Seismic Anisotropy: a Review of Studies by Japanese Researchers

Total Page:16

File Type:pdf, Size:1020Kb

Seismic Anisotropy: a Review of Studies by Japanese Researchers J. Phys. Earth, 43, 301-319, 1995 Seismic Anisotropy: A Review of Studies by Japanese Researchers Satoshi Kaneshima Departmentof Earth and Planetary Physics, Faculty of Science, The Universityof Tokyo, Bunkyo-ku,Tokyo 113,Japan 1. Preface Studies on seismic anisotropy in Japan began in the mid 60's, nearly at the same time its importance for geodynamicswas revealed by Hess (1964). Work in the 60's and 70's consisted mainly of studies of the theoretical and/or observational aspects of seismic surface waves. The latter half of the 70' and the 80's, on the other hand, may be characterized as being rich in body wave observations. Elastic wave propagation in anisotropic media is currently under extensiveresearch in exploration seismologyin the U.S. and Europe. Numerous laboratory experiments in the fields of mineral physics and rock mechanics have been performed throughout these decades. This article gives a review of research concerning seismic anisotropy by Japanese authors. Studies by foreign authors are also referred to whenever they are considered to be essential in the context of this article. The review is divided into five sections which deal with: (1) laboratory measurements of elastic anisotropy of rocks or minerals, (2) papers on rock deformation and the origin of seismic anisotropy relevant to tectonics and geodynarnics,(3) theoretical studies on the Earth's free oscillations, (4) theory and observations for surface waves, and (5) body wave studies. Added at the end of this article is a brief outlook on some current topics on seismic anisotropy as well as future problems to be solved. There have been a few recent reviews of seismic anisotropy, such as Kawasaki (1989), Karato (1989), and Takeshita and Karato (1989). The former emphasizes seismological observations, whereas the latter emphasizes deformation of rocks and petrological aspects of anisotropy. 2. Laboratory Measurementsof Elastic Anisotropy 2.1 Elastic constants of single crystals Determination of elastic constants of minerals and rocks is the basis of any studies on seismic anisotropy. Japan has played a leading role in developing technology for measuring the physical properties of material under high temperature and pressure. Collaborations between Japanese researchers and foreign researchers have also been ReceivedMay 19, 1992;Accepted May 20, 1993 301 302 S. Kaneshima fruitful in determining elastic constants. Techniques for measuring the elastic constants of minerals may be separated into two classes. The first measures propagation speeds of acoustic waves through mineral samples in various directions (Fig. 1(a)) and converts them to the elastic constants at the samples. Measuring ultrasonic wave velocities, for instance, Kumazawa determined the elastic constants of single crystal of olivine (Kumazawa and Anderson, 1969), and of orthopyroxene (Kumazawa, 1969). Kasahara and Kumazawa (1969) attempted to find relation between optical and acoustic anisotropies of crystals. The Brillouin spectroscopy method has also been used to measure velocities of elastic waves and to determine elastic constants for geophysically important minerals such as /3 (beta) phase of Mg2SiO4 (e.g., Sawamoto et al., 1984), y (gamma) phase of Mg2SiO4 (e.g., Weidner et al., 1984), and MgSiO3 perovskite (e.g., Yeganeh-Haeri et al., 1989). Compared with the first technique using body waves based on the approximation of geometrical optics, the second method, called the "resonance technique," directly applies the wave equation to the oscillation of samples. The resonance technique measures the eigenfrequencies of free oscillation (resonance) either of parallelepiped (e.g., Ohno, 1976) or of spherical samples (Suzuki et al., 1992) and converts them to the elastic constants using the variational principle. For instance, Oda et al. (1988) determined the elastic constants of spherical samples of anisotropic crystals applying the mathematical formulation of Mochizuki (1988 a). Details of the spherical resonance Fig. 1. (a) Variation of the quasi-P (qP) and the two quasi-S (qS1 and qS2) body-wave phase velocities for propagation in three ((001), (100), and (010)) orthogonal planes of symmetry of crystalline olivine. In each plane, qS1 and qS2 correspond either qSH or to qSV, where qSH and qSV represent the shear waves polarized nearly parallel and perpendicular to the propagation plane, respectively. (b) Schematic figure of shear wave splitting. A shear wave