Seismic Properties and Anisotropy of the Continental Crust: Predictions Based on Mineral Texture and Rock Microstructure Bjarne S
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tectonic Imbrication and Foredeep Development in the Penokean
Tectonic Imbrication and Foredeep Development in the Penokean Orogen, East-Central Minnesota An Interpretation Based on Regional Geophysics and the Results of Test-Drilling The Penokean Orogeny in Minnesota and Upper Michigan A Comparison of Structural Geology U.S. GEOLOGICAL SURVEY BULLETIN 1904-C, D AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in Books of the U.S. -
Microstructure of Selected Metamorphic Rock Types – Application of Petrographic Image Analysis
Acta Geodyn. Geomater., Vol. 7, No. 4 (160), 431–443, 2010 MICROSTRUCTURE OF SELECTED METAMORPHIC ROCK TYPES – APPLICATION OF PETROGRAPHIC IMAGE ANALYSIS Šárka ŠACHLOVÁ 1,2)*, Vladimír SCHENK 2) and Zdeňka SCHENKOVÁ 2) 1) Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic 2) Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, v.v.i., V Holešovičkách 41, 182 09 Prague, Czech Republic *Corresponding author‘s e-mail: [email protected] (Received August 2010, accepted November 2010) ABSTRACT Microscopic techniques, such as polarising microscopy and scanning electron microscopy with energy dispersive spectrometer (SEM/EDS), were used in combination with petrographic image analysis with the aim of a quantitative determination of the mineral composition, rock microstructure, and degree of metamorphism of selected quartz-rich metamorphic rock types. Sampled orthogneiss rock types are mainly composed of feldspar, quartz, biotite, and amphibole. The grains are less isometric, elongated, having smooth boundaries, and showing a weak preferential orientation. The deformation and recrystallization characteristics of quartz indicate high-temperature recrystallization (the grain boundary migration recrystallization mechanism). Schist and phyllite rock types are preferentially very-fine to fine-grained, showing a strong shape preferred orientation. Their sedimentary origin was indicated by the presence of graphite. -
II Eshelby Tensor of Concave Superspherical Inclusions
AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4 Code de la Propriété Intellectuelle. articles L 335.2- L 335.10 http://www.cfcopies.com/V2/leg/leg_droi.php http://www.culture.gouv.fr/culture/infos-pratiques/droits/protection.htm Thèse de DOCTORAT Préparée à L’Université de Lorraine - Laboratoire Georessources –UMR7359 Présentée par Fengjuan CHEN Pour obtenir le grade de Docteur en SCIENCES DE L’UNIVERSITE DE LORRAINE Spécialité Mécanique - Génie Civil Modélisation Micromécanique de Milieux Poreux Hétérogènes et Applications aux Roches Oolithiques Ph-D Thesis Micromechanical Modelling of Heterogeneous Porous Materials with Application to Oolitic Rocks Soutenance publiquement le 24 Octobre 2016 Jury composé de M.KACHANOV Professeur Tufts University, USA Rapporteur V.KUSHCH Professeur Ukraine National Academy of Science, UA Rapporteur Y.GUEGUEN Professeur Ecole Nationale Supérieure, Paris, France Examinateur I.SEVOSTIANOV Professeur New Mexico State University, USA Examinateur A.GIRAUD Professeur ENSG, Nancy, France Directeur D.GRGIC Maître de conférences ENSG, Nancy, France Co-directeur II For my father, for my mother, "It's not that I'm so smart, it's just that I stay with problems longer " Albert Einstein III IV Acknowledgement Considering the challenge, I would not accomplish my Ph.D. -
24. Anelastic Strain Recovery and Elastic Properties of Oceanic Basaltic Rocks1
Gradstein, F. M., Ludden, J. N., et al., 1992 Proceedings of the Ocean Drilling Program, Scientific Results, Vol. 123 24. ANELASTIC STRAIN RECOVERY AND ELASTIC PROPERTIES OF OCEANIC BASALTIC ROCKS1 N. R. Brereton,2 P. N. Chroston,3 C. J. Evans,2 J. A. Hudson,4 and R. B. Whitmarsh5 ABSTRACT A knowledge of rock stress is fundamental for improving our understanding of oceanic crustal mechanisms and lithospheric dynamic processes. However, direct measurements of stress in the deep oceans, and in particular stress magnitudes, have proved to be technically difficult. Anelastic strain recovery measurements were conducted on 15 basalt core samples from Sites 765 and 766 during Leg 123. Three sets of experiments were performed: anelastic strain recovery monitoring, dynamic elastic property measure- ments, and thermal azimuthal anisotropy observations. In addition, a range of other tests and observations were recorded to characterize each of the samples. One common feature of the experimental results and observations is that apparently no consistent orientation trend exists, either between the different measurements on each core sample or between the same sets of measurements on the various core samples. However, some evidence of correspondence between velocity anisotropy and anelastic strain recovery exists, but this is not consistent for all the core samples investigated. Thermal azimuthal anisotropy observations, although showing no conclusive correlations with the other results, were of significant interest in that they clearly exhibited anisotropic behavior. The apparent reproducibility of this behavior may point toward the possibility of rocks that retain a "memory" of their stress history, which could be exploited to derive stress orientations from archived core. -
