, probably listric, west-dipping normal fault, that uplifted Precambrian to Devonian schists and gneisses of the Pelham Dome on the east, and formed a lowland to the west where Triassic and Jurassic sediments accumulated. It extends from northwestern New Hampshire south to Long Island Sound. Five kilometers of vertical displacement, and dips of 20 eto 40 degrees have been estimated for central Massachusetts. Mylonitic and silicified rocks were examined from the Village of Millers Falls, in north-central Massachusetts, south to Belchertown, in central Massachusetts. Silicified rocks occur on the footwall of the fault in seven locations, and mylonitic rocks were studied in one location. Mylonitic rocks involve protomylonite with small areas of rock that have characteristics of orthomylonite and ultramylonite. This indicates that some rocks were affected ally by the faulting process at depth in a ductile environment with heterogeneous strain rates. S$ - C fabrics (schistosite-cisaillement) within the mylonites indicate a west-side-down motion direction, supporting the usual observation that the border fault is a normal fault. The mylonites were cut by a cataclastic intrusion breccia which was subsequently mylonitized, developing an S-C fabric Similar to that in the host mylonite rock. Mylonites are indicative of low strain rates in a ductile regime, while cataclasites indicate higher strain rates. This suggests that the fault surface was not a smooth plane, but had irregularities that temporarily changed the strain rates imposed on the rocks. Conditions nearer to the surfaces involved a brittle extensional environment where volumes of rock borderin the fault in the footwall were brecciated. The mylonites also were uplifted into the brittle regime. Joints, veins and minor normal faults were developed within the mylonites, cutting previous ductile features. Silicification occurred in the brecciated rock masses where hydrothermal fluids circulated through the fractured volumes of rock replacing primary metamorphic and igneous minerals with new minerals, primarily quartz. Several groups of joints and veins within the silicified rocks have north-south strikes similar to the trend of the border fault in many areas. One style of joint strikes northeast to northwest, dips west, has a platy character, and appears to mimic the local fault plane orientation. Fluids that initially silicified the breccia masses also produced the quartz, and later, hematite veins in at least two subsequent hydrothermal pulses. Combined joint data show no conclusive evidence as to whether joint development and orientation was controlled by the geometry of the border fault, or by regional stresses. Combined vein data, however, show strong evidence that vein orientation was controlled by a regional stress field and not directly by border fault geometry. A mean strike for the veins of N15E suggests an extensional stress of N75W-S75E for the region at the time of vein formation. Extensional stresses of N60W-S60E and N68W-S68E have been estimated in previous studies for the Northfield basin and Amherst areas during the early Mesozoic. Vein formation was later and suggests that the regional stress field rotated counterclockwise over time. vi TABLE OF CONTENTS page ACKNOWLE PETERS eh ay os teh Uy eee SR ap ete a a A Gs ABSTRACT EDRs RE i, eg es ee NEE Sg gs yew Wie 6 due 6a eee ee iv ee Ort oe SR ee he se eee ee tet eeles gS hs bie ee woe eee as io le Or IU a ee hoe ee on en Os et a ry Re he rr i er rr x Chapter 4 ase DE UU GUERRA 6 Ba 8 A a 1 eereniees cet) PCM IDE GET Oy Niort sy cies cece ielwctetslcte << 0's 6 wees 1 sre Sebel v8 UL ew Galera lege rey ey Peg ee ails eo is a a4 bie cls Sg Ye bs ele =6 2aleh ated pam a Das 00 Wl oa x01 ene an rr 2 Nature and Location of the Silicified Zones..... 3 ig eveintopotchorgile obate( aC Yegi0 et iv alpetsl> 4. Ws a eeererg ea er be Breer ee Ce, ee nw ee eee eee 2 ye ESM S ue GENS ge Glces, se Be, So ko rn 16 Pees oe GK “EP ReENCH KLNG BRIDGE AREA....... 18 pee SBE NEIL ae Ba Re Rs 2 A 18 PialLacterwanaeLitstrubution of Rock Types........ 19 Rock types Outside Mylonitic Zones.........:; 19 Pe imran Pec eO ROCKS... 0.6 eee wes at DP iariee or POnremorpeervati Ons... sss wee ce cliceces 24 By aC ee ee, oy ss ac 0 6k we to 4 ew ese ee 40 eet Clee) oe Carre ee ME ns wk oes bw e ee ee ee 40 Bis Oe Oem alt ieee 5 cikc nw Fle Gh cue ew ese eee ees 45 nia eee Vey OU ROCKS oo... «isle cece se cele hb ee es 60 Deeper tee wun UreshOCWALYP ES sIN SLLICIFIED ZONES... 62 reer Saree CS Te eae rce, Tey vce Voces tess aivt s+ e * «eee we eee 62 ie eet ne Tet MALYGOS So cislcteicsheie She ce ce ess eee ee ee 63 Unsilicified and Partially Silicified Rocks. 63 Li ae apes ah hee Vedi rg he SPE Ne, Bas <a) 1 66 Ee DGGE VOI LOM S tite gc ses ese ee eee 66 Cee ee to iar T er Ge thay Me Whe ec 4 wielcevletnas ola ei cis e.c ce cee eee Me Unsilicified and Partially Silicified Rocks.
