Monoclinal Flexure of an Orogenic Plateau Margin During Subduction, South Turkey

Total Page:16

File Type:pdf, Size:1020Kb

Monoclinal Flexure of an Orogenic Plateau Margin During Subduction, South Turkey Non-peer reviewed preprint submitted to EarthArXiv Monoclinal flexure of an orogenic plateau margin during subduction, south Turkey Running title: Monoclinal flexure plateau margin David Fernández-Blanco1, Giovanni Bertotti2, Ali Aksu3 and Jeremy Hall3 1Tectonics and Structural Geology Department, Faculty of Earth and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands [email protected] 2Department of Geotechnology, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628CN, Delft, the Netherlands 3 Department of Earth Sciences, Centre for Earth Resources Research, Memorial University of Newfoundland, St. John's, Newfoundland, Canada A1B 3X5 Non-peer reviewed preprint submitted to EarthArXiv Abstract Geologic evidence across orogenic plateau margins helps to discriminate the relative contributions of orogenic, epeirogenic and/or climatic processes leading to growth and maintenance of orogenic plateaus and plateau margins. Here, we discuss the mode of formation of the southern margin of the Central Anatolian Plateau (SCAP), and evaluate its time of formation, using fieldwork in the onshore and seismic reflection data in the offshore. In the onshore, uplifted Miocene rocks in a dip-slope topography show monocline flexure over >100 km, few-km asymmetric folds verging south, and outcrop- scale syn-sedimentary reverse faults. On the Turkish shelf, vertical faults transect the basal latest Messinian of a ~10 km fold where on-structure syntectonic wedges and synsedimentary unconformities indicate pre-Pliocene uplift and erosion followed by Pliocene and younger deformation. Collectively, Miocene rocks delineate a flexural monocline at plateau margin scale, expressed along our on-offshore sections as a kink- band fold with a steep flank ~20–25 km long. In these reconstructed sections, we estimate a relative vertical displacement of ~3.8 km at rates of ~0.5 mm/y, and horizontal shortening values <1 %. We use this evidence together with our observations of shortening at outcrop, basin, plateau-margin and forearc system scales to infer that the SCAP forms as a monoclinal flexure to accommodate deep-seated thickening and shortening since >5 Ma, and to contextualize the plateau margin as the forearc high of the Cyprus subduction system. Keywords: orogenic plateau; Anatolian plateau; plateau margin; south Turkey; monocline; Mut Basin; Cilicia Basin 2 Non-peer reviewed preprint submitted to EarthArXiv 1. Introduction Many mechanisms are proposed to explain the growth of orogenic plateaus and the long- term feedbacks between their geodynamic and/or climatic controls (e.g., Bird, 1979; Powell, 1986; Nelson et al., 1996; Pope & Willett, 1998; Yin & Harrison, 2000; Tapponnier et al., 2001; Şengör et al., 2003; Sobel et al., 2003; Rowley & Currie, 2006; Garcia- Castellanos, 2007; Ballato et al., 2010; Biryol et al., 2011). While tectono-structural and thermo-mechanical models relate plateau margin growth to accretion/removal of crustal or lithospheric material, magmatic/tectonic underplating or rheological changes (e.g., Allmendinger et al., 1997; Clark, 2012), the climatic-erodibility models relate the tectonic activity to climate, rock erodibility, and precipitation power during incipient relief development (e.g., Mulch et al., 2006; Strecker et al., 2009). Geologic data across plateau margins (on- and offshore) is pivotal to understand plateau margin growth and explain certain features that are not always entirely captured by these models. Current studies advocate for epeirogenic causes to explain the growth and uplift of the Central Anatolian Plateau southern margin (SCAP) (e.g., Schildgen et al., 2014). Shallow slab break-off and asthenospheric mantle upwelling are proposed as engines for the post-8 Ma surface uplift of the modern Central Taurides, occurring either separately from (Cosentino et al., 2012), or jointly with, a second uplift phase, with rates of 0.6-0.7 mm/yr and leading to ~1200 m of topography, after ~1.6 Ma (Schildgen et al., 2012), and a new uplift phase, with rates of 3.21-3.42 mm/yr and leading to up to 1500 m of topography, since ~450 ka (Öğretmen et al., 2018). For these studies, the Central Taurides surface uplift is “passive” and detached from regional compression due to subduction (e.g., Schildgen et al., 2014). Epeirogenic models of plateau uplift that might apply in the