FM 5-410 Chapter 2

Total Page:16

File Type:pdf, Size:1020Kb

FM 5-410 Chapter 2 FM 5-410 CHAPTER 2 Structural Geology Structural geology describes the form, pat- secondary structural features. These secon- tern, origin, and internal structure of rock dary features include folds, faults, joints, and and soil masses. Tectonics, a closely related schistosity. These features can be identified field, deals with structural features on a and m appeal in the field through site inves- larger regional, continental, or global scale. tigation and from remote imagery. Figure 2-1, page 2-2, shows the major plates of the earth’s crust. These plates continually Section I. Structural Features undergo movement as shown by the arrows. in Sedimentary Rocks Figure 2-2, page 2-3, is a more detailed repre- sentation of plate tectonic theory. Molten material rises to the earth’s surface at BEDDING PLANES midoceanic ridges, forcing the oceanic plates Structural features are most readily recog- to diverge. These plates, in turn, collide with nized in the sedimentary rocks. They are adjacent plates, which may or may not be of normally deposited in more or less regular similar density. If the two colliding plates are horizontal layers that accumulate on top of of approximately equal density, the plates each other in an orderly sequence. Individual will crumple, forming mountain range along deposits within the sequence are separated the convergent zone. If, on the other hand, by planar contact surfaces called bedding one of the plates is more dense than the other, planes (see Figure 1-7, page 1-9). Bedding it will be subducted, or forced below, the planes are of great importance to military en- lighter plate, creating an oceanic trench along gineers. They are planes of structural the convergent zone. Active volcanism and weakness in sedimentary rocks, and masses seismic activity can be expected in the vicinity of rock can move along them causing rock of plate boundaries. In addition, military en- slides. Since over 75 percent of the earth’s gineers must also deal with geologic features surface is made up of sedimentary rocks, that exist on a smaller scale than that of plate military engineers can expect to frequently tectonics but which are directly related to the encounter these rocks during construction. reformational processes resulting from the force and movements of plate tectonics. Undisturbed sedimentary rocks may be relatively uniform, continuous, and predict- The determination of geologic structure is able across a site. These types of rocks offer often made by careful study of the stratig- certain advantages to military engineers in raphy and sedimentation characteristics of completing horizontal and vertical construc- layered rocks. The primary structure or tion missions. They are relatively stable rock original form and arrangement of rock bod- bodies that allow for ease of rock excavation, ies in the earth’s crust is often altered by as they will normally support steep rock Structural Geology 2-1 FM 5-410 Structural Geology 2-2 FM 5-410 faces. Sedimentary rocks are frequently military engineers do not determine the sub- oriented at angles to the earth’s “horizontal” surface conditions before committing surface; therefore, movements in the earth’s resources to construction projects. Therefore, crust may tilt, fold, or break sedimentary where outcrops are scarce, deliberate excava- layers. Structurally deformed rocks add com- tions may be required to determine the type plexity to the site geology and may adversely and structure of subsurface materials. To affect military construction projects by con- determine the type of rock at an outcrop, the tributing to rock excavation and slope procedures discussed in Chapter 1 must be stability problems. followed. To interpret the structure of the bedrock, the military engineer must measure Vegetation and overlying soil conceal most and define the trend of the rock on the earth’s rock bodies and their structural features. surface. Outcrops are the part of a rock formation ex- posed at the earth’s surface. Such exposures, FOLDS or outcrops, commonly occur along hilltops, Rock strata react to vertical and horizontal steep slopes, streams, and existing road cuts forces by bending and crumpling. Folds are where ground cover has been excavated or undulating expressions of these forces. They eroded away (see Figure 2-3). Expensive are the most common type of deformation. delays and/or failures may result when Folds are most noticeable in layered rocks but Structural Geology 2-3 FM 5-410 rarely occur on a scale small enough to be ob- dips up to 90 degrees. The elevation of the served in a single exposure. Their size varies beds on opposite sides of the fold may differ by considerably. Some folds are miles across, hundreds or thousands of feet. Anticlines are while others may be less than an inch. Folds upfolds, and