Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs

Total Page:16

File Type:pdf, Size:1020Kb

Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs Pure Appl. Geophys. Ó 2014 Springer Basel DOI 10.1007/s00024-014-0896-6 Pure and Applied Geophysics Composition, Alteration, and Texture of Fault-Related Rocks from Safod Core and Surface Outcrop Analogs: Evidence for Deformation Processes and Fluid-Rock Interactions 1 1 1 1 1 KELLY K. BRADBURY, COLTER R. DAVIS, JOHN W. SHERVAIS, SUSANNE U. JANECKE, and JAMES P. EVANS Abstract—We examine the fine-scale variations in mineralogi- 1. Introduction cal composition, geochemical alteration, and texture of the fault- related rocks from the Phase 3 whole-rock core sampled between 3,187.4 and 3,301.4 m measured depth within the San Andreas Fault Well-constrained geological, geochemical, and Observatory at Depth (SAFOD) borehole near Parkfield, California. geophysical models of active fault zones are needed if This work provides insight into the physical and chemical properties, we are to understand fault zone behavior and earth- structural architecture, and fluid-rock interactions associated with the actively deforming traces of the San Andreas Fault zone at depth. quake deformation, constraining the factors that affect Exhumed outcrops within the SAF system comprised of serpentinite- the distribution of earthquakes, and the nature of slip bearing protolith are examined for comparison at San Simeon, Goat in the shallow crust by developing realistic models of Rock State Park, and Nelson Creek, California. In the Phase 3 SAFOD drillcore samples, the fault-related rocks consist of multiple subsurface fault zone structure and ground motion juxtaposed lenses of sheared, foliated siltstone and shale with block- predictions. Earthquakes nucleate in rocks at depth in-matrix fabric, black cataclasite to ultracataclasite, and sheared (e.g., FAGERENG and TOY 2011;SIBSON 1977; 2003), serpentinite-bearing, finely foliated fault gouge. Meters-wide zones of sheared rock and fault gouge correlate to the sites of active yet until recently (see ANDO, 2001;BOULLIER et al. borehole casing deformation and are characterized by scaly clay 2009;CORNET et al. 2004;HEERMANCE et al. 2003; fabric with multiple discrete slip surfaces or anastomosing shear HICKMAN et al. 2004;HICKMAN et al. 2007;HIRONO zones that surround conglobulated or rounded clasts of compacted clay and/or serpentinite. The fine gouge matrix is composed of Mg- et al. 2007;OHTANI et al. 2000;TANAKA et al. 2002; rich clays and serpentine minerals (saponite ± palygorskite, and TOBIN and KINOSHITA 2006;TOWNEND et al. 2009;ZO- lizardite ± chrysotile). Whole-rock geochemistry data show BACK et al. 2007;ZOBACK et al. 2010), we have only increases in Fe-, Mg-, Ni-, and Cr-oxides and hydroxides, Fe-sul- fides, and C-rich material, with a total organic content of [1% had limited sampling of rocks or observations from locally in the fault-related rocks. The faults sampled in the field are within active plate-boundary fault zones where composed of meters-thick zones of cohesive to non-cohesive, ser- earthquake nucleation and rupture propagation has pentinite-bearing foliated clay gouge and black fine-grained fault rock derived from sheared Franciscan Formation or serpentinized occurred. Direct knowledge of rock properties from Coast Range Ophiolite. X-ray diffraction of outcrop samples shows active fault zones through integrated drilling, field, that the foliated clay gouge is composed primarily of saponite and and laboratory studies can provide significant insight serpentinite, with localized increases in Ni- and Cr-oxides and C-rich material over several meters. Mesoscopic and microscopic textures into fault processes, and can be used to: (1) identify and deformation mechanisms interpreted from the outcrop sites are systematic compositional and textural changes to infer remarkably similar to those observed in the SAFOD core. Micro- the chemical and physical processes involved in fault scale to meso-scale fabrics observed in the SAFOD core exhibit textural characteristics that are common in deformed serpentinites zone evolution; (2) delineate the dimensions of the and are often attributed to aseismic deformation with episodic structural and permeability fault zone architecture; seismic slip. The mineralogy and whole-rock geochemistry results and (3) consider the role of fluid migration and fluid- indicate that the fault zone