Central Anatolia Plateau 3 Non-peer reviewed preprint submitted to EarthArXiv interior (e.g., Bartol & Govers, 2014; Göğüş et al., 2017) are at variance with geologic evidence farther south. For example, the Cyprus slab is imaged by tomography along the Central Cyprus subduction zone and below the modern Central Taurides (e.g., Bakırcı et al., 2012; Abgarmi et al., 2017), where a thick crust and mantle lithosphere exist (e.g., Delph et al., 2017; Portner et al., 2018). Also, the concomitance of uplift in the modern Central Taurides and subsidence in the offshore Outer Cilicia Basin (OCB) to the south (e.g., Walsh-Kennedy et al., 2014) indicate short-wavelength vertical motions in the long- term, at odds with the long-wavelength vertical motions expected during asthenospheric upwelling (e.g., Göğüş & Pysklywec, 2008). Stable isotope paleoaltimetry estimates suggest that ~2 km of relief existed at ~5 Ma (Meijers et al., 2018), a finding also at odds with models proposing epeirogenic uplift. Finally, compressional tectonics of the Cyprian subduction zone is attested by tapering-southward forearc basins atop south-verging thrust systems in the offshore (e.g., Aksu et al., 2005a, 2005b; Calon et al., 2005a, 2005b; Hall et al., 2005a, 2005b), in the Kyrenia Range, and in the Messaoria Basin (e.g., McCay, 2010; McCay & Robertson, 2012; McCay et al., 2012). These observations provide a different frame whereby the southern margin of the Central Anatolian Plateau may have been uplifted “actively” by contraction within the Cyprus subduction system. Here, we apply a multi-scale approach and consider the SCAP within the larger context of subduction in the Central Cyprus Arc. We analyse key fieldwork observations in the Mut Basin, lying atop the Tauride Mountains to the north, and interpret and depth- convert N-S trending seismic lines in the offshore Outer Cilicia Basin (OCB) (Fig. 1). We link these basins in regional onshore-offshore cross-sections to delineate a monocline at plateau margin scale that we analyse geometrically. Integrating this with our data along the Central Cyprus forearc, we evaluate the time of formation of the plateau margin, and discuss its growth mechanism, tectonic setting and potential geodynamic drivers. 4 Non-peer reviewed preprint submitted to EarthArXiv 2. Background A broad Miocene subsidence initiated marine deposition and led to a wide basin in the NE Mediterranean (e.g., Walsh-Kennedy et al., 2014). This regional event allows for regional correlations across onshore and offshore sites in our region of study (Fig. 2). Whereas subsidence continued until present in the Cilicia Basin (in the centre of the marine basin), the basin was disrupted by uplift in the Central Taurides (to the north) (e.g., Cosentino et al., 2012), in the Kyrenia Range and to the south (e.g., Calon et al., 2005a) (Fig. 3). Such vertical motions exceed glacio-eustatic signals described for the area (e.g., Bassant et al., 2005; Janson et al., 2010; Cipollari et al., 2013) and should be regarded as portraying two different tectonic events, i.e. protracted regional subsidence since the Early Miocene, and Late Miocene differential motions (Fig. 3). The broad subsidence changed Late Oligocene-Early Miocene continental deposition in Anatolia and surrounding regions (e.g., Yetiş et al., 1995; Clark & Robertson, 2002, 2005) to marine deposition (e.g., Robertson, 1998; Bassant et al., 2005; Eriş et al., 2005; Şafak et al., 2005). Continued subsidence resulted in a broad marine basin (e.g., Walsh- Kennedy et al., 2014) that covered south Turkey (Karabıyıkoğlu et al., 2000; Çıner et al., 2008) (Fig. 1) and an extensive area further south (Aksu et al., 2005a, 2005b; Burton- Ferguson et al., 2005; Hall et al., 2005a; Işler et al., 2005). In the vicinity of the Kyrenia Range, deposition of the mostly deep-water upper Oligocene to upper Miocene sequence preceded shallow deposits, broadly similar to basins to the north and north-east, and with a common Tauride source (McCay & Robertson, 2012). Surface uplift to the north exposes a sedimentary sequence of >1 km (Şafak et al., 2005) of the preceding Miocene basin on top of the Central Taurides. The top of this sequence is uplifted by 2 km and dated as ∼8 Ma, Late Tortonian (Cosentino et al., 2012), 5 Non-peer reviewed preprint submitted to EarthArXiv whereas younger rocks outcrop in paleo-valleys and areas near the coast (Öğretmen et al., 2018). In the offshore to the south, the base of the Messinian reaches ∼2 km depth in the Outer Cilicia Basin (OCB) (Aksu et al., 2005a). Farther south, sedimentary deposits belonging to the preceding Miocene basin now outcrop in the Kyrenia Ridge (Calon et al., 2005b; McCay et al., 2012) (Fig. 3). While south-verging contractional structures accommodate these motions in the Kyrenia Range and further south, no regional upper- crustal structures are known to accommodate uplift in the Central Taurides. 