synclines are downfolds (see Fig- are of significant importance to military en- ure 2-5c and d, respectively). They are the gineers due to the change in attitude, or most common of all fold types and are typi- position, of bedding planes within the rock cally found together in a series of fold undula- bodies (see Figure 2-4). These can lead to rock tions. Differential weathering of the rocks excavation problems and slope instability. composing synclines and anticlines tends to Folds are common in sedimentary rocks in mountainous areas where their occurrence produce linear valleys and ridges. Folds that may be inferred from ridges of durable rock dip back into the ground at one or both ends strata that are tilted at opposite angles in are said to be plunging (see Figure 2-6). nearby rock outcrops. They may also be Plunging anticline and plunging syncline recognized by topographic and geologic map folds are common. Upfolds that plunge in all patterns and from aerial photographs. The directions are called domes. Folds that are presence of tilted rock layers within a region bowed toward their centers are called is usually evidence of folding. basins. Domes and basins normally exhibit roughly circular outcrop patterns on geologic Types maps. There are several basic types of folds. They are— Symmetry Homocline. Folds are further classified by their sym- Monocline. metry. Examples are- Anticline. Asymmetrical (inclined). Syncline. Symmetrical (vertical). Plunging. Overturned (greatly inclined). Dome. Recumbent (horizontal). Basin. The axial plane of a fold is the plane that A rock body that dips uniformly in one direc- bisects the fold as symmetrically as possible. tion (at least locally) is called a homocline (see The sides of the fold as divided by the axial Figure 2-5a). A rock body that exhibits local plane are called the limbs. In some folds, the steplike slopes in otherwise flat or gently in- plane is vertical or near vertical, and the fold clined rock layers is called a monocline (see is said to be symmetrical. In others, the axial Figure 2-5b). Monoclines are common in plane is inclined, indicating an asym- plateau areas where beds may locally assume metrical fold. If the axial plane is greatly Structural Geology 2-4 FM 5-410 Structural Geology 2-5 FM 5-410 inclined so that the opposite limbs dip in the mapped to help determine the structure of a same direction, the fold is overturned. A rock mass. Their attitudes can complicate recumbent fold has an axial plane that has rock excavation and, if unfavorable, lead to been inclined to the point that it is horizontal. slope stability problems. Figure 2-7 shows the components of an ideal- ized fold. An axial line or fold axis is the FAULTS intersection of the axial plane and a par- Faults are fractures along which there is ticular bed. The crest of a fold is the axis line displacement of the rock parallel to the frac- along the highest point on an anticline. The ture plane; once-continuous rock bodies have trough denotes the line along the lowest part of been displaced by movement in the earth’s the fold. It is a term associated with synclines. crust (see Figure 2-8). The magnitude of the displacement may be inches, feet, or even CLEAVAGE AND SCHISTOSITY miles along the fault plane. Overall fault dis- Foliation is the general term describing the placement often occurs along a series of small tendency of rocks to break along parallel sur- faults. A zone of crushed and broken rock faces. Cleavage and schistosity are foliation may be produced as the walls are dragged terms applied to metamorphic rocks. past each other. This zone is called a “fault Metamorphic rocks have been altered by heat zone” (see Figure 2-9). It often contains and/or pressure due to mountain building or crushed and altered rock, or “gouge,” and an- other crustal movements. They may have a gular fragments of broken rock called pronounced cleavage, such as the metamor- “breccia.” Fault zones may consist of phic rock slate that was at one time the materials that have been altered (reduced in sedimentary rock shale. Certain igneous strength) by both fault movement and ac- rocks may be deformed into schists or igneis- celerated weathering by water introduced ses with alignment of minerals to produce along the fault surface. Alteration of fault schistosity or gneissic foliation. The attitudes gouge to clay lowers the resistance of the of planes of cleavages and schistosity can be faulted rock mass to sliding. Recognition of Structural Geology 2-6 FM 5-410 faults is extremely important to military en- rock beds often indicates faulting, it may also gineers, as they represent potential weakness be caused by igneous intrusions and uncon- in the rock mass. Faults that cut very young formities in deposition. Faults that are not sediments may be active and create seismic visibly identifiable can be inferred by sudden (earthquake) damage.