Recommended publications
  • Strike and Dip Refer to the Orientation Or Attitude of a Geologic Feature. The
    Name__________________________________ 89.325 – Geology for Engineers Faults, Folds, Outcrop Patterns and Geologic Maps I. Properties of Earth Materials When rocks are subjected to differential stress the resulting build-up in strain can cause deformation. Depending on the material properties the result can either be elastic deformation which can ultimately lead to the breaking of the rock material (faults) or ductile deformation which can lead to the development of folds. In this exercise we will look at the various types of deformation and how geologists use geologic maps to understand this deformation. II. Strike and Dip Strike and dip refer to the orientation or attitude of a geologic feature. The strike line of a bed, fault, or other planar feature, is a line representing the intersection of that feature with a horizontal plane. On a geologic map, this is represented with a short straight line segment oriented parallel to the strike line. Strike (or strike angle) can be given as either a quadrant compass bearing of the strike line (N25°E for example) or in terms of east or west of true north or south, a single three digit number representing the azimuth, where the lower number is usually given (where the example of N25°E would simply be 025), or the azimuth number followed by the degree sign (example of N25°E would be 025°). The dip gives the steepest angle of descent of a tilted bed or feature relative to a horizontal plane, and is given by the number (0°-90°) as well as a letter (N, S, E, W) with rough direction in which the bed is dipping.
    [Show full text]
  • Introduction San Andreas Fault: an Overview
    Introduction This volume is a general geology field guide to the San Andreas Fault in the San Francisco Bay Area. The first section provides a brief overview of the San Andreas Fault in context to regional California geology, the Bay Area, and earthquake history with emphasis of the section of the fault that ruptured in the Great San Francisco Earthquake of 1906. This first section also contains information useful for discussion and making field observations associated with fault- related landforms, landslides and mass-wasting features, and the plant ecology in the study region. The second section contains field trips and recommended hikes on public lands in the Santa Cruz Mountains, along the San Mateo Coast, and at Point Reyes National Seashore. These trips provide access to the San Andreas Fault and associated faults, and to significant rock exposures and landforms in the vicinity. Note that more stops are provided in each of the sections than might be possible to visit in a day. The extra material is intended to provide optional choices to visit in a region with a wealth of natural resources, and to support discussions and provide information about additional field exploration in the Santa Cruz Mountains region. An early version of the guidebook was used in conjunction with the Pacific SEPM 2004 Fall Field Trip. Selected references provide a more technical and exhaustive overview of the fault system and geology in this field area; for instance, see USGS Professional Paper 1550-E (Wells, 2004). San Andreas Fault: An Overview The catastrophe caused by the 1906 earthquake in the San Francisco region started the study of earthquakes and California geology in earnest.