2.1 Northern onshore domain: Central Taurides and Mut Basin The E-W south-arched Central Taurides outcrop in the northern onshore domain, to the north of the OCB (Fig. 1). Lower to Upper Miocene sediments, mostly marine, were deposited atop the pre-Miocene Tauride basement (e.g., Monod, 1977; Andrew & Robertson, 2002; Bassant et al., 2005; Eriş et al., 2005) and then uplifted (Fig. 3). These marine sediments belong to the Mut Basin and are coeval with fluvio-lacustrine deposits known from seismics for the Tuz Gölü area farther north (Gorur et al., 1984; Huvaz, 2009; Fernández-Blanco et al., 2013). Rocks in both areas are in turn unconformably covered by terrace and alluvial fan Pliocene to Quaternary continental deposits (Monod et al., 2006; Özsayin et al., 2013) (Fig.
Recommended publications
  • Tectonic Evolution of Structures in Southern Sindh Monocline, Indus Basin, Pakistan Formed in Multi-Extensional Tectonic Episodes of Indian Plate
    Tectonic Evolution of Structures in Southern Sindh Monocline, Indus Basin, Pakistan Formed in Multi-Extensional Tectonic Episodes of Indian Plate Sarfraz Hussain Solangi, Shabeer Ahmed, Muhammad Akram Qureshi, Mohammad Shahid, Uzair Hamid Awan Universityof Sindh, Pakistan Summary There are number of structures and structural styles found in extensional tectonic settings of the world but the evolution of these structuresis still needful and a big challenge as well. Evolution of structures in extensional settings have been studied by Yuan Li et al., (2016)and many other reserachers on different extensional basins of the world. Sindh Monocline lies on the western corner of Indian Plate and the tectonic history of Indian plate has been well described by Chatterjee et al., (2013) while tectonic history of Sindh Monocline has been studied by Zaigham, and Mallick, (2000), Chatterjee et al., (2013) (Fig.1). The aim of this study is the evolution of structures in the subsurface of Southern Sindh Monocline, Pakistan using the seismic data interpretation and faltenning of horizons approach. Jamaluddin et al., (2015) and others have also testified such approach. Southern Sindh Monocline is charaterized and experienced by different tectonic episodes of Indian plate while rifting from Gondwanaland, rifting from other plates at different geological times and to its collision with the Asia. Basic structures with in study area are classified into nine types whilethe structural styles have been classified into six types as horst and grabens,dominos,crotch,synthetic
    [Show full text]
  • Geology and Stratigraphy Column
    Capitol Reef National Park National Park Service U.S. Department of the Interior Geology “Geology knows no such word as forever.” —Wallace Stegner Capitol Reef National Park’s geologic story reveals a nearly complete set of Mesozoic-era sedimentary layers. For 200 million years, rock layers formed at or near sea level. About 75-35 million years ago tectonic forces uplifted them, forming the Waterpocket Fold. Forces of erosion have been sculpting this spectacular landscape ever since. Deposition If you could travel in time and visit Capitol Visiting Capitol Reef 180 million years ago, Reef 245 million years ago, you would not when the Navajo Sandstone was deposited, recognize the landscape. Imagine a coastal you would have been surrounded by a giant park, with beaches and tidal flats; the water sand sea, the largest in Earth’s history. In this moves in and out gently, shaping ripple marks hot, dry climate, wind blew over sand dunes, in the wet sand. This is the environment creating large, sweeping crossbeds now in which the sediments of the Moenkopi preserved in the sandstone of Capitol Dome Formation were deposited. and Fern’s Nipple. Now jump ahead 20 million years, to 225 All the sedimentary rock layers were laid million years ago. The tidal flats are gone and down at or near sea level. Younger layers were the climate supports a tropical jungle, filled deposited on top of older layers. The Moenkopi with swamps, primitive trees, and giant ferns. is the oldest layer visible from the visitor center, The water is stagnant and a humid breeze with the younger Chinle Formation above it.