experienced transient fluid–rock inter- actions with fluids of varying chemical composition, including related alteration throughout deformation (BRODSKY evidence for highly reducing, hydrocarbon-bearing fluids. et al. 2010; CAINE et al. 1996, 2010;CHESTER and LOGAN 1986;COWAN 1999;EVANS and CHESTER 1995; FAGERENG and SIBSON 2010;KNIPE et al. 1998;MARONE and RICHARDSON 2010;MENEGHINI and MOORE 2007; ROWE et al. 2009;SHIPTON AND COWIE and COWIE 2001; 1 Geology Department, Utah State University, Logan, UT 84322-4505, USA. E-mail: [email protected] SIBSON 1989;WIBBERLEY et al. 2008). K. K. Bradbury et al. Pure Appl. Geophys. The San Andreas Fault Observatory at Depth ZOBACK et al. 2011). Previous research by BRADBURY (SAFOD; HICKMAN et al. 2004;HICKMAN et al. 2007; et al.(2007), BRADBURY et al.(2011), HOLDSWORTH ZOBACK et al. 2010; http://www.earthscope.org/ et al.(2011), SPRINGER et al. (2007), and THAYER and observatories/safod) near Parkfield, California, pro- ARROWSMITH (2005) illustrate the geologic and vides a nearly continuous record of rock cuttings and structural setting and provide detailed core observa- a limited amount of core from the subsurface through tions of the SAFOD site. the Pacific Plate northeastward across the San Serpentinite was identified in several SAFOD Andreas Fault and into the North American Plate samples, between a depth of 3 and 4 km (BRADBURY (Fig. 1). At SAFOD, in situ fault-related rocks from et al. 2011;MOORE and RYMER 2007;MOORE and *3 km depth were sampled along the central RYMER 2012;SOLUM et al. 2006; Phase 3 Core Photo creeping segment of the San Andreas Fault (SAF). Atlas, http://www.earthscope.org/observatories/ The surface creep rate of the SAF near SAFOD is 20 safod). This mineralogy and the associated alter- mm/yr (TITUS et al. 2006), and is interpreted to occur ation products may promote weak fault behavior on multiple parallel strands in the subsurface (HOLE (HIRTH and GUILLOT 2013;MOORE et al. 1997;MOORE et al. 2006;MCPHEE et al. 2004;THURBER et al. 2004; and RYMER 2012;REINEN et al. 2000; SCHLEICHER et al. THURBER et al. 2006;ZOBACK et al. 2005). Within the 2012). In the two *1–2 m thick gouge zones asso- SAF here, a series of repeating microearthquakes ciated with active creep demonstrated by borehole occur near 2,500–2,800 m vertical depth, or about casing deformation at SAFOD, serpentinite and ser- *50–300 m from the actively creeping fault strands pentinite-derived clays are present (SOLUM et al. intersected by the SAFOD borehole (Fig. 1;NADEAU 2006, 2007;BRADBURY et al. 2011;MOORE and RYMER et al. 2004;THURBER et al. 2004;ZOBACK et al. 2010; 2009, 2012). The two zones, referred to as the True Vertical Depth Cross Section N 45 E (K.B., m) Geologic Plate PA Boundary - 2600 Hole G Runs (1,2,3) 3157 m MD - 2650 NA North American Hole G Runs (4,5,6) Plate (NA) - 2700 Damage Zone Goat Rock - 2750 SDZ 3192 m MD CDZ 3413 m MD San Francisco 3302 m MD - 2800 Nelson Creek 1150 12001250 1300 1350 1400 SAFOD N 45 East (m) San Simeon San Andreas Fault Pacific Plate (PA) Los Angeles Figure 1 Location map of the SAFOD borehole and surface outcrops in California relative to the positions of the San Andreas Fault, Pacific Plate, and North American plate. The inset illustrates a simplified vertical profile of the SAFOD borehole, location of the targeted earthquakes, SDZ, CDZ, and the associated damage zone (JEPPSON et al. 2010;ZOBACK et al. 2010), and the Phase 3 core as sampled at depth (modified from Phase 3 Core Photo Atlas, http://www.earthscope.org) Evidence for Deformation Processes and Fluid-Rock Interactions a i 3312.3 m 3190.4 m b h 3192.9 m 3301.3 m c g 3195.8 m 3297.7 m d e f 3197.0 m 3197.8 m 3297.5 m Black cataclasite to Phyllosilicate-rich block-in-matrix melange ultracataclasite SDZ CDZ Phyllosilicate-rich block-in-matrix melange ~ 95 m Gap in Core a b c d efg h i 7 m m m m m 0 m 1 m 6 m 12. m m m .4 m 9.4 .9 m 5 m 1 m .6 33 8.3 9.8 .3 m 4.3 m 5.8 7.9 00 04. 05. 07. 08. 10. 