    [Show full text]
  • Board of Selectmen Meeting Minutes
    Copy of Approved Meetings Meeting Minutes Board: Board of Selectmen/ Water Commissioner’s Meeting Date: Monday, November 23, 2020 Location: Online Video/Audio Conference Pursuant to Governor Baker’s Executive Order in Response to the COVID-19 State of Emergency Selectmen Present: William Bembury, Peter Sanders Also, Present: Bryan Smith, Robert Holst, Mariah Kurtz, James Loynd, Kelly Loynd, Laura Duffy, Michael Gordon, Kyle Forrest Press: Katherine Nolan, Montague Reporter At 6:31 PM Selectman Bembury called the meeting to order. Bryan Smith explained that the meeting is being recorded and provided an overview of the functions of the video/audio conferencing platform. Discussion Regarding Town Response to COVID-19 No update at this time. Discussion Regarding Good Samaritans at the French King Bridge Incident Selectman Bembury asked Sergeant Robert Holst, Acting Chief of Police, to provide an overview of the incident at the French King Bridge. Sergeant Holst thanked Officer James Loynd, Kelly Loynd, Kyle Forrest, and Laura Duffy for attending the meeting. Sergeant Holst provided an overview of the incident that occurred on November 01, 2020. Sergeant Holst discussed the response performed by Officer Loynd. Sergeant Holst explained that upon arrival an individual was found on the River side of the railing on the French King Bridge. Sergeant Holst explained that the quick actions of Officer Loynd and these good Samaritans that assisted in the rescue of the individual, saved the individual’s life that evening. Sergeant Holst explained that the good Samaritans remained on scene while medical personnel responded to assist and transport the individual. Selectman Bembury expressed the appreciation from the Board of Selectmen to Kyle Forrest of Westminster, Massachusetts, Laura Duffy of Erving, Massachusetts, and Jeremiah Gonzalez of Greenfield, Massachusetts for their actions.
    [Show full text]
  • Faults and Ductile Shear Zones) from Selected Drill Cores P-07-227
    Oskarshamn site investigation – Structural characterization of deformation zones (faults and ductile shear zones) from selected drill cores site investigation – Structural characterization Oskarshamn P-07-227 Oskarshamn site investigation Structural characterization of deformation zones (faults and ductile shear zones) from selected drill cores and outcrops from the Laxemar area – Results from Phase 2 Giulio Viola, Guri Venvik Ganerød Geological Survey of Norway, Trondheim, Norway December 2007 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Tel +46 8 459 84 00 P-07-227 CM Gruppen AB, Bromma, 2008 ISSN 1651-4416 Tänd ett lager: SKB P-07-227 P, R eller TR. Oskarshamn site investigation Structural characterization of deformation zones (faults and ductile shear zones) from selected drill cores and outcrops from the Laxemar area – Results from Phase 2 Giulio Viola, Guri Venvik Ganerød Geological Survey of Norway, Trondheim, Norway December 2007 Keywords: Oskarshamn, AP PS 400-06-098, Structural geology, Shear zone, Fault, Fault rocks, Kinematics. This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors and do not necessarily coincide with those of the client. Data in SKB’s database can be changed for different reasons. Minor changes in SKB’s database will not necessarily result in a revised report. Data revisions may also be presented as supplements, available at www.skb.se. A pdf version of this document can be downloaded from www.skb.se. Abstract A study of predominantly brittle structures, i.e. brittle deformation zones, faults, fractures and associated fault rocks, was carried out on a number of drill cores and outcrops of the Laxemar area, Oskarshamn.