    [Show full text]
  • Horst Inversion Within a Décollement Zone During Extension Upper Rhine Graben, France Joachim Place, M Diraison, Yves Géraud, Hemin Koyi
    Horst Inversion Within a Décollement Zone During Extension Upper Rhine Graben, France Joachim Place, M Diraison, Yves Géraud, Hemin Koyi To cite this version: Joachim Place, M Diraison, Yves Géraud, Hemin Koyi. Horst Inversion Within a Décollement Zone During Extension Upper Rhine Graben, France. Atlas of Structural Geological Interpretation from Seismic Images, 2018. hal-02959693 HAL Id: hal-02959693 https://hal.archives-ouvertes.fr/hal-02959693 Submitted on 7 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Horst Inversion Within a Décollement Zone During Extension Upper Rhine Graben, France Joachim Place*1, M. Diraison2, Y. Géraud3, and Hemin A. Koyi4 1 Formerly at Department of Earth Sciences, Uppsala University, Sweden 2 Institut de Physique du Globe de Strasbourg (IPGS), Université de Strasbourg/EOST, Strasbourg, France 3 Université de Lorraine, Vandoeuvre-lès-Nancy, France 4 Department of Earth Sciences, Uppsala University, Sweden * [email protected] The Merkwiller–Pechelbronn oil field of the Upper Rhine Graben has been a target for hydrocarbon exploration for over a century. The occurrence of the hydrocarbons is thought to be related to the noticeably high geothermal gradient of the area.
    [Show full text]
  • Raplee Ridge Monocline and Thrust Fault Imaged Using Inverse Boundary Element Modeling and ALSM Data
    Journal of Structural Geology 32 (2010) 45–58 Contents lists available at ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Structural geometry of Raplee Ridge monocline and thrust fault imaged using inverse Boundary Element Modeling and ALSM data G.E. Hilley*, I. Mynatt, D.D. Pollard Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305-2115, USA article info abstract Article history: We model the Raplee Ridge monocline in southwest Utah, where Airborne Laser Swath Mapping (ALSM) Received 16 September 2008 topographic data define the geometry of exposed marker layers within this fold. The spatial extent of five Received in revised form surfaces were mapped using the ALSM data, elevations were extracted from the topography, and points 30 April 2009 on these surfaces were used to infer the underlying fault geometry and remote strain conditions. First, Accepted 29 June 2009 we compare elevations extracted from the ALSM data to the publicly available National Elevation Dataset Available online 8 July 2009 10-m DEM (Digital Elevation Model; NED-10) and 30-m DEM (NED-30). While the spatial resolution of the NED datasets was too coarse to locate the surfaces accurately, the elevations extracted at points Keywords: w Monocline spaced 50 m apart from each mapped surface yield similar values to the ALSM data. Next, we used Boundary element model a Boundary Element Model (BEM) to infer the geometry of the underlying fault and the remote strain Airborne laser swath mapping tensor that is most consistent with the deformation recorded by strata exposed within the fold.
