Structural Strengthening of Urchin Skeletons by Collagenous Sutural Ligaments

Total Page:16

File Type:pdf, Size:1020Kb

Structural Strengthening of Urchin Skeletons by Collagenous Sutural Ligaments Reference: Biol. Bull. 195: 136- 144. (October, 1998) Structural Strengthening of Urchin Skeletons by Collagenous Sutural Ligaments OLAF ELLERS’, AMY S. JOHNSON*,*, AND PHILIP E. MOBERG’ ’ Section of Evolution and Ecology, Division of Biological Sciences, University of California, One Shields Ave., Davis, California 95616; *, * Biology Department, Bowdoin College, Brunswick, Maine 04011; and ‘Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202 Abstract. Sea urchin skeletonsare strengthenedby flex- ments resist compression and bending, whereas flexible ible collagenous ligaments that bind together rigid calcite elements resist tension and allow flexion. Vertebrate limb plates at sutures. Whole skeletons without ligaments (re- joints and echinoderm skeletons are examples of this de- moved by bleaching) broke at lower apically applied forces sign. Echinoderm skeletons are composed of calcite ossi- than did intact, fresh skeletons. In addition, in three-point cles and collagenous connective tissues in a ratio that bending tests on excised plate combinations, sutural liga- differs among taxa (Moss and Meehan, 1967). In sea ments strengthened sutures but not plates. The degree of cucumbers, for instance, collagenous tissuespredominate, sutural strengthening by ligaments depended on sutural whereas in most sea urchins, calcite plates predominate. position; in tensile tests, ambital and adapical sutureswere In the current study, we investigate the structural role of strengthened more than adoral sutures. Adapical sutures, the collagenous ligaments that bind together the calcite which grow fastest, were also the loosest, suggestingthat plates in urchin skeletons. strengthening by ligaments is associatedwith growth. In The perforated calcite plates are attached to each other fed, growing urchins, sutures overall were looser than in at sutures by ligaments (Fig. 1) that wrap around calcite unfed urchins. Loosenesswas demonstrated visually and rods (trabeculae), thus sewing together adjacent plates by vibration analysis: bleached skeletons of unfed urchins (Moss and Meehan, 1967). In addition, trabeculae project rang at characteristic frequencies, indicating that sound from one plate into holes in the adjacent plates, thus traveled acrosstightly fitting sutures; skeletons of fed ur- interlocking the plates. Ligaments are present to various chins damped vibrations, indicating loss of vibrational en- degrees depending on the species and on the position ergy acrosslooser sutures.Furthermore, bleached skeletons of a suture on an urchin (Telford, 1985a). For instance, of fed urchins broke at lower apically applied forces than meridional (= vertical or radial or zig zag) sutures tend bleached skeletons of unfed urchins, indicating that the to have more ligaments than do circumferential (= hori- sutures of fed urchins had been held together relatively zontal or hoop) sutures. Also, some regions of the skele- loosely by sutural ligaments. Thus, the apparently rigid ton have relatively many sutures and smaller plates. For dome-like skeleton of urchins sometimes transforms into instance, the ambulacral regions (where the tube foot rows a flexible, jointed membraneas suturesloosen and become are located), are composed of many small plates (one flexible during growth. plate per tube foot). In contrast, the interambulacral re- gions have larger plates and fewer sutures. The skeletal Introduction structure is completed by the peristomial membrane, Animal skeletons commonly consist of rigid ossicles which is attached at the oral margin. This membrane is connected by flexible ligaments. In this design, rigid ele- a tough but flexible collagenous tissue (sometimes with calcite ossicle inclusions) that bridges the gap between the Aristotle’s lantern (or jaw) and the skeleton (Wilkie Received 30 January 1998; accepted 12 June 1998. * To whom correspondence should be addressed. E-mail: ajohnson@ et al., 1993). polar.bowdoin.edu Urchin skeletons grow both by the accretion of calcite 136 This content downloaded from 139.140.219.098 on June 25, 2018 06:44:48 AM All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c). STRENGTHENING OF URCHIN SKELETONS 137 theoretical and experimental studies of the structural me- chanics of echinoid skeletons (Telford, 1985b; Dafni, 1986, 1988; Baron, 1991a, b; Ellers, 1993; Philippi and Nachtigall, 1996), the possible structural role of the su- tural ligaments has not been a focus. Nor has a possible structural role for the peristomial membrane been tested. Although this membrane is not flexurally stiff relative to the calcite plates, it might provide tensile reinforcement to the skeleton, as do steel tensile reinforcement rods across the span of concrete bridge arches. To determine the relative contributions of skeletal com- ponents (sutural ligaments, peristomial membrane, and calcite plates) to the