travelling through an anisotropic medium splits into two orthogonally polarized (quasi-)shear waves with different speeds (from Nicolas and Christensen (1987)). J. Phys. Earth Seismic Anisotropy: A Review of Studies by Japanese Researchers 303 technique are given in a recent article on measurements of elastic constants of olivine by Suzuki et al. (1992). Mochizuki (1987 a) presented a formula which can be used for resonance of parallelepiped samples. Aside from the papers cited above, a number of measurements have been performed for various single crystals. The contributions by Japanese researchers to the determination of elastic constants of minerals are discussed in a recent review article by Anderson et al. (1992). 2.2 Elastic anisotropy of polycrystalline rocks The elastic constants of polycrystalline rocks are determined by the first of the above class of techniques for measuring body wave speeds. Kasahara et al. (1968 a, b), analyzed the petro-fabric of dunite samples which are composed mostly of olivine, and also measured the compressive and shear velocities of ultrasonic waves in various directions through the samples. They observed anisotropy-related phenomena, indicating azimuthal dependence of body wave propagation speeds as well as splitting of body shear waves. They also confirmed that the elastic anisotropy of dunite is closely related with the preferred alignments of a- and b-axes of olivine crystals (LPO) in the directions parallel and perpendicular to the lineation, respectively. Elastic anisotropy of amphibolite, a typical metamorphic rock in the lower crust, was measured and related to the LPO of hornblende by Siegesmund et al. (1989). For upper crustal rocks such as granite, on the other hand, experimental studies are mainly on the anisotropy due to preferred alignments of cracks. Intensive measurements of the elastic constants of granite have been performed, confirming the presence of three sets of orthogonal cracks, which are commonly known as "rift" and "grain" in quarries (e.g., Sano et al., 1992; Kudo et al., 1987). Since Nur and Simmons (1969) showed azimuthal variation of seismic wave speeds and splitting of shear waves on uni-axially stressed samples, seismic anisotropy of crustal rocks has been related to dilatancy, which is the stress induced opening of cracks before failure of rocks. A number of studies have been performed on anisotropy caused by preferred alignments of microcracks for crustal rocks like granite under deformation due to non-hydrostatic stress (e.g., Soga et al., 1978; Takahashi et al., 1984). The experiment by Soga et al. (1978) was on the velocity anisotropy of uni-axially stressed samples, whereas Takahashi et al. (1984) examined the same phenomenon in triaxially stressed rock samples. Such studies always need a theory for the computation of effective elastic constants of materials that include cracks. The theories are classified into two approaches. The first one applies scattering theory under the assumption of a long wavelength of the incident waves compared with the size of the cracks, and requires the distribution of crack to be sparse so that interaction between the cracks can be neglected (e.g., Hudson, 1981). The second class of methods evaluates the elastic energy due to the presence of an elliptical inclusion under a static stress field (Eshelby, 1957). Using the second approach, Nishizawa (1982) presented a numerical method to compute the effective elastic constants of isotropic materials including non-randomly aligned cracks, which can be applied even to dense distributions of thick cracks. Nishizawa and Yoshino (1991) attempted to extend Nishizawa's method to the case of crack alignment in generally anisotropic materials. Vol. 43, No. 3, 1995 304 S. Kaneshima 3. Deformation of Rocks and the Origin of Seismic Anisotropy: Implications for Geodynamics 3.1 Origin of seismic anisotropy As described in the last section, mantle and crustal rocks are usually anisotropic. This means that if elastic anisotropy of in situ rock is uniform within a large enough volume, it can be detected through seismological observations. The anisotropy of in situ rocks has great importance for our understanding of geodynamics. The mechanisms which cause elastic anisotropy of in situ rocks include: (1) lattice preferred orientation (LPO) of the minerals composing the rocks, (2) preferred orientation of pockets of melts in partially molten materials, and (3) preferred orientation of brittle tensile cracks filled with liquid such as water. LPO of olivine is widely believed to be the dominant cause of upper mantle anisotropy and reflect the geometry of flow or stress orientation depending on the ambient condition such as temperature and strain rate. Brittle tensile cracks play a principal role in the upper crust as they are predominantly aligned parallel to the maximum compressive stress, while they are unlikely to pervade in the lower crust and mantle. Partial melting may prevail in the part of the asthenosphere where the geotherm is close to the solidus, and may exist in the mantle beneath island arcs,
