Evidence for Controlled Deformation During Laramide Orogeny
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Interpretation of the Structural Geology of the Franklin Mountains, Texas Earl M
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/26 An interpretation of the structural geology of the Franklin Mountains, Texas Earl M. P. Lovejoy, 1975, pp. 261-268 in: Las Cruces Country, Seager, W. R.; Clemons, R. E.; Callender, J. F.; [eds.], New Mexico Geological Society 26th Annual Fall Field Conference Guidebook, 376 p. This is one of many related papers that were included in the 1975 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. -
Stratigraphy, Paleontology and Correlation of Lower Cretaceous Exposures in Southeastern New Mexico Barry S
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/44 Stratigraphy, paleontology and correlation of lower Cretaceous exposures in southeastern New Mexico Barry S. Kues and Spencer G. Lucas, 1993, pp. 245-260 in: Carlsbad Region (New Mexico and West Texas), Love, D. W.; Hawley, J. W.; Kues, B. S.; Austin, G. S.; Lucas, S. G.; [eds.], New Mexico Geological Society 44th Annual Fall Field Conference Guidebook, 357 p. This is one of many related papers that were included in the 1993 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. -
Monoclinal Flexure of an Orogenic Plateau Margin During Subduction, South Turkey
Non-peer reviewed preprint submitted to EarthArXiv Monoclinal flexure of an orogenic plateau margin during subduction, south Turkey Running title: Monoclinal flexure plateau margin David Fernández-Blanco1, Giovanni Bertotti2, Ali Aksu3 and Jeremy Hall3 1Tectonics and Structural Geology Department, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands [email protected] 2Department of Geotechnology, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN, Delft, the Netherlands 3 Department of Earth Sciences, Centre for Earth Resources Research, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X5 Non-peer reviewed preprint submitted to EarthArXiv Abstract Geologic evidence across orogenic plateau margins helps to discriminate the relative contributions of orogenic, epeirogenic and/or climatic processes leading to growth and maintenance of orogenic plateaus and plateau margins. Here, we discuss the mode of formation of the southern margin of the Central Anatolian Plateau (SCAP), and evaluate its time of formation, using fieldwork in the onshore and seismic reflection data in the offshore. In the onshore, uplifted Miocene rocks in a dip-slope topography show monocline flexure over >100 km, few-km asymmetric folds verging south, and outcrop- scale syn-sedimentary reverse faults. On the Turkish shelf, vertical faults transect the basal latest Messinian of a ~10 km fold where on-structure syntectonic wedges and synsedimentary unconformities indicate pre-Pliocene uplift and erosion followed by Pliocene and younger deformation. Collectively, Miocene rocks delineate a flexural monocline at plateau margin scale, expressed along our on-offshore sections as a kink- band fold with a steep flank ~20–25 km long. -
By Douglas P. Klein with Plates by G.A. Abrams and P.L. Hill U.S. Geological Survey, Denver, Colorado
U.S DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY STRUCTURE OF THE BASINS AND RANGES, SOUTHWEST NEW MEXICO, AN INTERPRETATION OF SEISMIC VELOCITY SECTIONS by Douglas P. Klein with plates by G.A. Abrams and P.L. Hill U.S. Geological Survey, Denver, Colorado Open-file Report 95-506 1995 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey editorial standards. The use of trade, product, or firm names in this papers is for descriptive purposes only, and does not imply endorsement by the U.S. Government. STRUCTURE OF THE BASINS AND RANGES, SOUTHWEST NEW MEXICO, AN INTERPRETATION OF SEISMIC VELOCITY SECTIONS by Douglas P. Klein CONTENTS INTRODUCTION .................................................. 1 DEEP SEISMIC CRUSTAL STUDIES .................................. 4 SEISMIC REFRACTION DATA ....................................... 7 RELIABILITY OF VELOCITY STRUCTURE ............................. 9 CHARACTER OF THE SEISMIC VELOCITY SECTION ..................... 13 DRILL HOLE DATA ............................................... 16 BASIN DEPOSITS AND BEDROCK STRUCTURE .......................... 20 Line 1 - Playas Valley ................................... 21 Cowboy Rim caldera .................................. 23 Valley floor ........................................ 24 Line 2 - San Luis Valley through the Alamo Hueco Mountains ....................................... 25 San Luis Valley ..................................... 26 San Luis and Whitewater Mountains ................... 26 Southern -