structural strength of urchin skele- tons, we measured breaking forces of entire skeletons and circumferential suture excised portions of skeletons of S. purpurutus, with soft calcite plate tissues either present or removed. To evaluate possible sutural changes during growth, we used breaking and vibration tests as well as visual inspection to compare the looseness of sutures in fed, growing specimens of S. meridional purpuratus with that in unfed, nongrowing specimens. suture Materials and Methods Testing device peristomial membrane A motor-driven device and force beam were used to apply a load at a rate of 200 pm s-’ to various specimens 1 Aristotle’s until they broke. The force signal was amplified, digitized Lantern (12-bit, 100 Hz), and stored in a computer. Error in the Figure 1. Schematic of interambulacral suture geometry and sutural force measurements was <+O. 1 N. Prior to breaking ligament attachment. Interambulacral, meridional, and circumferential tests, the height and diameter of all urchins were measured sutures are illustrated. Ligaments bind together adjacent plates (magni- fied inset of cross-section of a suture). to kO.1 mm with calipers. Crushing of whole skeletons at the edges and faces of the plates and by the addition Strongylocentrotus purpuratus was collected subtidally at of new plates at the apex (Deutler, 1926). Initially apical, Bodega Bay, California. Urchins were assigned at random new plates gradually migrate adorally during growth. to three groups, each prepared for crushing tests in a different Skeletal plates may show seasonal or yearly growth rings way: (i) live unaltered, i.e., with peristomial membrane and that reflect changes in growth rate (Gage, 1991, 1992a, sutural ligaments intact; (ii) peristomial membrane and Aris- b) or spurts of growth (Pearse and Pearse, 1975). Urchins totle’s lantern removed, i.e., with sutural ligaments intact; may also shrink under conditions of lowered food avail- and (iii) bleached and air-dried, i.e., with no soft tissues ability or overcrowding, as observed, for example, in Dia- intact. The bleaching chemical was 5.25% sodium hypo- dema antillarum (Levitan, 1988), and in Strongylocentro- chlorite. Sufficient bleach was added until all soft tissues tus purpurutus (Ebert, 1967). In Heliociduris erythro- had been dissolved and washed away. The prepared skele- gramma, shrinkage is associated with diminution of tons were crushed along the oral-aboral axis. sutural gaps (Constable, 1993). That sutural ligaments might strengthen the skeleton Three-point breakage of plates and meridional sutures was suggested in a taphonomic study in which decom- posed urchin skeletons disarticulated at sutures and broke S. purpurutus was collected intertidally at Pillar Point, at lower forces than did undecomposed urchin skeletons California. Urchins were kept in a 12°C recirculating seawa- (Kidwell and Baumiller, 1990). On the basis of histologi- ter system for less than a week prior to mechanical tests. cal and morphological evidence, sutural ligaments were Pieces of skeleton consisting of various combinations interpreted as “stress-breakers” that evenly distribute of plates and sutures were prepared for mechanical testing stresses and thus contribute to the structural integrity of as follows. From each urchin, two homonomous, ambital, echinoid skeletons (Moss and Meehan, 1967). In other interambulacral plates were cut out using a Dremel tool. This content downloaded from 139.140.219.098 on June 25, 2018 06:44:48 AM All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c). 138 0. ELLERS ET AL. As a control, one plate was bleached overnight prior to 5 g per urchin per day), unfiltered seawater, and normal testing, and the other plate was tested to breakage while room light. The starved group was given no seaweed, fil- fresh (held for less than 1 h in 12°C seawater prior to tered incoming water, and reduced light, which reduced testing). In addition, two sets of homonomous, three-plate algal growth on the aquarium walls. At the start of the combinations, joined to each other at a meridional, ambi- experiment, all urchins were marked with a tetracycline tal, interambulacral suture were cut out. Again, one set label as in Ebert (1982). After one year the urchins were was bleached overnight prior to testing and the other was sacrificed and bleached and the tetracycline label was in- tested to breakage while fresh. spected. Skeletal diameter (20.5 mm) and weight (50.1 g) For mechanical
Recommended publications
  • Future Warming and Acidification Result in Multiple Ecological Impacts to a Temperate Coralline