Recommended publications
  • Global Mantle Flow and the Development of Seismic Anisotropy: Differences Between the Oceanic and Continental Upper Mantle Clinton P
    Global Mantle Flow and the Development of Seismic Anisotropy: Differences Between the Oceanic and Continental Upper Mantle Clinton P. Conrad Department of Earth and Planetary Sciences Johns Hopkins University Baltimore, MD 21218, USA Mark D. Behn Department of Geology and Geophysics Woods Hole Oceanographic Institution Woods Hole, MA 02543, USA Paul G. Silver Department of Terrestrial Magnetism Carnegie Institution of Washington Washington, DC 20015, USA Submitted to Journal of Geophysical Research : July 3, 2006 Viscous shear in the asthenosphere accommodates relative motion between the Earth’s surface plates and underlying mantle, generating lattice-preferred orientation (LPO) in olivine aggregates and a seismically anisotropic fabric. Because this fabric develops with the evolving mantle flow field, observations of seismic anisotropy directly constrain flow patterns if the contribution of lithospheric fossil anisotropy is small. We use global viscous mantle flow models to characterize the relationship between asthenospheric deformation and LPO, and constrain the asthenospheric contribution to anisotropy using a global compilation of observed shear-wave splitting measurements. For asthenosphere >500 km from plate boundaries, simple shear rotates the LPO toward the infinite strain axis (ISA, the LPO after infinite deformation) faster than the ISA changes along flow lines. Thus, we expect ISA to approximate LPO throughout most of the asthenosphere, greatly simplifying LPO predictions because strain integration along flow lines is unnecessary. Approximating LPO ~ISA and assuming A-type fabric (olivine a-axis parallel to ISA), we find that mantle flow driven by both plate motions and mantle density heterogeneity successfully predicts oceanic anisotropy (average misfit = 12º). Continental anisotropy is less well fit (average misfit = 39º), but lateral variations in lithospheric thickness improve the fit in some continental areas.
    [Show full text]
  • The Upper Mantle and Transition Zone
    The Upper Mantle and Transition Zone Daniel J. Frost* DOI: 10.2113/GSELEMENTS.4.3.171 he upper mantle is the source of almost all magmas. It contains major body wave velocity structure, such as PREM (preliminary reference transitions in rheological and thermal behaviour that control the character Earth model) (e.g. Dziewonski and Tof plate tectonics and the style of mantle dynamics. Essential parameters Anderson 1981). in any model to describe these phenomena are the mantle’s compositional The transition zone, between 410 and thermal structure. Most samples of the mantle come from the lithosphere. and 660 km, is an excellent region Although the composition of the underlying asthenospheric mantle can be to perform such a comparison estimated, this is made difficult by the fact that this part of the mantle partially because it is free of the complex thermal and chemical structure melts and differentiates before samples ever reach the surface. The composition imparted on the shallow mantle by and conditions in the mantle at depths significantly below the lithosphere must the lithosphere and melting be interpreted from geophysical observations combined with experimental processes. It contains a number of seismic discontinuities—sharp jumps data on mineral and rock properties. Fortunately, the transition zone, which in seismic velocity, that are gener- extends from approximately 410 to 660 km, has a number of characteristic ally accepted to arise from mineral globally observed seismic properties that should ultimately place essential phase transformations (Agee 1998). These discontinuities have certain constraints on the compositional and thermal state of the mantle. features that correlate directly with characteristics of the mineral trans- KEYWORDS: seismic discontinuity, phase transformation, pyrolite, wadsleyite, ringwoodite formations, such as the proportions of the transforming minerals and the temperature at the discontinu- INTRODUCTION ity.