329 33 33 3311 3186.7 318 318 3192.8 m3193 319 319 3197.43198.9 m 3199.5 m m 3294.9 3296m 329 33 3302.5 m 33 33 33 Extent of Low Velocity Zone (after Zoback et al., 2010) Location of thin-section photomicrographs shown in Figures 4,5, and 7 and Extent of gas rich zones (after Weirsberg & Erzinger, 2009) whole-rock geochemical analyses shown in Figures 4A & 4B Total Organic Carbon (TOC) sample results shown in Table 2 b Location of image shown above (may or may not correspond to sample location) Figure 2 Mesoscopic textures of fault-related rocks in SAFOD Phase 3 core: a foliated block-in-matrix fabric within damaged rocks west of the SDZ; b localized black (carbon-rich) staining parallel to fracture surface at 3,192.9 m MD; c Black fault-related rock consists of cataclasite to ultracataclasite at 3,195.8 m MD; d serpentinite and scaly clay gouge of the SDZ at *3,197 m MD; e foliated fault gouge with scaly clay fabric at 3,197.8 m MD; f clay-rimmed altered serpentinite and siltstone clasts within foliated fault gouge of the CDZ at 3,297.5 m MD; g foliated fault gouge with scaly clay matrix and numerous rounded and lens-shaped, altered serpentinite clasts and fragments at 3,297.7 m MD; h block of intensely sheared siltstone with abundant calcite veinlets to the immediate northeast of the CDZ fault boundary; and i intensely sheared black clay (organic-rich?) interval with shiny, polished slickensided surfaces at 3,312.3 m MD.
Recommended publications
  • Introduction San Andreas Fault: an Overview
    Introduction This volume is a general geology field guide to the San Andreas Fault in the San Francisco Bay Area. The first section provides a brief overview of the San Andreas Fault in context to regional California geology, the Bay Area, and earthquake history with emphasis of the section of the fault that ruptured in the Great San Francisco Earthquake of 1906. This first section also contains information useful for discussion and making field observations associated with fault- related landforms, landslides and mass-wasting features, and the plant ecology in the study region. The second section contains field trips and recommended hikes on public lands in the Santa Cruz Mountains, along the San Mateo Coast, and at Point Reyes National Seashore. These trips provide access to the San Andreas Fault and associated faults, and to significant rock exposures and landforms in the vicinity. Note that more stops are provided in each of the sections than might be possible to visit in a day. The extra material is intended to provide optional choices to visit in a region with a wealth of natural resources, and to support discussions and provide information about additional field exploration in the Santa Cruz Mountains region. An early version of the guidebook was used in conjunction with the Pacific SEPM 2004 Fall Field Trip. Selected references provide a more technical and exhaustive overview of the fault system and geology in this field area; for instance, see USGS Professional Paper 1550-E (Wells, 2004). San Andreas Fault: An Overview The catastrophe caused by the 1906 earthquake in the San Francisco region started the study of earthquakes and California geology in earnest.
    [Show full text]
  • Fault Rocks and Fault Mechanisms
    Fault rocks and fault mechanisms R. H. SIBSON SUMMARY Physical factors likely to affect the genesis of the with the production of mylonite series rocks various fault rocks--frictional properties, tem- possessing strong tectonite fabrics. In some cases, perature, effective stress normal to the fault and fault rocks developed by transient seismic fault- differential stress--are examined in relation to ing can be distinguished from those generated the energy budget of fault zones, the main by slow aseismic shear. Random-fabric fault velocity modes of faulting and the type of fault- rocks may form as a result of seismic faulting ing, whether thrust, wrench, or normal. In a within the ductile shear zones from time to conceptual model of a major fault zone cutting time, but tend to be obliterated by continued crystalline quartzo-feldspathic crust, a zone of shearing. Resistance to shear within the fault elastico-frictional (EF) behaviour generating zone reaches a peak value (greatest for thrusts random-fabric fault rocks (gouge--breccia-- and least for normal faults) around the EF/OP cataclasite series--pseudotachylyte) overlies a transition level, which for normal geothermal region where quasi-plastic (QP) processes of gradients and an adequate supply of water, rock deformation operate in ductile shear zones occurs at depths of lO-15 km. SINCE LAPWORTH'$ (I885) description of the type mylonite from the Moine Thrust in NW Scotland, there have been many petrographic descriptions and classifications of the texturally distinctive rocks found associated with fault zones (e.g. Waters & Campbell 1935, Hsu 1955, Christie 196o , 1963, Reed 1964, Spry I969, Higgins 1971 ).