A Proposed Low Distortion Projection for the City of Las Cruces and Dona Ana County Scott Farnham, PE, PS City Surveyor, City of Las Cruces NM October 2020
A Proposed Low Distortion Projection for the City of Las Cruces and Dona Ana County Scott Farnham, PE, PS City Surveyor, City of Las Cruces NM October 2020 Introduction As part of the ongoing modernization of the U.S. National Spatial Reference System (NSRS), the National Geodetic Survey (NGS) will replace our horizontal and vertical datums (NAD83 and NAVD88) with new geometric datums assigned in the North American Terrestrial Reference Frame of 2022 (NATRF2022). The City of Las Cruces / Dona Ana County and the City of Albuquerque / Bernalillo County submitted proposals to NGS to incorporate Low Distortion Projections (LDP) as part of the New Mexico State Plane Coordinate Systems. Approval by NGS was obtained on June 17, 2019 for the proposed systems (see approval notice). Design of the LDP is the responsibility of the submitting agencies and must be submitted to NGS on or prior to March 31, 2021. Mark Marrujo1 with NMDOT is submitting final LDP design forms to NGS for the State of New Mexico. The City of Las Cruces (City) is designing a new Low Distortion Projection for Public Works Department, Engineering and Architecture projects to NGS criteria. To meet NGS LDP minimum size and shape criterion, the LDP area extends to Dona Ana County (County) boundary lines. This report presents design analysis and conclusions of the proposed City / County local NGS LDP system for stakeholders’ review prior to NGS final design submittal. NGS NM SPCS2022 Zones and Stakeholder Organizations NGS is designing new State Plane Coordinate Systems (SPCS2022) for New Mexico. The default SPCS2022 designs for the State are a statewide single zone and the three State Plane Zones: West, Central, and East. -
Tectonic Evolution of Structures in Southern Sindh Monocline, Indus Basin, Pakistan Formed in Multi-Extensional Tectonic Episodes of Indian Plate
Tectonic Evolution of Structures in Southern Sindh Monocline, Indus Basin, Pakistan Formed in Multi-Extensional Tectonic Episodes of Indian Plate Sarfraz Hussain Solangi, Shabeer Ahmed, Muhammad Akram Qureshi, Mohammad Shahid, Uzair Hamid Awan Universityof Sindh, Pakistan Summary There are number of structures and structural styles found in extensional tectonic settings of the world but the evolution of these structuresis still needful and a big challenge as well. Evolution of structures in extensional settings have been studied by Yuan Li et al., (2016)and many other reserachers on different extensional basins of the world. Sindh Monocline lies on the western corner of Indian Plate and the tectonic history of Indian plate has been well described by Chatterjee et al., (2013) while tectonic history of Sindh Monocline has been studied by Zaigham, and Mallick, (2000), Chatterjee et al., (2013) (Fig.1). The aim of this study is the evolution of structures in the subsurface of Southern Sindh Monocline, Pakistan using the seismic data interpretation and faltenning of horizons approach. Jamaluddin et al., (2015) and others have also testified such approach. Southern Sindh Monocline is charaterized and experienced by different tectonic episodes of Indian plate while rifting from Gondwanaland, rifting from other plates at different geological times and to its collision with the Asia. Basic structures with in study area are classified into nine types whilethe structural styles have been classified into six types as horst and grabens,dominos,crotch,synthetic -
A Glimpse of Some of the Geology and Mineral Resources: Sierra Blanca