Recommended publications
  • Strike and Dip Refer to the Orientation Or Attitude of a Geologic Feature. The
    Name__________________________________ 89.325 – Geology for Engineers Faults, Folds, Outcrop Patterns and Geologic Maps I. Properties of Earth Materials When rocks are subjected to differential stress the resulting build-up in strain can cause deformation. Depending on the material properties the result can either be elastic deformation which can ultimately lead to the breaking of the rock material (faults) or ductile deformation which can lead to the development of folds. In this exercise we will look at the various types of deformation and how geologists use geologic maps to understand this deformation. II. Strike and Dip Strike and dip refer to the orientation or attitude of a geologic feature. The strike line of a bed, fault, or other planar feature, is a line representing the intersection of that feature with a horizontal plane. On a geologic map, this is represented with a short straight line segment oriented parallel to the strike line. Strike (or strike angle) can be given as either a quadrant compass bearing of the strike line (N25°E for example) or in terms of east or west of true north or south, a single three digit number representing the azimuth, where the lower number is usually given (where the example of N25°E would simply be 025), or the azimuth number followed by the degree sign (example of N25°E would be 025°). The dip gives the steepest angle of descent of a tilted bed or feature relative to a horizontal plane, and is given by the number (0°-90°) as well as a letter (N, S, E, W) with rough direction in which the bed is dipping.
    [Show full text]
  • Field Geology
    FIELD GEOLOGY GUIDEBOOK AND NOTES ILLINOIS STATE UNIVERSITY 2018 Version 2 Table of Contents Syllabus 5 Schedule 8 Hazard Recognition Mitigation 9 Geologic Field Notes 17 Reconnaissance Notes 17 Measuring Stratigraphic Column Notes 18 Geologic Mapping Notes 19 Geologic Maps and Mapping 22 Variables affecting the appearance of a geologic map 23 Techniques to test the quality and accuracy of your map 23 Common map errors 24 Official USGS map colors 24 Rule of V’s 25 Geologic Cross Sections 26 Basic principles of cross section construction 26 Apparent dips: correct use of strike and dip data in cross sections 27 Common cross section errors 27 Steps in making a topographic profile for a geologic cross section 28 Constructing geologic cross sections using down-plunge projection 29 Phanerozoic Stratigraphy of North America 33 Tectonic History of the U.S. Cordillera 38 Regional Cross-sections through Wyoming 41 Wyoming Stratigraphic Nomenclature Chart 42 Rock Sequence in the Bighorn Basin 43 Rock Sequence in the Powder River Basin 44 Black Hills Precambrian Geology 45 Project Descriptions 47 Regional Stratigraphy 47 Amsden Creek Big Game Winter Range 49 Steerhead Ranch 50 Alkali 53 South Fork 55 Mickelson 57 Moonshine 60 Appendix 1: Essential Analysis Tools and Techniques for Field Geology 62 Field description of rocks 62 Measuring stratigraphic sections 69 Calculating layer thicknesses 76 Alignment diagram for calculating apparent dip 77 Calculating strike and dip of a surface from contacts on a map 78 Calculating outcrop patterns from field
    [Show full text]
  • Faults and Joints
    133 JOINTS Joints (also termed extensional fractures) are planes of separation on which no or undetectable shear displacement has taken place. The two walls of the resulting tiny opening typically remain in tight (matching) contact. Joints may result from regional tectonics (i.e. the compressive stresses in front of a mountain belt), folding (due to curvature of bedding), faulting, or internal stress release during uplift or cooling. They often form under high fluid pressure (i.e. low effective stress), perpendicular to the smallest principal stress. The aperture of a joint is the space between its two walls measured perpendicularly to the mean plane. Apertures can be open (resulting in permeability enhancement) or occluded by mineral cement (resulting in permeability reduction). A joint with a large aperture (> few mm) is a fissure. The mechanical layer thickness of the deforming rock controls joint growth. If present in sufficient number, open joints may provide adequate porosity and permeability such that an otherwise impermeable rock may become a productive fractured reservoir. In quarrying, the largest block size depends on joint frequency; abundant fractures are desirable for quarrying crushed rock and gravel. Joint sets and systems Joints are ubiquitous features of rock exposures and often form families of straight to curviplanar fractures typically perpendicular to the layer boundaries in sedimentary rocks. A set is a group of joints with similar orientation and morphology. Several sets usually occur at the same place with no apparent interaction, giving exposures a blocky or fragmented appearance. Two or more sets of joints present together in an exposure compose a joint system.