    [Show full text]
  • Lithology and Internal Structure of the San Andreas Fault at Depth Based
    1 1 Lithology and Internal Structure of the San Andreas Fault at depth based on 2 characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at 3 Depth (SAFOD) Borehole 4 By Kelly K. Bradbury1, James P. Evans1, Judith S. Chester2, Frederick M. Chester2, and David L. Kirschner3 5 1Geology Department, Utah State University, Logan, UT 84321-4505 6 2Center for Tectonophysics and Department of Geology and Geophysics, Texas A&M University, College Station, 7 Texas 77843 8 3Department of Earth and Atmospheric Sciences, St. Louis University, St. Louis, Missouri 63108 9 10 Abstract 11 We characterize the lithology and structure of the spot core obtained in 2007 during 12 Phase 3 drilling of the San Andreas Fault Observatory at Depth (SAFOD) in order to determine 13 the composition, structure, and deformation processes of the fault zone at 3 km depth where 14 creep and microseismicity occur. A total of approximately 41 m of spot core was taken from 15 three separate sections of the borehole; the core samples consist of fractured arkosic sandstones 16 and shale west of the SAF zone (Pacific Plate) and sheared fine-grained sedimentary rocks, 17 ultrafine black fault-related rocks, and phyllosilicate-rich fault gouge within the fault zone 18 (North American Plate). The fault zone at SAFOD consists of a broad zone of variably damaged 19 rock containing localized zones of highly concentrated shear that often juxtapose distinct 20 protoliths. Two zones of serpentinite-bearing clay gouge, each meters-thick, occur at the two 21 locations of aseismic creep identified in the borehole on the basis of casing deformation.
    [Show full text]
  • Present Day Plate Boundary Deformation in the Caribbean and Crustal Deformation on Southern Haiti Steeve Symithe Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 4-2016 Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti Steeve Symithe Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Caribbean Languages and Societies Commons, Geology Commons, and the Geophysics and Seismology Commons Recommended Citation Symithe, Steeve, "Present day plate boundary deformation in the Caribbean and crustal deformation on southern Haiti" (2016). Open Access Dissertations. 715. https://docs.lib.purdue.edu/open_access_dissertations/715 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated ¡ ¢¡£ ¢¡¤ ¥ PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Steeve Symithe Entitled Present Day Plate Boundary Deformation in The Caribbean and Crustal Deformation On Southern Haiti. For the degree of Doctor of Philosophy Is approved by the final examining committee: Christopher L. Andronicos Chair Andrew M. Freed Julie L. Elliott Ayhan Irfanoglu To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Andrew M. Freed Approved by Major Professor(s): Indrajeet Chaubey 04/21/2016 Approved by: Head of the Departmental Graduate Program Date PRESENT DAY PLATE BOUNDARY DEFORMATION IN THE CARIBBEAN AND CRUSTAL DEFORMATION ON SOUTHERN HAITI A Dissertation Submitted to the Faculty of Purdue University by Steeve J.