Global Mantle Flow and the Development of Seismic Anisotropy: Differences Between the Oceanic and Continental Upper Mantle Clinton P
Global Mantle Flow and the Development of Seismic Anisotropy: Differences Between the Oceanic and Continental Upper Mantle Clinton P. Conrad Department of Earth and Planetary Sciences Johns Hopkins University Baltimore, MD 21218, USA Mark D. Behn Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole, MA 02543, USA Paul G. Silver Department of Terrestrial Magnetism Carnegie Institution of Washington Washington, DC 20015, USA Submitted to Journal of Geophysical Research : July 3, 2006 Viscous shear in the asthenosphere accommodates relative motion between the Earth’s surface plates and underlying mantle, generating lattice-preferred orientation (LPO) in olivine aggregates and a seismically anisotropic fabric. Because this fabric develops with the evolving mantle flow field, observations of seismic anisotropy directly constrain flow patterns if the contribution of lithospheric fossil anisotropy is small. We use global viscous mantle flow models to characterize the relationship between asthenospheric deformation and LPO, and constrain the asthenospheric contribution to anisotropy using a global compilation of observed shear-wave splitting measurements. For asthenosphere >500 km from plate boundaries, simple shear rotates the LPO toward the infinite strain axis (ISA, the LPO after infinite deformation) faster than the ISA changes along flow lines. Thus, we expect ISA to approximate LPO throughout most of the asthenosphere, greatly simplifying LPO predictions because strain integration along flow lines is unnecessary. Approximating LPO ~ISA and assuming A-type fabric (olivine a-axis parallel to ISA), we find that mantle flow driven by both plate motions and mantle density heterogeneity successfully predicts oceanic anisotropy (average misfit = 12º). Continental anisotropy is less well fit (average misfit = 39º), but lateral variations in lithospheric thickness improve the fit in some continental areas. -
Tectono-Metamorphic Evolution of the Northern Menderes Massif: Evidence from the Horst Between Gördes and Demirci Basins (West Anatolia, Turkey)
TECTONO-METAMORPHIC EVOLUTION OF THE NORTHERN MENDERES MASSIF: EVIDENCE FROM THE HORST BETWEEN GÖRDES AND DEMİRCİ BASINS (WEST ANATOLIA, TURKEY) A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY ÇAĞRI BUĞDAYCIOĞLU IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGICAL ENGINEERING SEPTEMBER 2004 Approval of the Graduate School of Natural and Applied Sciences. I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of Science. This is to certify that we have read this thesis and that in our opinion it is fully adequate, in scope and quality, as a thesis for the degree of Master of Science. Examining Committee Members Prof.Dr. Vedat Toprak (METU, GEOE) ___________________ Prof.Dr. Erdin Bozkurt (METU, GEOE) ___________________ Assoc.Prof.Dr. Bora Rojay (METU, GEOE) ___________________ Assoc.Prof.Dr. Kadir Dirik (HU, GEOE) ___________________ Assist.Prof.Dr. İsmail Ömer Yılmaz (METU, GEOE) ___________________ ii I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last name : Çağrı Buğdaycıoğlu Signature : iii ABSTRACT TECTONO-METAMORPHIC EVOLUTION OF THE NORTHERN MENDERES MASSIF: EVIDENCE FROM THE HORST BETWEEN GÖRDES AND DEMİRCİ BASINS (WEST ANATOLIA, TURKEY) Buğdaycıoğlu, Çağrı M.Sc., Department of Geological Engineering Supervisor : Prof.Dr. Erdin Bozkurt September 2004, 163 pages The Menderes Massif forms a large metamorphic culmination in western Turkey – an extensional province where continental lithosphere has been stretching following Palaeogene crustal thickening. -
Seismic Anisotropy: a Review of Studies by Japanese Researchers