    [Show full text]
  • Radial Seismic Anisotropy As a Constraint for Upper Mantle Rheology ⁎ Thorsten W
    Available online at www.sciencedirect.com Earth and Planetary Science Letters 267 (2008) 213–227 www.elsevier.com/locate/epsl Radial seismic anisotropy as a constraint for upper mantle rheology ⁎ Thorsten W. Becker a, , Bogdan Kustowski b, Göran Ekström c a Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA b Department of Earth and Planetary Sciences, Harvard University, Cambridge MA, USA c Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Palisades, NY, USA Received 26 July 2007; received in revised form 9 November 2007; accepted 22 November 2007 Available online 8 December 2007 Editor: R.D. van der Hilst Abstract Seismic shear waves that are polarized horizontally (SH) generally travel faster in the upper mantle than those that are polarized vertically (SV), and deformation of rocks under dislocation creep has been invoked to explain such radial anisotropy. Convective flow of the upper mantle may thus be constrained by modeling the textures that progressively form by lattice-preferred orientation (LPO) of intrinsically anisotropic grains. While azimuthal anisotropy has been studied in detail, the radial kind has previously only been considered in semi-quantitative models. Here, we show that radial anisotropy averages as well as radial and azimuthal anomaly-patterns can be explained to a large extent by mantle flow, if lateral viscosity variations are taken into account. We construct a geodynamic reference model which includes LPO formation based on mineral physics and flow computed using laboratory-derived olivine rheology. Previously identified anomalous vSV regions beneath the East Pacific Rise and relatively fast vSH regions within the Pacific basin at ~150 km depth can be linked to mantle upwellings and shearing in the asthenosphere, respectively.
    [Show full text]
  • No.294 "Flow and Seismic Anisotropy in the Mantle Transition Zone: Shear
    第294回ジオダイナミクスセミナー Deformation of olivine and implicationsfor the dynamics of Earth’s upper mantle Speaker:Tomohiro Ohuchi (Postdoctral Fellow, GRC) 主催:愛媛大学地球深部ダイナミクス研究センター 日時:4/22(金)午後 4時30分~ Abstract 場所:総合研究棟4F 共通会議室 Crystallographic preferred orientation (CPO) of olivine, which is developed by dislocation creep, controls the seismic anisotropy in the upper mantle. One of the remarkable observations on the upper mantle near subduction zones is a striking rotation of fast direction of shear-wave splitting across an arc. Trench-normal fast directions are observed in the back-arc side, but trench-parallel ones are observed in the fore-arc side (e.g, Smith et al., 2001; Nakajima and Hasegawa, 2004). The rotation of fast direction of shear-wave splitting has been attributed to the transition of mantle-flow direction from trench-normal flow (in the back-arc side) to trench-parallel flow (in the fore-arc side) under the assumption that the A-type olivine fabric (developed by the (010)[100] slip system), which has a seismic fast-axis orientation subparallel to the shear direction, is assumed to be the unique cause of seismic anisotropy (e.g., Russo and Silver, 1994). However, this model is not fully supported by other observations such as geodetic observations. Recent laboratory results have shown that the flow-parallel shear wave splitting is caused not only by A- type olivine fabric but also by C- (developed by the (100)[001] slip system) and E-type (by the (001)[100] slip system) olivine fabrics (Jung and Karato, 2001; Katayama et al., 2004). Moreover, flow-perpendicular shear wave splitting is also found to be caused by the B-type olivine fabric (developed by the (010)[001] slip system) (Jung and Karato, 2001).
    [Show full text]
  • Chapter 20. Fabric of the Mantle
    Chapter 20 Fabric of the mantle A nisotropy this edition. There was a very large section on anisotropy since it was a relatively new concept And perpendicular now and now to seismologists. There was also a large section devoted to the then-novel thesis that seismic transverse, Pierce the dark soil and as velocities were not independent of frequency, they pierce and pass Make bare the and that anelasticity had to be allowed for in esti­ secrets of the Earth's deep heart. mates of mantle temperatures. Earth scientists no longer need to be convinced that anisotropy Shelley, Prometheus Unbound and anelasticity are essential elements in Earth physics, but there may still be artifacts in tomo­ Anisotropy is responsible for large variations in graphic models or in estimates of errors that seismic velocities; changes in the orientation of are caused by anisotropy. At the time of the mantle minerals, or in the direction of seismic first edition of this book - 1989 - the Earth waves, cause larger changes in velocity than can was usually assumed to be perfectly elastic and be accounted for by changes in temperature, isotropic to the propagation of seismic waves. composition or mineralogy. Plate-tectonic pro­ These assumptions were made for mathemati­ cesses, and gravity, create a fabric in the mantle. cal and operational convenience. The fact that Anisotropy can be microscopic - orientation of a large body of seismic data can be satisfacto­ crystals - or macroscopic - large-scale lamina­ rily modeled with these assumptions does not tions or oriented slabs and dikes. Discussions of prove that the Earth is isotropic or perfectly velocity gradients, both radial and lateral, and elastic.