    [Show full text]
  • A GPS and Modelling Study of Deformation in Northern Central America
    Geophys. J. Int. (2009) 178, 1733–1754 doi: 10.1111/j.1365-246X.2009.04251.x A GPS and modelling study of deformation in northern Central America M. Rodriguez,1 C. DeMets,1 R. Rogers,2 C. Tenorio3 and D. Hernandez4 1Geology and Geophysics, University of Wisconsin-Madison, Madison, WI 53706 USA. E-mail: [email protected] 2Department of Geology, California State University Stanislaus, Turlock, CA 95382,USA 3School of Physics, Faculty of Sciences, Universidad Nacional Autonoma de Honduras, Tegucigalpa, Honduras 4Servicio Nacional de Estudios Territoriales, Ministerio de Medio Ambiente y Recursos Naturales, Km. 5 1/2 carretera a Santa Tecla, Colonia y Calle Las Mercedes, Plantel ISTA, San Salvador, El Salvador Accepted 2009 May 9. Received 2009 May 8; in original form 2008 August 15 SUMMARY We use GPS measurements at 37 stations in Honduras and El Salvador to describe active deformation of the western end of the Caribbean Plate between the Motagua fault and Central American volcanic arc. All GPS sites located in eastern Honduras move with the Caribbean Plate, in accord with geologic evidence for an absence of neotectonic deformation in this region. Relative to the Caribbean Plate, the other stations in the study area move west to west–northwest at rates that increase gradually from 3.3 ± 0.6 mm yr−1 in central Honduras to 4.1 ± 0.6 mm yr−1 in western Honduras to as high as 11–12 mm yr−1 in southern Guatemala. The site motions are consistent with slow westward extension that has been inferred by previous authors from the north-striking grabens and earthquake focal mechanisms in this region.
    [Show full text]
  • Rnic~Ess T~Ese
    GEOPHYSICAL RESEARCH LETTERS, VOL. 18, NO.5, PAGES 979-982, MAY 1991 HYDROGEOLOGY OF THRUST FAULTS AND CRYSTALLINE THRUST SHEETS: RESULTS OF COMBINED FIELD AND MODELING STUDIES Craig B. Forster Department of Geology & Geophysics, University of Utah James P. Evans Department of Geology, Utah State University Abstract. Field,. laboratory, and.modeling studies of faulted obtained for systems that span a wide range of spatial scales, rock yield insight 1Oto the hydraulic character of thrust faults. aid in establishing appropriate scales of observation. Although Late-stage fau lts comprise foliated and su?par~lel faults, ~ith our numerical models cannot provide a unique answer that clay-rich gouge and fracture zones, that YIeld mterpenetratmg applies directly to a given field situation, the numerical results layers of low-permeability gou~e and higher-permeab~l~ty do provide insight into this class of groundwater flow system. damage zones. Laboratory testmg suggests a permeabIlity contrast of two orders of magnitude between gouge and damage zones. Layers of differing permeability lead to overall Fault Zone Hydrogeology permeability anisotropy with maximum permeability within the plane of the fault and minimum permeability perpendicular to the fault plane. Numerical modeling of regional-scale fluid Precambrian granites and gneisses found in our field area flow and heat transport illustrates the impact of fault zone (northwest Wyoming) were thrusted over adjacent sedimentary hydrogeology on fluid flux, fluid pore pressure, and rocks along moderately-dipping thrust faults. About 150 m of temperature in the vicinity of a crystalline thrust sheet. exposed fault were examined through large-scale field mapping and detailed sampling both across and along strike.
    [Show full text]
  • Strength of Chrysotile-Serpentinite Gouge Under Hydrothermal Conditions: Can It Explain a Weak San Andreas Fault?
    Strength of chrysotile-serpentinite gouge under hydrothermal conditions: Can it explain a weak San Andreas fault? D. E. Moore D. A. Lockner U.S. Geological Survey, Menlo Park, California 94025 R. Summers Ma Shengli Institute of Geology, State Seismological Bureau, Beijing, China J. D. Byerlee U.S. Geological Survey, Menlo Park, California 94025 ABSTRACT more, it has been suggested that at higher temperatures (Reinen et Chrysotile-bearing serpentinite is a constituent of the San An- al., 1993) and/or lower strain rates (Reinen and Tullis, 1995) the dreas fault zone in central and northern California. At room tem- frictional strength of chrysotile may be reduced to ␮ Յ 0.1. As a test perature, chrysotile gouge has a very low coefficient of friction (␮ of this hypothesis, we report here on the strength of a pure chrysotile Ϸ 0.2), raising the possibility that under hydrothermal conditions gouge at elevated temperatures and a wide range of velocities, in- ␮ might be reduced sufficiently (to <0.1) to explain the apparent tended to more closely represent conditions at depth in the fault. weakness of the fault. To test this hypothesis, we measured the Our results suggest that chrysotile alone is not a likely explanation frictional strength of a pure chrysotile gouge at temperatures to for a weak San Andreas fault. ؇C and axial-shortening velocities as low as 0.001 ␮m/s. As 290 temperature increases to Ϸ100 ؇C, the strength of the chrysotile EXPERIMENTAL PROCEDURES gouge decreases slightly at low velocities, but at temperatures The chrysotile gouge used in this study was prepared from a ؇C, it is substantially stronger and essentially independent of soft, layered, light to medium grayish-green rock from the New Idria 200< velocity at the lowest velocities tested.