J. Phys. Earth, 43, 301-319, 1995 Seismic Anisotropy: A Review of Studies by Japanese Researchers Satoshi Kaneshima Departmentof Earth and Planetary Physics, Faculty of Science, The Universityof Tokyo, Bunkyo-ku,Tokyo 113,Japan 1. Preface Studies on seismic anisotropy in Japan began in the mid 60's, nearly at the same time its importance for geodynamicswas revealed by Hess (1964). Work in the 60's and 70's consisted mainly of studies of the theoretical and/or observational aspects of seismic surface waves. The latter half of the 70' and the 80's, on the other hand, may be characterized as being rich in body wave observations. Elastic wave propagation in anisotropic media is currently under extensiveresearch in exploration seismologyin the U.S. and Europe. Numerous laboratory experiments in the fields of mineral physics and rock mechanics have been performed throughout these decades. This article gives a review of research concerning seismic anisotropy by Japanese authors. Studies by foreign authors are also referred to whenever they are considered to be essential in the context of this article. The review is divided into five sections which deal with: (1) laboratory measurements of elastic anisotropy of rocks or minerals, (2) papers on rock deformation and the origin of seismic anisotropy relevant to tectonics and geodynarnics,(3) theoretical studies on the Earth's free oscillations, (4) theory and observations for surface waves, and (5) body wave studies. Added at the end of this article is a brief outlook on some current topics on seismic anisotropy as well as future problems to be solved. -
Shear Zone-Related Folds
Journal of Structural Geology 27 (2005) 1229–1251 www.elsevier.com/locate/jsg Shear zone-related folds Jordi Carreras, Elena Druguet*, Albert Griera Departament de Geologia, Universitat Auto`noma de Barcelona, 08193 Bellaterra, Spain Received 18 April 2003; received in revised form 27 February 2004; accepted 14 June 2004 Available online 30 November 2004 Abstract Folds in ductile shear zones are common structures that have a variety of origins. These can be pre-existing folds that become modified or folds developed during the shearing event. Among the syn-shearing folds, a second subdivision is based on the relative age of the folded surface, which can be pre-existing or newly formed during the shearing event. In each of the three categories final fold geometry and orientation show complex relationships with the kinematic frame. The final fold geometry depends on the vorticity within the shear zone, the rheology and the initial orientation of the folded surface relative to the kinematic framework. It follows that folds are complex structures, difficult to use as kinematic indicators. However, in shear zones where undeformed wall rocks with pre-shear structures are accessible and where kinematics can be well established, folds can provide a valuable natural means to understand the initiation and evolution of structures under non-coaxial regimes. We point to the need of discriminating among different plausible categories, based on the nature of the folded surface and on the inherent structural features of each category. q 2004 Elsevier Ltd. All rights reserved. Keywords: Fold; Shear zone; Geometry; Kinematics; Cap de Creus 1. Introduction final geometry, symmetry and orientation of a shear-related fold are influenced by many variables other than the shear Folds are common structures in many ductile shear sense. -
Stress and Fluid Control on De Collement Within Competent Limestone
Journal of Structural Geology 22 (2000) 349±371 www.elsevier.nl/locate/jstrugeo Stress and ¯uid control on de collement within competent limestone Antonio Teixell a,*, David W. Durney b, Maria-Luisa Arboleya a aDepartament de Geologia, Universitat AutoÁnoma de Barcelona, 08193 Bellaterra, Spain bDepartment of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia Received 5 October 1998; accepted 23 September 1999 Abstract The Larra thrust of the Pyrenees is a bedding-parallel de collement located within a competent limestone unit. It forms the ¯oor of a thrust system of hectometric-scale imbrications developed beneath a synorogenic basin. The fault rock at the de collement is a dense stack of mainly bedding-parallel calcite veins with variable internal deformation by twinning and recrystallization. Veins developed as extension fractures parallel to a horizontal maximum compressive stress, cemented by cavity-type crystals. Conditions during vein formation are interpreted in terms of a compressional model where crack-arrays develop at applied stresses approaching the shear strength of the rock and at ¯uid pressures equal to or less than the overburden pressure. The cracks developed in response to high dierential stress, which was channelled in the strong limestone, and high ¯uid pressure in or below the thrust plane. Ductile deformation, although conspicuous, cannot account for the kilometric displacement of the thrust, which was mostly accommodated by slip on water sills constituted by open cracks. A model of cyclic dierential brittle contraction, stress reorientation, slip and ductile relaxation at a rheological step in the limestone is proposed as a mechanism for episodic de collement movement. -
Characterization of Olivine Fabrics and Mylonite in the Presence of Fluid