    [Show full text]
  • Discovery of Post-Perovskite and New Views on the Core–Mantle Boundary Region
    Discovery of Post-Perovskite and New Views on the Core–Mantle Boundary Region Kei Hirose1 and Thorne Lay2 DOI: 10.2113/GSELEMENTS.4.3.183 phase transition of MgSiO3 perovskite, the most abundant component the core and by mantle convection should exist in the boundary layer. of the lower mantle, to a higher-pressure form called post-perovskite Chemical heterogeneity is likely to Awas recently discovered for pressure and temperature conditions in the exist in the boundary layer as a vicinity of the Earth’s core–mantle boundary. This discovery has profound result of ancient residues of mantle implications for the chemical, thermal, and dynamical structure of the lowermost differentiation and/or subsequent contributions from deep subduction mantle called the D” region. Several major seismological characteristics of the of oceanic lithosphere, partial melt- D” region can now be explained by the presence of post-perovskite, and the ing in the ultralow-velocity zone specific properties of the phase transition provide the first direct constraints on (ULVZ) just above the core–mantle boundary (CMB), and core–mantle absolute temperature and temperature gradients in the lowermost mantle. chemical reactions. The current Here we discuss the current understanding of the core–mantle boundary region. understanding of D” resulting from recent progress in characterizing KEYWORDS: post-perovskite, phase transition, D” layer, seismic discontinuity this region is reviewed below. INTRODUCTION DISCOVERY OF THE POST-PEROVSKITE Large anomalies in seismic wave velocities have long been PHASE TRANSITION observed in the deepest several hundred kilometers of the For several decades, MgSiO3 perovskite has been recognized mantle (the D” region) (see Lay and Garnero 2007) (FIG.
    [Show full text]
  • A Natural Template for Seismic Anisotropy in Subduction Wedges, Geophys
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER The Ronda peridotite (Spain): A natural template 10.1002/2014GL062547 for seismic anisotropy in subduction wedges Key Points: Jacques Précigout1 and Bjarne S. G. Almqvist2 • Origin of seismic anisotropy and inferred mantle dynamics in 1Institut des Sciences de la Terre d’Orléans, UMR-CNRS 7327, Université d’Orléans, Orléans, France, 2Department of Earth subduction zones • Natural documentation of olivine Sciences, Uppsala University, Uppsala, Sweden fabric across a paleolithosphere • Transitional olivine fabric as source for shear wave splitting in mantle wedges Abstract The origin of seismic anisotropy in mantle wedges remains elusive. Here we provide documentation of shear wave anisotropy (AVs) inferred from mineral fabric across a lithosphere-scale vestige of deformed Supporting Information: mantle wedge in the Ronda peridotite. As predicted for most subduction wedges, this natural case • Figures S1 and S2 exposes a transition from A-type to B-type olivine fabric that occurs with decreasing temperature and enhanced grain boundary sliding at the expense of dislocation creep. We show that B-type fabric AVs Correspondence to: (maximum of 6%) does not support geophysical observations and modeling, which requires 8% AVs. J. Précigout, – [email protected] However, an observed transitional olivine fabric (A/B) develops at intermediate temperatures (800 1000°C) and can generate AVs ≥ 8%. We predict that the A/B-type fabric can account for shear wave splitting in contrasting subduction settings, exemplified by the Ryukyu and Honshu subduction wedges. The Ronda Citation: Précigout, J., and B. S. G. Almqvist peridotite therefore serves as a natural template to decipher the mantle wedge deformation from seismic (2014), The Ronda peridotite (Spain): anisotropy.