    [Show full text]
  • Grand Canyon
    U.S. Department of the Interior Geologic Investigations Series I–2688 14 Version 1.0 4 U.S. Geological Survey 167.5 1 BIG SPRINGS CORRELATION OF MAP UNITS LIST OF MAP UNITS 4 Pt Ph Pamphlet accompanies map .5 Ph SURFICIAL DEPOSITS Pk SURFICIAL DEPOSITS SUPAI MONOCLINE Pk Qr Holocene Qr Colorado River gravel deposits (Holocene) Qsb FAULT CRAZY JUG Pt Qtg Qa Qt Ql Pk Pt Ph MONOCLINE MONOCLINE 18 QUATERNARY Geologic Map of the Pleistocene Qtg Terrace gravel deposits (Holocene and Pleistocene) Pc Pk Pe 103.5 14 Qa Alluvial deposits (Holocene and Pleistocene) Pt Pc VOLCANIC ROCKS 45.5 SINYALA Qti Qi TAPEATS FAULT 7 Qhp Qsp Qt Travertine deposits (Holocene and Pleistocene) Grand Canyon ၧ DE MOTTE FAULT Pc Qtp M u Pt Pleistocene QUATERNARY Pc Qp Pe Qtb Qhb Qsb Ql Landslide deposits (Holocene and Pleistocene) Qsb 1 Qhp Ph 7 BIG SPRINGS FAULT ′ × ′ 2 VOLCANIC DEPOSITS Dtb Pk PALEOZOIC SEDIMENTARY ROCKS 30 60 Quadrangle, Mr Pc 61 Quaternary basalts (Pleistocene) Unconformity Qsp 49 Pk 6 MUAV FAULT Qhb Pt Lower Tuckup Canyon Basalt (Pleistocene) ၣm TRIASSIC 12 Triassic Qsb Ph Pk Mr Qti Intrusive dikes Coconino and Mohave Counties, Pe 4.5 7 Unconformity 2 3 Pc Qtp Pyroclastic deposits Mr 0.5 1.5 Mၧu EAST KAIBAB MONOCLINE Pk 24.5 Ph 1 222 Qtb Basalt flow Northwestern Arizona FISHTAIL FAULT 1.5 Pt Unconformity Dtb Pc Basalt of Hancock Knolls (Pleistocene) Pe Pe Mၧu Mr Pc Pk Pk Pk NOBLE Pt Qhp Qhb 1 Mၧu Pyroclastic deposits Qhp 5 Pe Pt FAULT Pc Ms 12 Pc 12 10.5 Lower Qhb Basalt flows 1 9 1 0.5 PERMIAN By George H.
    [Show full text]
  • Evidence for Controlled Deformation During Laramide Orogeny
    Geologic structure of the northern margin of the Chihuahua trough 43 BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA D GEOL DA Ó VOLUMEN 60, NÚM. 1, 2008, P. 43-69 E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Geologic structure of the northern margin of the Chihuahua trough: Evidence for controlled deformation during Laramide Orogeny Dana Carciumaru1,*, Roberto Ortega2 1 Orbis Consultores en Geología y Geofísica, Mexico, D.F, Mexico. 2 Centro de Investigación Científi ca y de Educación Superior de Ensenada (CICESE) Unidad La Paz, Mirafl ores 334, Fracc.Bella Vista, La Paz, BCS, 23050, Mexico. *[email protected] Abstract In this article we studied the northern part of the Laramide foreland of the Chihuahua Trough. The purpose of this work is twofold; fi rst we studied whether the deformation involves or not the basement along crustal faults (thin- or thick- skinned deformation), and second, we studied the nature of the principal shortening directions in the Chihuahua Trough. In this region, style of deformation changes from motion on moderate to low angle thrust and reverse faults within the interior of the basin to basement involved reverse faulting on the adjacent platform. Shortening directions estimated from the geometry of folds and faults and inversion of fault slip data indicate that both basement involved structures and faults within the basin record a similar Laramide deformation style. Map scale relationships indicate that motion on high angle basement involved thrusts post dates low angle thrusting. This is consistent with the two sets of faults forming during a single progressive deformation with in - sequence - thrusting migrating out of the basin onto the platform.