    [Show full text]
  • Structural Geology
    2 STRUCTURAL GEOLOGY Conventional Map A map is a proportionate representation of an area/structure. The study of maps is known as cartography and the experts are known as cartographers. The maps were first prepared by people of Sumerian civilization by using clay lens. The characteristic elements of a map are scale (ratio of map distance to field distance and can be represented in three ways—statement method, e.g., 1 cm = 0.5 km, representative fraction method, e.g., 1:50,000 and graphical method in the form of a figure), direction, symbol and colour. On the basis of scale, maps are of two types: large-scale map (map gives more information pertaining to a smaller area, e.g., village map: 1:3956) and small: scale map (map gives less information pertaining to a larger area, e.g., world atlas: 1:100 km). Topographic Maps / Toposheet A toposheet is a map representing topography of an area. It is prepared by the Survey of India, Dehradun. Here, a three-dimensional feature is represented on a two-dimensional map and the information is mainly represented by contours. The contours/isohypses are lines connecting points of same elevation with respect to mean sea level (msl). The index contours are the contours representing 100’s/multiples of 100’s drawn with thick lines. The contour interval is usually 20 m. The contours never intersect each other and are not parallel. The characteristic elements of a toposheet are scale, colour, symbol and direction. The various layers which can be prepared from a toposheet are structural elements like fault and lineaments, cropping pattern, land use/land cover, groundwater abstruction structures, drainage density, drainage divide, elongation ratio, circularity ratio, drainage frequency, natural vegetation, rock types, landform units, infrastructural facilities, drainage and waterbodies, drainage number, drainage pattern, drainage length, relief/slope, stream order, sinuosity index and infiltration number.
    [Show full text]
  • Chromium Chemistry in Natural Waters, Iceland Deformation Mechanisms in Martian Shergottites
    1414 Goldschmidt2013 Conference Abstracts Chromium chemistry in natural Deformation mechanisms in Martian waters, Iceland Shergottites HANNA KAASALAINEN1*, ANDRI STEFÁNSSON1, KACZMAREK M.-A.*12, GRANGE M.1, REDDY S.M.1, INGVI GUNNARSSON2 AND STEFÁN ARNÓRSSON1 AND NEMCHIN A.1 1Institute of Earth Sciences, University of Iceland, Sturlugata 1Department of Applied Geology, The Institute for Geoscience 7, 101 Reykjavik, Iceland, Research, Curtin University of Technology, GPO Box (*correspondence: [email protected]) U1987, Perth, WA 6845, Australia 2Present address: Reykjavik Energy, Bæjarhalsi 1, 110 2Now at University of Lausanne, Institute of Earth Sciences, Reykajvik, Iceland UNIL Mouline, Géopolis, CH-1016 Lausanne, Switzerland Chemistry of Cr and Fe was studied in non-thermal and (*correspondence: [email protected]) geothermal waters in Iceland. Chromium (Cr) is typically present at low concentrations (<1 µg/l) in natural waters, but Nakhla and Zagami are both clinopyroxene-rich basaltic elevated concentrations have been observed in waters with shergottite, with some Fe-rich olivine. The microstructure, the low pH values, e.g. acid mine drainage, and in association preferred orientation of pyroxene using Electron Backscatter with industrial activities. Chromium occurs in two oxidation Diffraction (EBSD) method and the gochemistry are combined states, Cr(III) and (VI), these being characterized by different to study subsamples of both Zagami and Nakhla to decipher (bio)chemical behaviour and solubility. As Cr(VI) is known to deformation processes that have occurred on Mars. be toxic but Cr(III) an essential micronutrient, it is important Nakhla displays a granular texture, essentially composed to determine the two oxidations states. Iron (Fe) is known to of augite, fayalite, plagioclase and magnetite.