    [Show full text]
  • Waveform Modeling of Shear Wave Splitting from Anisotropic Models in Iceland
    Article Volume 13, Number 12 6 December 2012 Q12001, doi:10.1029/2012GC004369 ISSN: 1525-2027 Waveform modeling of shear wave splitting from anisotropic models in Iceland Yuanyuan V. Fu Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA Now at Institute of Earthquake Science, China Earthquake Administration, Beijing 100036, China ( [email protected]) Aibing Li Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA Garrett Ito Department of Geology and Geophysics, School of Ocean and Earth Science and Technology, University of Hawai‘iatMānoa, Honolulu, Hawai‘i 96822, USA Shu-Huei Hung Department of Geosciences, National Taiwan University, Taipei 10617, Taiwan [1] No quantitative model of seismic anisotropy beneath Iceland has yet explained the observed shear wave splitting results in Iceland. In this study we explore the structure of mantle seismic anisotropy associated with plume ridge interaction beneath Iceland by modeling synthetic waveforms using a pseudo-spectral method. First, predicted SKS waveforms are shown to produce shear wave splitting results for two anisotropic layers that are in generally agreement with analytic solutions. Next, simple models in which anisotropy are imposed at different depths and geographic regions around Iceland are used to examine different hypoth- esized effects of plume-ridge interaction. The model that is designed to represent crystallographic fabric due to mantle deformation associated with lithosphere spreading in western Iceland and along-axis, chan- neled asthenospheric flow in eastern Iceland can predict the distinct shear wave splitting observations on the east and west sides of the island. Last, we analyze geodynamic models that simulate 3-D mantle flow and evolution of mineral fabric.
    [Show full text]
  • How Are Vertical Shear Wave Splitting Measurements Affected by Variations in the Orientation of Azimuthal Anisotropy with Depth?
    Geophys. J. Int. (2000) 141, 374–390 How are vertical shear wave splitting measurements affected by variations in the orientation of azimuthal anisotropy with depth? Rebecca L. Saltzer, James B. Gaherty* and Thomas. H. Jordan Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of T echnology, Cambridge, MA 02139, USA. E-mail: [email protected] Accepted 1999 December 1. Received 1999 November 22; in original form 1999 May 20 SUMMARY Splitting measurements of teleseismic shear waves, such as SKS, have been used to estimate the amount and direction of upper mantle anisotropy worldwide. These measurements are usually made by approximating the anisotropic regions as a single, homogeneous layer and searching for an apparent fast direction (w˜) and an apparent splitting time (Dt˜) by minimizing the energy on the transverse component of the back- projected seismogram. In this paper, we examine the validity of this assumption. In particular, we use synthetic seismograms to explore how a vertically varying anisotropic medium affects shear wave splitting measurements. We find that weak heterogeneity causes observable effects, such as frequency dependence of the apparent splitting parameters. These variations can be used, in principle, to map out the vertical variations in anisotropy with depth through the use of Fre´chet kernels, which we derive using perturbation theory. In addition, we find that measurements made in typical frequency bands produce an apparent orientation direction that is consistently different from the average of the medium and weighted towards the orientation of the anisotropy in the upper portions of the model. This tendency of the measurements to mimic the anisotropy at the top part of the medium may explain why shear wave splitting measurements tend to be correlated with surface geology.
    [Show full text]
  • PDF (Chapter 15. Anisotropy)
    Theory of the Earth Don L. Anderson Chapter 15. Anisotropy Boston: Blackwell Scientific Publications, c1989 Copyright transferred to the author September 2, 1998. You are granted permission for individual, educational, research and noncommercial reproduction, distribution, display and performance of this work in any format. Recommended citation: Anderson, Don L. Theory of the Earth. Boston: Blackwell Scientific Publications, 1989. http://resolver.caltech.edu/CaltechBOOK:1989.001 A scanned image of the entire book may be found at the following persistent URL: http://resolver.caltech.edu/CaltechBook:1989.001 Abstract: Anisotropy is responsible for the largest variations in seismic velocities; changes in the preferred orientation of mantle minerals, or in the direction of seismic waves, cause larger changes in velocity than can be accounted for by changes in temperature, composition or mineralogy. Therefore, discussions of velocity gradients, both radial and lateral, and chemistry and mineralogy of the mantle must allow for the presence of anisotropy. Anisotropy is not a second-order effect. Seismic data that are interpreted in terms of isotropic theory can lead to models that are not even approximately correct. On the other hand a wealth of new information regarding mantle mineralogy and flow will be available as the anisotropy of the mantle becomes better understood. Anisotropy And perpendicular now and now transverse, Pierce the dark soil and as they pierce and pass Make bare the secrets of the Earth's deep heart. nisotropy is responsible for the largest variations in tropic solid with these same elastic constants can be mod- A seismic velocities; changes in the preferred orienta- eled exactly as a stack of isotropic layers.