    [Show full text]
  • Geology of Wupatkl National Monument
    National Monument National Park Service U.S. Department of the Interior Geology of Wupatkl National Monument Wupatki National Monument has a Wash. Here an ancient stream cut variety of geologic features, many of deeply into the Doney Cliffs. This which can be seen from the visitor cen white, cross-bedded sandstone was ter. Some of the more prominent fea- originally deposited as a field of sand tures are the Doney Cliffs to the north. dunes, part of a large, sandy desert Doney Crater to the northwest, that covered this area approximately Moenkopi sandstone, grayish terrace 280 millbn years ago. Next a large, gravel deposits, and black lava flows, shallow sea covered the dunes. In this all to the east, and the dark gray marine environment,the sllty dolomites Woodhouse Mesa, a basaltic lava flow and limestones of the Kaibab Forma to the southwest of the visitor center. tion from the Permian Age were The Doney Cliffs are the large, buff- deposited, along with a variety of colored cliffs that run northeast from marine fossils. Doney Crater for four miles before The red rock formation which Is changing into gentler terrain. The cliffs prevalent throughout the monument is are formed by near-vertical faults that called the Moenkopi Sandstone For have raised the crust west of the cliffs. mation. It was deposited by sluggish This feature Is called a faulted mono streams flowing over a low coastal cline. A monocline may be thought of area. Many SInaguan ruins were built as a step-like fold, and is shown In the on the lower massive sandstone which figure betow.
    [Show full text]
  • Petrology and Structure of a Monoclinally- Folded Lava, Paleo-Rift Lava Sequence, Vatnsdalsfjall, Northern Iceland
    PETROLOGY AND STRUCTURE OF A MONOCLINALLY- FOLDED LAVA, PALEO-RIFT LAVA SEQUENCE, VATNSDALSFJALL, NORTHERN ICELAND KATHERINE C. ACKERLY Williams College Sponsor: R. A. Wobus INTRODUCTION monocline (Fig. 1). Within the trough of this flexure lies a thick basaltic lens (the Hjallin The products of the abandoned Snæfellsnes lens, after Annells, 1968), which was formerly rift system active in Iceland from 15–7 Ma thought to be intrusive and is analyzed in a consist mainly of flat-lying tholeiitic basalts, paper by McClanahan (this volume). The with restricted areas of silicic volcanics. A lavas in the monocline and in the lens are diversity of rock types results from the some of the youngest rocks among those interfingering products of shield volcanoes studied in the Iceland 2003 Keck project. and eruptive fissures, similar to Iceland’s current volcanic activity. The paleo- rift axis In this study I analyze the petrology and is estimated to pass through Vididalsfjall, a geochemistry of the folded lava sequence in mountainous NNW-trending ridge at the base relation to that of the lens and characterize the of the Skagi Peninsula. The northern peaks of evolution of the monocline. The results of this Vididalsfjall are marked by mafic and slicic investigation may provide new insights into intrusives. At this location and in the adjacent the interaction of magmatic and tectonic mountain range Vatnsdalsfjall, which has a processes in this Tertiary rift system. parallel trend and lies 10 km east of the rift axis, several unusual structural and petrologic Methods features have been observed (Annells, 1968). In the field, the locations of samples, unit contacts, and structural observations were In south Vatnsdalsfjall a sequence of rocks of mapped on a 1:1000 map using GPS (Fig.
    [Show full text]
  • Synorogenic Basin Deposits and Associated Laramide Uplifts in the Montana Part of the Cordilleran Foreland Basin System
    SYNOROGENIC BASIN DEPOSITS AND ASSOCIATED LARAMIDE UPLIFTS IN THE MONTANA PART OF THE CORDILLERAN FORELAND BASIN SYSTEM Susan M. Vuke Montana Bureau of Mines and Geology, Butte, Montana ABSTRACT The North American Cordilleran Foreland Basin System extended from the eastern edge of the Cordilleran Sevier fold-thrust belt in western Montana across central and eastern Montana from Jurassic into early Paleo- gene time. In the central and southern Montana part of the system, isolated Laramide basement-cored uplifts and sedimentary basin pairs characterize the main Laramide Province. The thrust/reverse fault-propagated arches and basins of the province developed primarily during Late Cretaceous through earliest Eocene time, although regionally, initiation of uplift may have occurred during Early to middle Cretaceous time in southwest- ern Montana. Associated prominent WNW–ESE- and NE–SW-striking linear features refl ect Laramide reactiva- tion of basement faults that now extend to the surface, or are entirely in the subsurface. They occur throughout the main Laramide Province and are likely genetically related to development of the uplift-basin pairs. The asymmetric Laramide Bighorn and Powder River Basins developed in association with uplift along basin-bounding thrust/reverse faults of the Beartooth and Bighorn basement-cored arches, respectively. Thrust loading associated with uplift along the faults propagated asymmetric synclinal basin folds that accommodated the greatest thicknesses of synorogenic deposits adjacent to the range-bounding faults. In Montana, synorogenic deposits of the Bighorn Basin primarily include the Paleocene Fort Union Formation, and those of the Powder River Basin primarily include the Paleocene Fort Union and Eocene Wasatch Formations.