    [Show full text]
  • Northfield Ramble from Mt. Sugarloaf
    Northfield Ramble from Mt. Sugarloaf Total Distance: 41.2 miles Elevation Gain: 1539 feet Degree of Difficulty Index: 1539 ft / 41.2 mi = 37.54 ft/mi Terrain: Rolling Killer Hills: None Geographical Region: Central Massachusetts City/Town: Sunderland, Massachusetts Starting Location: Roadside parking area on Rt. 116 about 0.2 miles west of the Connecticut River in Sunderland, Massachusetts. From I-91 northbound take Exit 24 and go north (right) a short distance on Routes 5 and 10 to traffic light. Turn right onto Route 116 and follow for about 1.5 miles down to roadside parking area on left about ¼ mile short of the bridge across the Connecticut River. Ride Description: This is a lovely ride through several towns in the Connecticut River Valley in Massachusetts. The ride is on mostly flat to rolling terrain and features a great snack/lunch stop overlooking the Connecticut River at a Northfield river side park. After this stop the ride route heads north up to Northfield before turning west briefly and then south through Gill to Turners Falls. There is a very scenic cascade waterfall on Falls Rd near the end of the ride. Facilities and Points of Interest: Mile Facilities - Points of Interest 0.2 Bridge across the Connecticut River 6.2 Montague Mini Mart on left 6.4 Montague Center; neat little New England village green 11.5 Pedestrian bridge over the Miller's River; note confluence of Miller and Connecticut Rivers to the north 11.6 Go under the French King Bridge (State Route 2) supporting truss 13.3 Suggested lunch stop at Northfield picnic area overlooking Connecticut River; views; bathrooms 23.6 Village of Gill; general store may (or may not) be open; alternate lunch/snack stop 27.3 Immediately after crossing the Connecticut River, the Great Falls Discovery Center is on the right, and Northeast Utilities' fish ladder is on the left.
    [Show full text]
  • FIELD TRIP: Contractional Linkage Zones and Curved Faults, Garden of the Gods, with Illite Geochronology Exposé
    FIELD TRIP: Contractional linkage zones and curved faults, Garden of the Gods, with illite geochronology exposé Presenters: Christine Siddoway and Elisa Fitz Díaz. With contributions from Steven A.F. Smith, R.E. Holdsworth, and Hannah Karlsson This trip examines the structural geology and fault geochronology of Garden of the Gods, Colorado. An enclave of ‘red rock’ terrain that is noted for the sculptural forms upon steeply dipping sandstones (against the backdrop of Pikes Peak), this site of structural complexity lies at the south end of the Rampart Range fault (RRF) in the southern Colorado Front Range. It features Laramide backthrusts, bedding plane faults, and curved fault linkages within subvertical Mesozoic strata in the footwall of the RRF. Special subjects deserving of attention on this SGTF field trip are deformation band arrays and younger-upon-older, top-to-the-west reverse faults—that well may defy all comprehension! The timing of RRF deformation and formation of the Colorado Front Range have long been understood only in general terms, with reference to biostratigraphic controls within Laramide orogenic sedimentary rocks, that derive from the Laramide Front Range. Using 40Ar/39Ar illite age analysis of shear-generated illite, we are working to determine the precise timing of fault movement in the Garden of the Gods and surrounding region provide evidence for the time of formation of the Front Range monocline, to be compared against stratigraphic-biostratigraphic records from the Denver Basin. The field trip will complement an illite geochronology workshop being presented by Elisa Fitz Díaz on 19 June. If time allows, and there is participant interest, we will make a final stop to examine fault-bounded, massive sandstone- and granite-hosted clastic dikes that are associated with the Ute Pass fault.
    [Show full text]
  • 24. Anelastic Strain Recovery and Elastic Properties of Oceanic Basaltic Rocks1
    Gradstein, F. M., Ludden, J. N., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 123 24. ANELASTIC STRAIN RECOVERY AND ELASTIC PROPERTIES OF OCEANIC BASALTIC ROCKS1 N. R. Brereton,2 P. N. Chroston,3 C. J. Evans,2 J. A. Hudson,4 and R. B. Whitmarsh5 ABSTRACT A knowledge of rock stress is fundamental for improving our understanding of oceanic crustal mechanisms and lithospheric dynamic processes. However, direct measurements of stress in the deep oceans, and in particular stress magnitudes, have proved to be technically difficult. Anelastic strain recovery measurements were conducted on 15 basalt core samples from Sites 765 and 766 during Leg 123. Three sets of experiments were performed: anelastic strain recovery monitoring, dynamic elastic property measure- ments, and thermal azimuthal anisotropy observations. In addition, a range of other tests and observations were recorded to characterize each of the samples. One common feature of the experimental results and observations is that apparently no consistent orientation trend exists, either between the different measurements on each core sample or between the same sets of measurements on the various core samples. However, some evidence of correspondence between velocity anisotropy and anelastic strain recovery exists, but this is not consistent for all the core samples investigated. Thermal azimuthal anisotropy observations, although showing no conclusive correlations with the other results, were of significant interest in that they clearly exhibited anisotropic behavior. The apparent reproducibility of this behavior may point toward the possibility of rocks that retain a "memory" of their stress history, which could be exploited to derive stress orientations from archived core.