    [Show full text]
  • Collision Orogeny
    Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 PROCESSES OF COLLISION OROGENY Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Shortening of continental lithosphere: the neotectonics of Eastern Anatolia a young collision zone J.F. Dewey, M.R. Hempton, W.S.F. Kidd, F. Saroglu & A.M.C. ~eng6r SUMMARY: We use the tectonics of Eastern Anatolia to exemplify many of the different aspects of collision tectonics, namely the formation of plateaux, thrust belts, foreland flexures, widespread foreland/hinterland deformation zones and orogenic collapse/distension zones. Eastern Anatolia is a 2 km high plateau bounded to the S by the southward-verging Bitlis Thrust Zone and to the N by the Pontide/Minor Caucasus Zone. It has developed as the surface expression of a zone of progressively thickening crust beginning about 12 Ma in the medial Miocene and has resulted from the squeezing and shortening of Eastern Anatolia between the Arabian and European Plates following the Serravallian demise of the last oceanic or quasi- oceanic tract between Arabia and Eurasia. Thickening of the crust to about 52 km has been accompanied by major strike-slip faulting on the rightqateral N Anatolian Transform Fault (NATF) and the left-lateral E Anatolian Transform Fault (EATF) which approximately bound an Anatolian Wedge that is being driven westwards to override the oceanic lithosphere of the Mediterranean along subduction zones from Cephalonia to Crete, and Rhodes to Cyprus. This neotectonic regime began about 12 Ma in Late Serravallian times with uplift from wide- spread littoral/neritic marine conditions to open seasonal wooded savanna with coiluvial, fluvial and limnic environments, and the deposition of the thick Tortonian Kythrean Flysch in the Eastern Mediterranean.
    [Show full text]
  • Modeling Crustal Deformation Near Active Faults and Volcanic Centers—A Catalog of Deformation Models
    Modeling Crustal Deformation near Active Faults and Volcanic Centers—A Catalog of Deformation Models Chapter 1 of Section B, Modeling of Volcanic Processes Book 13, Volcanic Monitoring Techniques and Methods 13–B1 U.S. Department of the Interior U.S. Geological Survey Modeling Crustal Deformation near Active Faults and Volcanic Centers—A Catalog of Deformation Models By Maurizio Battaglia, Peter F. Cervelli, and Jessica R. Murray Chapter 1 of Section B, Modeling of Volcanic Processes Book 13, Volcanic Monitoring Techniques and Methods 13-B1 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Battaglia, Maurizio, Cervelli, P.F., and Murray, J.R., 2013, Modeling crustal deformation near active faults and volcanic centers—A catalog of deformation models: U.S.
    [Show full text]
  • Characterization of Olivine Fabrics and Mylonite in the Presence of Fluid
    Jung et al. Earth, Planets and Space 2014, 66:46 http://www.earth-planets-space.com/content/66/1/46 FULL PAPER Open Access Characterization of olivine fabrics and mylonite in the presence of fluid and implications for seismic anisotropy and shear localization Sejin Jung1, Haemyeong Jung1* and Håkon Austrheim2 Abstract The Lindås Nappe, Bergen Arc, is located in western Norway and displays two high-grade metamorphic structures. A Precambrian granulite facies foliation is transected by Caledonian fluid-induced eclogite-facies shear zones and pseudotachylytes. To understand how a superimposed tectonic event may influence olivine fabric and change seismic anisotropy, two lenses of spinel lherzolite were studied by scanning electron microscope (SEM) and electron back-scattered diffraction (EBSD) techniques. The granulite foliation of the surrounding anorthosite complex is displayed in ultramafic lenses as a modal variation in olivine, pyroxenes, and spinel, and the Caledonian eclogite-facies structure in the surrounding anorthosite gabbro is represented by thin (<1 cm) garnet-bearing ultramylonite zones. The olivine fabrics in the spinel bearing assemblage were E-type and B-type and a combination of A- and B-type lattice preferred orientations (LPOs). There was a change in olivine fabric from a combination of A- and B-type LPOs in the spinel bearing assemblage to B- and E-type LPOs in the garnet lherzolite mylonite zones. Fourier transform infrared (FTIR) spectroscopy analyses reveal that the water content of olivine in mylonite is much higher (approximately 600 ppm H/Si) than that in spinel lherzolite (approximately 350 ppm H/Si), indicating that water caused the difference in olivine fabric.