    [Show full text]
  • Crustal Seismic Anisotropy of the Ruby Mountains Core Complex and Surrounding Northern Basin and Range Justin T
    University of New Mexico UNM Digital Repository Earth and Planetary Sciences ETDs Electronic Theses and Dissertations Fall 10-25-2018 Crustal Seismic Anisotropy of the Ruby Mountains Core Complex and Surrounding Northern Basin and Range Justin T. Wilgus Follow this and additional works at: https://digitalrepository.unm.edu/eps_etds Part of the Applied Statistics Commons, Geochemistry Commons, Geology Commons, Geomorphology Commons, Geophysics and Seismology Commons, Mineral Physics Commons, and the Tectonics and Structure Commons Recommended Citation Wilgus, Justin T.. "Crustal Seismic Anisotropy of the Ruby Mountains Core Complex and Surrounding Northern Basin and Range." (2018). https://digitalrepository.unm.edu/eps_etds/250 This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at UNM Digital Repository. It has been accepted for inclusion in Earth and Planetary Sciences ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. i Justin T. Wilgus Candidate Earth and Planetary Sciences Department This thesis is approved, and it is acceptable in quality and form for publication: Approved by the Thesis Committee: Dr. Brandon Schmandt, Chairperson Dr. Karl Karlstrom Dr. Lindsay Lowe Worthington ii CRUSTAL SEISMIC ANISOTROPY OF THE RUBY MOUNTAINS CORE COMPLEX AND SURROUNDING NORTHERN BASIN AND RANGE by JUSTIN T. WILGUS B.S. IN GEOLOGY, MINOR IN MATHEMATICS NORTHERN ARIZONA UNIVERSITY, 2015 THESIS Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Earth and Planetary Sciences The University of New Mexico Albuquerque, New Mexico December, 2018 iii ACKNOWLEDGEMENTS I would like to thank my advisor Brandon for giving me this opportunity and always motivating my progress.
    [Show full text]
  • SEISMOLOGY Lecture 9: Anisotropy, Attenuation and Anelasticity
    PEAT8002 - SEISMOLOGY Lecture 9: Anisotropy, attenuation and anelasticity Nick Rawlinson Research School of Earth Sciences Australian National University Anisotropy Introduction Most of the theoretical development in the previous lectures has assumed that seismic waves propagate through an Earth that is made up of isotropic, linearly elastic material. The assumption of isotropy means that the elastic moduli cijkl reduces to two independent constants λ and µ, which means that the elastic properties at a given point in the medium are the same in all directions. Although there can be up to 21 independent elastic constants, any material with more than two is considered anisotropic. In many cases, the assumption of isotropy is acceptable, but as we gradually refine our understanding of Earth structure and composition, the need to consider the effects of anisotropy becomes more important. Anisotropy Transverse isotropy Since only 21 of the 81 elastic constants cijkl are independent, it is possible to reduce the 3 × 3 × 3 × 3 tensor to a 6 × 6 symmetric matrix Cmn: c1111 c1122 c1133 c1123 c1113 c1112 c2211 c2222 c2233 c2223 c2213 c2212 c3311 c3322 c3333 c3323 c3313 c3312 {cmn} = c c c c c c 2311 2322 2333 2323 2313 2312 c1311 c1322 c1333 c1323 c1313 c1312 c1211 c1222 c1233 c1223 c1213 c1212 Anisotropy Transverse isotropy Which can also be written: C11 C12 C13 C14 C15 C16 C21 C22 C23 C24 C25 C26 C31 C32 C33 C34 C35 C36 {Cmn} = C C C C C C 41 42 43 44 45 46 C51 C52 C53 C54 C55 C56 C61 C62 C63 C64 C65 C66 For an isotropic material, cijkl = λδij δkl + µ(δik δjl + δil δjk ), so: λ + 2µ λ λ 0 0 0 λ λ + 2µ λ 0 0 0 λ λ λ + 2µ 0 0 0 {Cmn} = 0 0 0 µ 0 0 0 0 0 0 µ 0 0 0 0 0 0 µ Anisotropy Transverse isotropy Transverse isotropy occurs for a stack of layered material, and is otherwise known as radial anisotropy.
    [Show full text]