THE EL.PAS0 GEOLOGICAL SOCIETY I I GUIDEBOOK i FIFTH ANNUAL FIELD TRIP I I I I A GLIMPSE OF SOME OF THE I GEOLOGY AND MINERAL RESOURCES I I SIERRA BLANCA-VAN HORN COUNTRY HUDSPETH AND CULBEWSON COUNTIES TEXAS > APRIL 3, 1971 iii TABLE OF CONTENTS F - The Texas Lineament in Eagle Flat, Texas ------------- 28 INTRODUCTION The Trans Pecos region of West Texas has attracted the attention I it deserves as a source of useful minerals both metallic and nsn- metallic. Because of the preoccupation of the people of Texas with petroleum production, many have overlooked the fact that them have been several important metal mines tn this province and that talc deposi ts are s ti1 l being worked here. Undoubtedly othep economic mineral deposits exist in the region awai ting discovery by intensive geological prospecting. The af'fi cers of the El Paso Geological Society and the field trip leadek hope that this trip will heighten inteest in the finding and developing of mineral deposi ts in Trans Pecos Texas. We welcome all our visitcs~sand know that they will wish to jodn us in thanking all those who made thds trip possible. We wish especially to acknowledge the kindness of the Pioneer Talc Company in showing us through the mill at Allamore and allowlng the group to visdt the Texsla- Talc mine. We also wish to thank Mr. Sandy Neal of Van Haon for per- mission to cross the Neal Ranch on the way to the Hazel Wne. John M. Hills, President El Paso Geological Society EL PAS0 GEOLOGICAL SOCIETY OFFICERS John M. -
Geotectonic Model of the Alpine Development of Lakavica Graben in the Eastern Part of the Vardar Zone in the Republic of Macedonia
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UGD Academic Repository Geologica Macedonica, Vol. 27, No. 1, pp. 87–93 (2013) GEOME 2 ISSN 0352 – 1206 Manuscript received: May 17, 2013 UDC: 551.245.03(497.71/.73) Accepted: October 25, 2013 Original scientific paper GEOTECTONIC MODEL OF THE ALPINE DEVELOPMENT OF LAKAVICA GRABEN IN THE EASTERN PART OF THE VARDAR ZONE IN THE REPUBLIC OF MACEDONIA Goše Petrov, Violeta Stojanova, Gorgi Dimov Faculty of Natural and Technical Sciences, “Goce Delčev” University, P.O.Box 201, MK 2000 Štip, Republic of Macedonia [email protected]//[email protected] A b s t r a c t: Lakavica graben is located in the eastern subzone of the Vardar zone, which during the Alpine orogenesis was covered with very complex processes of tectogenesis. On the area of about 200 km2, in the Lakavica graben, are present geological units from the oldest geological periods (Precam- brian) to the youngest (Neogene and Quaternary). Tectonic structure, or rupture tectonic, is very intense developed and gives possibility for analysis of the geotectonic processes in the Alpine orogen phase. This paper presents the possible model for geotectonic processes in the Lakavica graben, according to which can be generalized geotectonic processes in the Vardar zone during the Alpine orogeny. Key words: Lakavica graben; geotectonic model; Alpine orogeny; Vardar zone INTRODUCTION Vardar zone as a tectonic unit, for the first niki Gulf (Greece), than bent eastward and crosses time, is separated and showed on the "Geological- the ophiolite zone Izmir–Ankara (Turkey). -
The Cretaceous System in Central Sierra County, New Mexico
The Cretaceous System in central Sierra County, New Mexico Spencer G. Lucas, New Mexico Museum of Natural History, Albuquerque, NM 87104, [email protected] W. John Nelson, Illinois State Geological Survey, Champaign, IL 61820, [email protected] Karl Krainer, Institute of Geology, Innsbruck University, Innsbruck, A-6020 Austria, [email protected] Scott D. Elrick, Illinois State Geological Survey, Champaign, IL 61820, [email protected] Abstract (part of the Dakota Formation, Campana (Fig. 1). This is the most extensive outcrop Member of the Tres Hermanos Formation, area of Cretaceous rocks in southern New Upper Cretaceous sedimentary rocks are Flying Eagle Canyon Formation, Ash Canyon Mexico, and the exposed Cretaceous sec- Formation, and the entire McRae Group). A exposed in central Sierra County, southern tion is very thick, at about 2.5 km. First comprehensive understanding of the Cretaceous New Mexico, in the Fra Cristobal Mountains, recognized in 1860, these Cretaceous Caballo Mountains and in the topographically strata in Sierra County allows a more detailed inter- pretation of local geologic events in the context strata have been the subject of diverse, but low Cutter sag between the two ranges. The ~2.5 generally restricted, studies for more than km thick Cretaceous section is assigned to the of broad, transgressive-regressive (T-R) cycles of 150 years. (ascending order) Dakota Formation (locally deposition in the Western Interior Seaway, and includes the Oak Canyon [?] and Paguate also in terms of Laramide orogenic -
The Petroleum Potential of the Riphean–Vendian Succession of Southern East Siberia