    [Show full text]
  • Tectono-Metamorphic Evolution of the Northern Menderes Massif: Evidence from the Horst Between Gördes and Demirci Basins (West Anatolia, Turkey)
    TECTONO-METAMORPHIC EVOLUTION OF THE NORTHERN MENDERES MASSIF: EVIDENCE FROM THE HORST BETWEEN GÖRDES AND DEMİRCİ BASINS (WEST ANATOLIA, TURKEY) A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY ÇAĞRI BUĞDAYCIOĞLU IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGICAL ENGINEERING SEPTEMBER 2004 Approval of the Graduate School of Natural and Applied Sciences. I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science. This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science. Examining Committee Members Prof.Dr. Vedat Toprak (METU, GEOE) ___________________ Prof.Dr. Erdin Bozkurt (METU, GEOE) ___________________ Assoc.Prof.Dr. Bora Rojay (METU, GEOE) ___________________ Assoc.Prof.Dr. Kadir Dirik (HU, GEOE) ___________________ Assist.Prof.Dr. İsmail Ömer Yılmaz (METU, GEOE) ___________________ ii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Çağrı Buğdaycıoğlu Signature : iii ABSTRACT TECTONO-METAMORPHIC EVOLUTION OF THE NORTHERN MENDERES MASSIF: EVIDENCE FROM THE HORST BETWEEN GÖRDES AND DEMİRCİ BASINS (WEST ANATOLIA, TURKEY) Buğdaycıoğlu, Çağrı M.Sc., Department of Geological Engineering Supervisor : Prof.Dr. Erdin Bozkurt September 2004, 163 pages The Menderes Massif forms a large metamorphic culmination in western Turkey – an extensional province where continental lithosphere has been stretching following Palaeogene crustal thickening.
    [Show full text]
  • Grain Size Distributions of Fault Rocks: a Comparison Between Experimentally and Naturally Deformed Granitoids
    Grain size distributions of fault rocks: a comparison between experimentally and naturally deformed granitoids. Nynke Keulen, Renée Heilbronner, Holger Stünitz, Anne-Marie Boullier, Hisao Ito To cite this version: Nynke Keulen, Renée Heilbronner, Holger Stünitz, Anne-Marie Boullier, Hisao Ito. Grain size distribu- tions of fault rocks: a comparison between experimentally and naturally deformed granitoids.. Journal of Structural Geology, Elsevier, 2007, 29, pp.1282-1300. 10.1016/j.jsg.2007.04.003. hal-00194259 HAL Id: hal-00194259 https://hal.archives-ouvertes.fr/hal-00194259 Submitted on 6 Dec 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript 1 27.03.2007 2 3 Grain size distributions of fault rocks: a comparison between experimentally and 4 naturally deformed granitoids. 5 6 Nynke Keulen1*, Renée Heilbronner1, Holger Stünitz1, Anne-Marie Boullier2, Hisao Ito3 7 8 1Geological Institute, University of Basel, Bernoullistrasse 32, CH-4056 Basel, Switzerland 9 2Université Joseph Fourier, Laboratoire de Géophysique Interne et Tectonophysique, 10 UMR CNRS 5559, Maison des Géosciences, BP 53, 38041 Grenoble Cedex 9, France 11 3Center for Deep Earth Exploration, Japan Agency for Marine-Earth Science and Technology 12 3173-25 Showa-machi, Kanazawa-ku, Yokohama, Kanagawa 236-0001, Japan 13 14 *corresponding author: 15 [email protected] 16 tel.