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Online @ ECU Edith Cowan University Research Online ECU Publications Post 2013 8-1-2018 Future warming and acidification esultr in multiple ecological impacts to a temperate coralline alga Megan J. Huggett Edith Cowan University, [email protected] Kathryn Mcmahon Edith Cowan University, [email protected] Rachele Bernasconi Follow this and additional works at: https://ro.ecu.edu.au/ecuworkspost2013 Part of the Algae Commons 10.1111/1462-2920.14113 Huggett, M. J., McMahon, K., & Bernasconi, R. (2018). Future warming and acidification esultr in multiple ecological impacts to a temperate coralline alga. Environmental microbiology, 20 (8), p. 2769-2782. Available here "This is the peer reviewed version of the following article: Huggett, M. J., McMahon, K., & Bernasconi, R. (2018). Future warming and acidification esultr in multiple ecological impacts to a temperate coralline alga. Environmental microbiology, 20 (8), p. 2769-2782 which has been published in final form at https://doi.org/10.1111/1462-2920.14113. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions." This Journal Article is posted at Research Online. https://ro.ecu.edu.au/ecuworkspost2013/4737 Future warming and acidification result in multiple ecological impacts to a temperate coralline alga Megan J. Huggett1,2,3 , Kathryn McMahon1, Rachele Bernasconi1 Centre for Marine Ecosystems Research 1 and Centre for Ecosystem Management2, School of Science, Edith Cowan University, 270 Joondalup Dr, Joondalup 6027, WA Australia; School of Environmental and Life Sciences, The University of Newcastle, Ourimbah 2258, NSW Australia3.
    [Show full text]
  • X-Ray Microct Study of Pyramids of the Sea Urchin Lytechinus Variegatus
    Journal of Structural Biology Journal of Structural Biology 141 (2003) 9–21 www.elsevier.com/locate/yjsbi X-ray microCT study of pyramids of the sea urchin Lytechinus variegatus S.R. Stock,a,* S. Nagaraja,b J. Barss,c T. Dahl,c and A. Veisc a Institute for Bioengineering and Nanoscience in Advanced Medicine, Northwestern University, 303 E. Chicago Avenue, Tarry 16-717, Chicago, IL 60611-3008, USA b School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA c Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA Received 19 June 2002, and in revised form 23 September 2002 Abstract This paper reports results of a novel approach, X-ray microCT, for quantifying stereom structures applied to ossicles of the sea urchin Lytechinus variegatus. MicroCT, a high resolution variant of medical CT (computed tomography), allows noninvasive mapping of microstructure in 3-D with spatial resolution approaching that of optical microscopy. An intact pyramid (two demi- pyramids, tooth epiphyses, and one tooth) was reconstructed with 17 lm isotropic voxels (volume elements); two individual demipyramids and a pair of epiphyses were studied with 9–13 lm isotropic voxels. The cross-sectional maps of a linear attenuation coefficient produced by the reconstruction algorithm showed that the structure of the ossicles was quite heterogeneous on the scale of tens to hundreds of micrometers. Variations in magnesium content and in minor elemental constitutents could not account for the observed heterogeneities. Spatial resolution was insufficient to resolve the individual elements of the stereom, but the observed values of the linear attenuation coefficient (for the 26 keV effective X-ray energy, a maximum of 7.4 cmÀ1 and a minimum of 2cmÀ1 away from obvious voids) could be interpreted in terms of fractions of voxels occupied by mineral (high magnesium calcite).
    [Show full text]
  • DNA Variation and Symbiotic Associations in Phenotypically Diverse Sea Urchin Strongylocentrotus Intermedius
    DNA variation and symbiotic associations in phenotypically diverse sea urchin Strongylocentrotus intermedius Evgeniy S. Balakirev*†‡, Vladimir A. Pavlyuchkov§, and Francisco J. Ayala*‡ *Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525; †Institute of Marine Biology, Vladivostok 690041, Russia; and §Pacific Research Fisheries Centre (TINRO-Centre), Vladivostok, 690600 Russia Contributed by Francisco J. Ayala, August 20, 2008 (sent for review May 9, 2008) Strongylocentrotus intermedius (A. Agassiz, 1863) is an economically spines of the U form are relatively short; the length, as a rule, does important sea urchin inhabiting the northwest Pacific region of Asia. not exceed one third of the radius of the testa. The spines of the G The northern Primorye (Sea of Japan) populations of S. intermedius form are longer, reaching and frequently exceeding two thirds of the consist of two sympatric morphological forms, ‘‘usual’’ (U) and ‘‘gray’’ testa radius. The testa is significantly thicker in the U form than in (G). The two forms are significantly different in morphology and the G form. The morphological differences between the U and G preferred bathymetric distribution, the G form prevailing in deeper- forms of S. intermedius are stable and easily recognizable (Fig. 1), water settlements. We have analyzed the genetic composition of the and they are systematically reported for the northern Primorye S. intermedius forms using the nucleotide sequences of the mitochon- coast region (V.A.P., unpublished data). drial gene encoding the cytochrome c oxidase subunit I and the Little is known about the population genetics of S. intermedius; nuclear gene encoding bindin to evaluate the possibility of cryptic the available data are limited to allozyme polymorphisms (4–6).