Jung et al. Earth, Planets and Space 2014, 66:46 http://www.earth-planets-space.com/content/66/1/46 FULL PAPER Open Access Characterization of olivine fabrics and mylonite in the presence of fluid and implications for seismic anisotropy and shear localization Sejin Jung1, Haemyeong Jung1* and Håkon Austrheim2 Abstract The Lindås Nappe, Bergen Arc, is located in western Norway and displays two high-grade metamorphic structures. A Precambrian granulite facies foliation is transected by Caledonian fluid-induced eclogite-facies shear zones and pseudotachylytes. To understand how a superimposed tectonic event may influence olivine fabric and change seismic anisotropy, two lenses of spinel lherzolite were studied by scanning electron microscope (SEM) and electron back-scattered diffraction (EBSD) techniques. The granulite foliation of the surrounding anorthosite complex is displayed in ultramafic lenses as a modal variation in olivine, pyroxenes, and spinel, and the Caledonian eclogite-facies structure in the surrounding anorthosite gabbro is represented by thin (<1 cm) garnet-bearing ultramylonite zones. The olivine fabrics in the spinel bearing assemblage were E-type and B-type and a combination of A- and B-type lattice preferred orientations (LPOs). There was a change in olivine fabric from a combination of A- and B-type LPOs in the spinel bearing assemblage to B- and E-type LPOs in the garnet lherzolite mylonite zones. Fourier transform infrared (FTIR) spectroscopy analyses reveal that the water content of olivine in mylonite is much higher (approximately 600 ppm H/Si) than that in spinel lherzolite (approximately 350 ppm H/Si), indicating that water caused the difference in olivine fabric. -
Anja SCHORN & Franz NEUBAUER
Austrian Journal of Earth Sciences Volume 104/2 22 - 46 Vienna 2011 Emplacement of an evaporitic mélange nappe in central Northern Calcareous Alps: evidence from the Moosegg klippe (Austria)_______________________________________________ Anja SCHORN*) & Franz NEUBAUER KEYWORDS thin-skinned tectonics deformation analysis Dept. Geography and Geology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria; sulphate mélange fold-thrust belt *) Corresponding author, [email protected] mylonite Abstract For the reconstruction of Alpine tectonics, the Permian to Lower Triassic Haselgebirge Formation of the Northern Calcareous Alps (NCA) (Austria) plays a key role in: (1) understanding the origin of Haselgebirge bearing nappes, (2) revealing tectonic processes not preserved in other units, and (3) in deciphering the mode of emplacement, namely gravity-driven or tectonic. With these aims in mind, we studied the sulphatic Haselgebirge exposed to the east of Golling, particularly the gypsum quarry Moosegg and its surroun- dings located in the central NCA. There, overlying the Lower Cretaceous Rossfeld Formation, the Haselgebirge Formation forms a tectonic klippe (Grubach klippe) preserved in a synform, which is cut along its northern edge by the ENE-trending high-angle normal Grubach fault juxtaposing Haselgebirge to the Upper Jurassic Oberalm Formation. According to our new data, the Haselgebirge bearing nappe was transported over the Lower Cretaceous Rossfeld Formation, which includes many clasts derived from the Hasel- gebirge Fm. and its exotic blocks deposited in front of the incoming nappe. The main Haselgebirge body contains foliated, massive and brecciated anhydrite and gypsum. A high variety of sulphatic fabrics is preserved within the Moosegg quarry and dominant gyp- sum/anhydrite bodies are tectonically mixed with subordinate decimetre- to meter-sized tectonic lenses of dark dolomite, dark-grey, green and red shales, pelagic limestones and marls, and abundant plutonic and volcanic rocks as well as rare metamorphic rocks. -
Mylonite Zones in the Crystalline Basement Rocks of Sixmile Creek and Yankee Jim Canyon Park County Montana
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1982 Mylonite zones in the crystalline basement rocks of Sixmile Creek and Yankee Jim Canyon Park County Montana Robert Robert Burnham The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Burnham, Robert Robert, "Mylonite zones in the crystalline basement rocks of Sixmile Creek and Yankee Jim Canyon Park County Montana" (1982). Graduate Student Theses, Dissertations, & Professional Papers. 4677. https://scholarworks.umt.edu/etd/4677 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1976 This is an unpublished manuscript in which copyright sub s is t s . Any further reprinting of its contents must be approved BY THE AUTHOR. Mansfield Library U niversity of Montana Date: 19 8 2 MYLONITE ZONES IN THE CRYSTALLINE BASEMENT ROCKS OF SIXMILE CREEK AND YANKEE JIM CANYON, PARK COUNTY, MONTANA by Robert Burnham B.A., Dartmouth, 1980 Presented in partial fulfillment of the requirements for the degree of Master of Science UNIVERSITY OF MONTANA 1982 Approved by: UMI Number: EP40141 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.