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/253369249 The petroleum potential of the Riphean–Vendian succession of southern East Siberia CHAPTER in GEOLOGICAL SOCIETY LONDON SPECIAL PUBLICATIONS · MAY 2012 Impact Factor: 2.58 · DOI: 10.1144/SP366.1 CITATIONS READS 2 95 4 AUTHORS, INCLUDING: Olga K. Bogolepova Uppsala University 51 PUBLICATIONS 271 CITATIONS SEE PROFILE Alexander P. Gubanov Scandiz Research 55 PUBLICATIONS 485 CITATIONS SEE PROFILE Available from: Olga K. Bogolepova Retrieved on: 08 March 2016 Downloaded from http://sp.lyellcollection.org/ by guest on March 25, 2013 Geological Society, London, Special Publications The petroleum potential of the Riphean-Vendian succession of southern East Siberia James P. Howard, Olga K. Bogolepova, Alexander P. Gubanov and Marcela G?mez-Pérez Geological Society, London, Special Publications 2012, v.366; p177-198. doi: 10.1144/SP366.1 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2013 Downloaded from http://sp.lyellcollection.org/ by guest on March 25, 2013 The petroleum potential of the Riphean–Vendian succession of southern East Siberia JAMES P. HOWARD*, OLGA K. BOGOLEPOVA, ALEXANDER P. GUBANOV & MARCELA GO´ MEZ-PE´ REZ CASP, West Building, 181a Huntingdon Road, Cambridge CB3 0DH, UK *Corresponding author (e-mail: [email protected]) Abstract: The Siberian Platform covers an area of c. -
From Orogeny to Rifting: When and How Does Rifting Begin? Insights from the Norwegian ‘Reactivation Phase’
EGU21-469 https://doi.org/10.5194/egusphere-egu21-469 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. From orogeny to rifting: when and how does rifting begin? Insights from the Norwegian ‘reactivation phase’. Gwenn Peron-Pinvidic1,2, Per Terje Osmundsen2, Loic Fourel1, and Susanne Buiter3 1NGU - Geological Survey of Norway, 7040 Trondheim, Norway 2NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway 3Tectonics and Geodynamics, RWTH Aachen University, 52064 Aachen, Germany Following the Wilson Cycle theory, most rifts and rifted margins around the world developed on former orogenic suture zones (Wilson, 1966). This implies that the pre-rift lithospheric configuration is heterogeneous in most cases. However, for convenience and lack of robust information, most models envisage the onset of rifting based on a homogeneously layered lithosphere (e.g. Lavier and Manatschal, 2006). In the last decade this has seen a change, thanks to the increased academic access to high-resolution, deeply imaging seismic datasets, and numerous studies have focused on the impact of inheritance on the architecture of rifts and rifted margins. The pre-rift tectonic history has often been shown as strongly influencing the subsequent rift phases (e.g. the North Sea case - Phillips et al., 2016). In the case of rifts developing on former orogens, one important question relates to the distinction between extensional structures formed during the orogenic collapse and the ones related to the proper onset of rifting. The collapse deformation is generally associated with polarity reversal along orogenic thrusts, ductile to brittle deformation and important crustal thinning with exhumation of deeply buried rocks (Andersen et al., 1994; Fossen, 2000). -
Horst Inversion Within a Décollement Zone During Extension Upper Rhine Graben, France Joachim Place, M Diraison, Yves Géraud, Hemin Koyi
Horst Inversion Within a Décollement Zone During Extension Upper Rhine Graben, France Joachim Place, M Diraison, Yves Géraud, Hemin Koyi To cite this version: Joachim Place, M Diraison, Yves Géraud, Hemin Koyi. Horst Inversion Within a Décollement Zone During Extension Upper Rhine Graben, France. Atlas of Structural Geological Interpretation from Seismic Images, 2018. hal-02959693 HAL Id: hal-02959693 https://hal.archives-ouvertes.fr/hal-02959693 Submitted on 7 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Horst Inversion Within a Décollement Zone During Extension Upper Rhine Graben, France Joachim Place*1, M. Diraison2, Y. Géraud3, and Hemin A. Koyi4 1 Formerly at Department of Earth Sciences, Uppsala University, Sweden 2 Institut de Physique du Globe de Strasbourg (IPGS), Université de Strasbourg/EOST, Strasbourg, France 3 Université de Lorraine, Vandoeuvre-lès-Nancy, France 4 Department of Earth Sciences, Uppsala University, Sweden * [email protected] The Merkwiller–Pechelbronn oil field of the Upper Rhine Graben has been a target for hydrocarbon exploration for over a century. The occurrence of the hydrocarbons is thought to be related to the noticeably high geothermal gradient of the area.