    [Show full text]
  • Semester -3 Civil Engineering
    CIVIL ENGINEERING SEMESTER -3 CIVIL ENGINEERING Year of MECHANICS OF CATEGORY L T P CREDIT CET201 Introduction SOLIDS PCC 3 1 0 4 2019 Preamble: Mechanics of solids is one of the foundation courses in the study of structural systems. The course provides the fundamental concepts of mechanics of deformable bodies and helps students to develop their analytical and problem solving skills. The course introduces students to the various internal effects induced in structural members as well as their deformations due to different types of loading. After this course students will be able to determine the stress, strain and deformation of loaded structural elements. Prerequisite: EST 100 Engineering Mechanics Course Outcomes: After the completion of the course the student will be able to Prescribed Course Description of Course Outcome Outcome learning level Recall the fundamental terms and theorems associated with CO1 Remembering mechanics of linear elastic deformable bodies. Explain the behavior and response of various structural CO2 Understanding elements under various loading conditions. Apply the principles of solid mechanics to calculate internal stresses/strains, stress resultants and strain energies in CO3 Applying structural elements subjected to axial/transverse loadsand bending/twisting moments. Choose appropriate principles or formula to find the elastic CO4 constants of materials making use of the information Applying available. Perform stress transformations, identify principal planes/ CO5 stresses and maximum shear stress at a point
    [Show full text]
  • The Mylonite Issue 16 November 2008
    INSIDE • News from the Chair • Special Announcements • Faculty • Alumni The Newsletter of the Geological Sciences Dept. Calif. State Polytechnic University Pomona, Calif. The Mylonite Issue 16 November 2008 NEWS FROM THE CHAIR NOTE FROM THE CHAIR 2008 Spending was severely curtailed. The Mylonite Once again, greetings to each and every one of was one of those “non-essential” items. It was only you! This will be the last letter I write to you all as Chair through collective Department persistence, the immense of the Geological Sciences Department. It is time for a help of Ms. Mary Jo Gruca, the College’s Development change in leadership, new ideas and new approaches. I Director, and the University’s Office of Advancement will end my tenure as Chair at the commencement of the were we able to send the Mylonite out to all of you. It spring quarter of 2009. At that time, Dr. Jon Nourse will was no easy task. take over the responsibilities. It has been a true pleasure All faculty searches within the College of and a privilege to have served you all for so long. Science were cancelled. Geology had already begun Reflecting back on this past year, there is no doubt it was advertising and was receiving applications when our my most difficult year as Chair. The report below is far search for a Sedimentary Geologist was ended. As of from up beat and only peripherally related to my this writing, the Sedimentary Geology position remains stepping down as chair. vacant and there is no faculty search underway.