    [Show full text]
  • "Influence of Geologic Structure on Flow Patterns of Groundwater in The
    INFLUENCE OF GEOLOGIC STRUCTURE ON FLOW PATTERNS OF GROUNDWATER IN THE VICINITY OF YUCA MOUNTAIN - PROGRESS ON REVIEW OF SELECTED LITERATURE Prepared for Nuclear Regulatory Commission Contract NRC-02-88-005 Prepared by Stephen R. Young Center for Nuclear Waste Regulatory Analyses San Antonio, Texas September 1992 INFLUENCE OF GEOLOGIC STRUCTURE ON FLOW PATTERNS OF GROUNDWATER IN THE VICINITY OF YUCCA MOUNTAIN- PROGRESS ON REVIEW OF SELECTED LITERATURE 1.1 INTRODUCTION The purpose of this report is to document progress on a review of literature being conducted to determine the state of knowledge about and availability of data pertaining to control of groundwater flow by structural geologic features, especially faults, fracture zones, and structural juxtaposition of aquifer units. The objective of the literature review is to provide initial bases for combined modeling of structural and groundwater system evolution. Significant technical uncertainties exist concerning the relationship between a region of relatively high potentiometric gradient at the north end of Yucca Mountain and the role of faults as potential barriers to local-scale flow (Czarnecki, 1989b; Sinton, 1989). Concern also exists as to the potential for continued fault displacement to create fault-controlled conduits of flow from the region of high gradient (Ahola and Sagar, 1992; Sinton, 1989). Existing analyses and scientific/technical investigations considering structural control of groundwater flow at Yucca Mountain occur in four basic classes: (i) models of flow and transport in natural fracture systems, (ii) local-scale field oriented investigations and models of flow around faults and fault zones, (iii) models of sub-regional flow in the immediate Yucca Mountain area, and (iv) regional scale models of interbasin flow.
    [Show full text]
  • Metamorphic Fabrics
    11/30/2015 Geol341 J. Toro Topics • Fabrics • Foliation, cleavage, lineation Metamorphic Rocks and – Cleavage and Folds –Geometry Cleavage Development – Strain significance • Origin of Cleavage – Pressure solution – Passive rotation – Recrystallization • Shear zones Many diagrams are from Earth Structure, van der Pluijm and Marshak, 2004 2013 Geothermal Gradient and Metamorphism Naming of Metamorphic Rocks Slatey cleavage Gneiss Segregation of mafic and felsic components Where does it come from? 1 11/30/2015 Looks like bedding, but is it? Metamorphic layering Brooks Range, AK Quartz-mica schist Isoclinal Fold Transposition of Layering Fabric “Arrangement of component features in a rock” van der Pluijm & Marshak •Includes: •Texture •Composition •Microstructure •Preferred Orientation Horizontal fabric => Vertical fabric 2 11/30/2015 Quartz-mica schist Fabric Elements •Bedding (S0) •Compositional layering •Crystallographic orientation •Fold Hinges •Cleavage planes (S1) •Mineral elongation lineation Passchier and Trouw (1996) Metamorphic Fabrics Metamorphic Fabrics • Foliation : Cleavage, Schistosity • Foliation • Lineation: Mineral Lineation, Intersection Lineation – Cleavage – Schistosity • Lineation Random fabric S-tectonite L-tectonite L/S-tectonite Foliation Lineation S-Tectonites L-Tectonites Schists Columbia Pluton, VA Lineated Gneiss USGS photo U. Western Ontario photo 3 11/30/2015 L-S Tectonites 3D Strain - Flinn diagram No strain along 3rd dimension Cigars S =S >S S1/S2 1 2 3 S1>S2=S3 Lineated and foliated gneiss, Himalayas Prolate
    [Show full text]