    [Show full text]
  • FM 5-410 Chapter 2
    FM 5-410 CHAPTER 2 Structural Geology Structural geology describes the form, pat- secondary structural features. These secon- tern, origin, and internal structure of rock dary features include folds, faults, joints, and and soil masses. Tectonics, a closely related schistosity. These features can be identified field, deals with structural features on a and m appeal in the field through site inves- larger regional, continental, or global scale. tigation and from remote imagery. Figure 2-1, page 2-2, shows the major plates of the earth’s crust. These plates continually Section I. Structural Features undergo movement as shown by the arrows. in Sedimentary Rocks Figure 2-2, page 2-3, is a more detailed repre- sentation of plate tectonic theory. Molten material rises to the earth’s surface at BEDDING PLANES midoceanic ridges, forcing the oceanic plates Structural features are most readily recog- to diverge. These plates, in turn, collide with nized in the sedimentary rocks. They are adjacent plates, which may or may not be of normally deposited in more or less regular similar density. If the two colliding plates are horizontal layers that accumulate on top of of approximately equal density, the plates each other in an orderly sequence. Individual will crumple, forming mountain range along deposits within the sequence are separated the convergent zone. If, on the other hand, by planar contact surfaces called bedding one of the plates is more dense than the other, planes (see Figure 1-7, page 1-9). Bedding it will be subducted, or forced below, the planes are of great importance to military en- lighter plate, creating an oceanic trench along gineers.
    [Show full text]
  • Sedimentary Stylolite Networks and Connectivity in Limestone
    Sedimentary stylolite networks and connectivity in Limestone: Large-scale field observations and implications for structure evolution Leehee Laronne Ben-Itzhak, Einat Aharonov, Ziv Karcz, Maor Kaduri, Renaud Toussaint To cite this version: Leehee Laronne Ben-Itzhak, Einat Aharonov, Ziv Karcz, Maor Kaduri, Renaud Toussaint. Sed- imentary stylolite networks and connectivity in Limestone: Large-scale field observations and implications for structure evolution. Journal of Structural Geology, Elsevier, 2014, pp.online first. <10.1016/j.jsg.2014.02.010>. <hal-00961075v2> HAL Id: hal-00961075 https://hal.archives-ouvertes.fr/hal-00961075v2 Submitted on 19 Mar 2014 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. 1 2 Sedimentary stylolite networks and connectivity in 3 Limestone: Large-scale field observations and 4 implications for structure evolution 5 6 Laronne Ben-Itzhak L.1, Aharonov E.1, Karcz Z.2,*, 7 Kaduri M.1,** and Toussaint R.3,4 8 9 1 Institute of Earth Sciences, The Hebrew University, Jerusalem, 91904, Israel 10 2 ExxonMobil Upstream Research Company, Houston TX, 77027, U.S.A 11 3 Institut de Physique du Globe de Strasbourg, University of Strasbourg/EOST, CNRS, 5 rue 12 Descartes, F-67084 Strasbourg Cedex, France.
    [Show full text]
  • Present Day Plate Boundary Deformation in the Caribbean and Crustal Deformation on Southern Haiti Steeve Symithe Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 4-2016 Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti Steeve Symithe Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Caribbean Languages and Societies Commons, Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Symithe, Steeve, "Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti" (2016). Open Access Dissertations. 715. https://docs.lib.purdue.edu/open_access_dissertations/715 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated ¡ ¢¡£ ¢¡¤ ¥ PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Steeve Symithe Entitled Present Day Plate Boundary Deformation in The Caribbean and Crustal Deformation On Southern Haiti. For the degree of Doctor of Philosophy Is approved by the final examining committee: Christopher L. Andronicos Chair Andrew M. Freed Julie L. Elliott Ayhan Irfanoglu To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Andrew M. Freed Approved by Major Professor(s): Indrajeet Chaubey 04/21/2016 Approved by: Head of the Departmental Graduate Program Date PRESENT DAY PLATE BOUNDARY DEFORMATION IN THE CARIBBEAN AND CRUSTAL DEFORMATION ON SOUTHERN HAITI A Dissertation Submitted to the Faculty of Purdue University by Steeve J.
    [Show full text]