    [Show full text]
  • Evidence for Controlled Deformation During Laramide Orogeny
    Geologic structure of the northern margin of the Chihuahua trough 43 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA D GEOL DA Ó VOLUMEN 60, NÚM. 1, 2008, P. 43-69 E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Geologic structure of the northern margin of the Chihuahua trough: Evidence for controlled deformation during Laramide Orogeny Dana Carciumaru1,*, Roberto Ortega2 1 Orbis Consultores en Geología y Geofísica, Mexico, D.F, Mexico. 2 Centro de Investigación Científi ca y de Educación Superior de Ensenada (CICESE) Unidad La Paz, Mirafl ores 334, Fracc.Bella Vista, La Paz, BCS, 23050, Mexico. *[email protected] Abstract In this article we studied the northern part of the Laramide foreland of the Chihuahua Trough. The purpose of this work is twofold; fi rst we studied whether the deformation involves or not the basement along crustal faults (thin- or thick- skinned deformation), and second, we studied the nature of the principal shortening directions in the Chihuahua Trough. In this region, style of deformation changes from motion on moderate to low angle thrust and reverse faults within the interior of the basin to basement involved reverse faulting on the adjacent platform. Shortening directions estimated from the geometry of folds and faults and inversion of fault slip data indicate that both basement involved structures and faults within the basin record a similar Laramide deformation style. Map scale relationships indicate that motion on high angle basement involved thrusts post dates low angle thrusting. This is consistent with the two sets of faults forming during a single progressive deformation with in - sequence - thrusting migrating out of the basin onto the platform.
    [Show full text]
  • PLANE DIP and STRIKE, LINEATION PLUNGE and TREND, STRUCTURAL MEASURMENT CONVENTIONS, the BRUNTON COMPASS, FIELD BOOK, and NJGS FMS
    PLANE DIP and STRIKE, LINEATION PLUNGE and TREND, STRUCTURAL MEASURMENT CONVENTIONS, THE BRUNTON COMPASS, FIELD BOOK, and NJGS FMS The word azimuth stems from an Arabic word meaning "direction“, and means an angular measurement in a spherical coordinate system. In structural geology, we primarily deal with land navigation and directional readings on two-dimensional maps of the Earth surface, and azimuth commonly refers to incremental measures in a circular (0- 360 °) and horizontal reference frame relative to land surface. Sources: Lisle, R. J., 2004, Geological Structures and Maps, A Practical Guide, Third edition http://www.geo.utexas.edu/courses/420k/PDF_files/Brunton_Compass_09.pdf http://en.wikipedia.org/wiki/Azimuth http://en.wikipedia.org/wiki/Brunton_compass FLASH DRIVE/Rider/PDFs/Holcombe_conv_and_meas.pdf http://www.state.nj.us/dep/njgs/geodata/fmsdoc/fmsuser.htm Brunton Pocket Transit Rider Structural Geology 310 2012 GCHERMAN 1 PlanePlane DipDip andand LinearLinear PlungePlunge horizontal dddooo Dip = dddooo Bedding and other geological layers and planes that are not horizontal are said to dip. The dip is the slope of a geological surface. There are two aspects to the dip of a plane: (a) the direction of dip , which is the compass direction towards which the plane slopes; and (b) the angle of dip , which is the angle that the plane makes with a horizontal plane (Fig. 2.3). The direction of dip can be visualized as the direction in which water would flow if poured onto the plane. The angle of dip is an angle between 0 ° (for horizontal planes) and 90 ° (for vertical planes). To record the dip of a plane all that is needed are two numbers; the angle of dip followed by the direction (or azimuth) of dip, e.g.