    [Show full text]
  • Gravity Evidence for a Larger Limpopo Belt in Southern Africa and Geodynamic Implications
    Geophys. J. Int. (2002) 149, F9–F14 FAST TRACK PAPER Gravity evidence for a larger Limpopo Belt in southern Africa and geodynamic implications R. T. Ranganai,1 A. B. Kampunzu,2 E. A. Atekwana,2,*B.K.Paya,3 J. G. King,1 D. I. Koosimile3 and E. H. Stettler4 1University of Botswana, Department of Physics, Private Bag UB00704, Gaborone, Botswana. E-mail: [email protected] 2University of Botswana, Department of Geology, Private Bag UB00704, Gaborone, Botswana 3Geological Survey of Botswana, Private Bag 14, Lobatse, Botswana 4Council for Geosciences, Bag X112, Pretoria 0001, South Africa Downloaded from https://academic.oup.com/gji/article/149/3/F9/2016109 by guest on 02 October 2021 Accepted 2002 February 18. In original form 2001 October 10 SUMMARY The Limpopo Belt of southern Africa is a Neoarchean orogenic belt located between two older Archean provinces, the Zimbabwe craton to the north and the Kaapvaal craton to the south. Previous studies considered the Limpopo Belt to be a linearly trending east-northeast belt with a width of ∼250 km and ∼600 km long. We provide evidence from gravity data constrained by seismic and geochronologic data suggesting that the Limpopo Belt is much larger than previously assumed and includes the Shashe Belt in Botswana, thus defining a southward convex orogenic arc sandwiched between the two cratons. The 2 Ga Magondi orogenic belt truncates the Limpopo–Shahse Belt to the west. The northern marginal, central and southern marginal tectonic zones define a single gravity anomaly on upward continued maps, indicating that they had the same exhumation history.
    [Show full text]
  • New Age Determinations and the Geology of the Kenya Rift-Kavirondo Rift Junction, W Kenya
    J. geol. Soc. London, Vol. 136, 1979, pp. 693-704, 4 figs.. 1 table. Printed in Northern Ireland. New age determinations and the geology of the Kenya Rift-Kavirondo Rift junction, W Kenya W. B. Jones & S. J. Lippard SUMMARY: The area of the triple-rift junction in W Kenya, between the E-W Kavirondo Rift, the N-S Northern Kenya Rift and the NW-SE Central Kenya Rift, has been the site of continuous volcanic and tectonic activity sincethe Middle Miocene. From about20 to 7 Ma the area was dominated by the accumulation of a thick pile of nephelinitic and phonolitic volcanics in the Timboroa area. From 7 Ma to the present day, apart from local eruptionsof basanite in the W, the volcanic and tectonic activityhas been progressively concentrated towards the axial zone of the Kenya Rift with alkali basalt-trachyte sequences predominating. Duringthis period the Kavirondo Rift was inactive. The stratigraphic sequencein the area has been dated by 19 new K-Ar age determinations. These enable the absolute andrelative ages of the Tinderet, Timboroa, Kapkut, Londiani and Kilombe volcanoes tobe established for the first time. Topographical and structural considerationsshow that the Kavirondo Rift largely fades out 50 km W of the Kenya Rift and is barely perceptibleat its edge. The W wall of the Kenya Rift adjacent to the Kavirondo Riftis a monocline and is very similar to the South Turkana region. Although the area is adjacent to major rift-boundingfaults there is little faulting within it, the tectonic pattern being dominated by monoclines and volcano-tectonic structures.
    [Show full text]
  • Engineering Geology of the Hogback Monocline: a New Approach to Backslope Design in Tilted Sedimentary Rocks Warren T
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/24 Engineering geology of the Hogback monocline: A new approach to backslope design in tilted sedimentary rocks Warren T. Bennett, 1973, pp. 110-113 in: Monument Valley (Arizona, Utah and New Mexico), James, H. L.; [ed.], New Mexico Geological Society 24th Annual Fall Field Conference Guidebook, 232 p. This is one of many related papers that were included in the 1973 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]