    [Show full text]
  • Joints, Folds, and Faults
    Structural Geology Rocks in the Crust Are Bent, Stretched, and Broken … …by directed stresses that cause Deformation. Types of Differential Stress Tensional, Compressive, and Shear Strain is the change in shape and or volume of a rock caused by Stress. Joints, Folds, and Faults Strain occurs in 3 stages: elastic deformation, ductile deformation, brittle deformation 1 Type of Strain Dependent on … • Temperature • Confining Pressure • Rate of Strain • Presence of Water • Composition of the Rock Dip-Slip and Strike-Slip Faults Are the Most Common Types of Faults. Major Fault Types 2 Fault Block Horst and Graben BASIN AND Crustal Extension Formed the RANGE PROVINCE Basin and Range Province. • Decompression melting and high heat developed above a subducted rift zone. • Former margin of Farallon and Pacific plates. • Thickening, uplift ,and tensional stress caused normal faults. • Horst and Graben structures developed. Fold Terminology 3 Open Anticline – convex upward arch with older rocks in the center of the fold (symmetrical) Isoclinal Asymmetrical Overturned Recumbent Evolution Simple Folds of a fold into a reverse fault An eroded anticline will have older beds in the middle An eroded syncline will have younger beds in middle Outcrop patterns 4 • The Strike of a body of rock is a line representing the intersection of A layer of tilted that feature with the plane of the horizon (always measured perpendicular to the Dip). rock can be • Dip is the angle below the horizontal of a geologic feature. represented with a plane. o 30 The orientation of that plane in space is defined with Strike-and- Dip notation. Maps are two- Geologic Map Showing Topography, Lithology, and dimensional Age of Rock Units in “Map View”.
    [Show full text]
  • Application of Lidar to 3D Structural Mapping
    Graduate Theses, Dissertations, and Problem Reports 2019 Application of Lidar to 3D Structural Mapping Bertrand Gaschot West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Geology Commons Recommended Citation Gaschot, Bertrand, "Application of Lidar to 3D Structural Mapping" (2019). Graduate Theses, Dissertations, and Problem Reports. 4111. https://researchrepository.wvu.edu/etd/4111 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. Application of Lidar to 3D Structural Mapping Bertrand Gaschot Thesis submitted to the Eberly College of Arts and Sciences at West Virginia University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in GEOLOGY Jaime Toro, Ph.D., Chair Dengliang Gao, Ph.D. Aaron Maxwell, Ph.D. Department of Geology and Geography Morgantown, West Virginia 2018 Keywords: Lidar, Smoke Hole Canyon, Structure, 3D Mapping, Kinematic Modeling Copyright 2019 Bertrand Gaschot ABSTRACT Application of Lidar to 3D Structural Mapping Bertrand Gaschot The rugged, densely forested terrain of the West Virginia Appalachian Valley and Ridge Province has made it difficult for field-based studies to agree on the structure of the highly deformed Silurian-Devonian cover strata.
    [Show full text]
  • EPS 116 – Laboratory Structural Geology Lab Exercise #1 Spring 2016
    EPS 116 – Laboratory Structural Geology LAB #1 – Orientation of Structures in Space Familiarize yourself with the following terms. Sketch each feature and include relevant details, e.g., footwall, hanging wall, motion arrows, etc. Also always include at least 3 horizontal layers and an up arrow in the cross sections and a north arrow in each map view. Stress vs. Strain Feature Cross Section Map View compression tension Horst and contraction/shortening Graben extension (Label hanging /foot wall and slip Brittle Deformation direction) joint fault earthquake Thrust Fault thrust/reverse fault (Label hanging / normal fault footwall and slip footwall direction) hanging wall strike-slip fault right lateral or dextral Anticline left lateral (Label hinge axis, or sinistral force direction, dip-slip contact topo lines in map view) oblique-slip Ductile Deformation fold Normal Fault anticline (Label hanging / footwall and slip syncline direction) Map View longitude latitude geographic vs. magnetic north Syncline topography (Label hinge axis, scale force direction, profile contact topo lines in map view) Strike-Slip fault (Label hanging / footwall and slip direction) Lab Exercise #1 Spring 2016 Page 1 of 9 EPS 116 – Laboratory Structural Geology Strike & Dip Strike and dip describe the orientation of a plane in space. Example: the peaked roof of a house: Strike Line Dip Direction Strike is the orientation of the intersection line of the plane in question (roof of a house) with the horizontal plane. If you were to look down on the house from directly above, it would look like this: North Strike Line Strike The angle between the strike line and north is used to describe the strike.
    [Show full text]