    [Show full text]
  • Sea Urchins As an Inspiration for Robotic Designs
    Sea urchins as an inspiration for robotic designs Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Stiefel, K. and Barrett, G. (2018) Sea urchins as an inspiration for robotic designs. Journal of Marine Science and Engineering, 6 (4). 112. ISSN 2077-1312 doi: https://doi.org/10.3390/jmse6040112 Available at http://centaur.reading.ac.uk/79763/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.3390/jmse6040112 Publisher: MDPI All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Journal of Marine Science and Engineering Review Sea Urchins as an Inspiration for Robotic Designs Klaus M. Stiefel 1,2,3 and Glyn A. Barrett 3,4,* 1 Neurolinx Research Institute, La Jolla, CA 92039, USA; [email protected] 2 Marine Science Institute, University of the Philippines, Dilliman, Quezon City 1101, Philippines 3 People and the Sea, Malapascua, Daanbantayan, Cebu 6000, Philippines 4 School of Biological Sciences, University of Reading, Reading RG6 6UR, UK * Correspondence: [email protected]; Tel.: +44-(0)-118-378-8893 Received: 25 August 2018; Accepted: 4 October 2018; Published: 10 October 2018 Abstract: Neuromorphic engineering is the approach to intelligent machine design inspired by nature.
    [Show full text]
  • Sea Urchins of the Genus Gracilechinus Fell & Pawson, 1966
    This article was downloaded by: [Kirill Minin] On: 02 October 2014, At: 07:19 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Marine Biology Research Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/smar20 Sea urchins of the genus Gracilechinus Fell & Pawson, 1966 from the Pacific Ocean: Morphology and evolutionary history Kirill V. Minina, Nikolay B. Petrovb & Irina P. Vladychenskayab a P. P. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia b A. N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia Published online: 29 Sep 2014. Click for updates To cite this article: Kirill V. Minin, Nikolay B. Petrov & Irina P. Vladychenskaya (2014): Sea urchins of the genus Gracilechinus Fell & Pawson, 1966 from the Pacific Ocean: Morphology and evolutionary history, Marine Biology Research, DOI: 10.1080/17451000.2014.928413 To link to this article: http://dx.doi.org/10.1080/17451000.2014.928413 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information.
    [Show full text]
  • Histoire Des Idees Sur L'evolution De L'homme
    Thèse présentée pour obtenir le grade de Docteur de l'Université Louis Pasteur Strasbourg I Discipline : Sciences de la Vie Par Claude STOLL HISTOIRE DES IDEES SUR L'EVOLUTION DE L'HOMME Tome I Soutenue publiquement le 24.10.2008 Membres du Jury Directeur de Thèse : M. Jean-Marie VETTER, Professeur, ULP Co-Directeur de Thèse : M. Jean-Claude GALL, Professeur, ULP Rapporteur Interne : M. Jean-Jacques ROEDER, DR, CNRS Rapporteur Externe : Mme Brigitte SENUT, Professeur, MNHN Rapporteur Externe : M. Josué FEINGOLD, DR INSERM, U.155 REMERCIEMENTS Commencer à rédiger les Remerciements d'une thèse est un moment particulièrement apprécié, tout d'abord parce que, comme il s'agit de la partie que l'on rédige en dernier, cela signifie que la rédaction du manuscrit est (enfin !) terminée, et ensuite parce que c'est le moment où l'on peut faire apparaître la dimension vraie du travail. Une image relativement courante décrit le thésard seul dans ses questionnements ; en ce qui concerne ce travail, cela n'a pas été le cas. Au contraire, cette période de réalisation de thèse a été pour nous l'occasion d'une véritable aventure humaine. Si l'on suit l'évolution de ce travail, nos remerciements vont au Professeur Jean-Claude Gall qui nous a accueilli à l'Institut de Géologie et nous a donné les moyens de faire ce travail. Il a dirigé notre thèse. Il a eu la patience de nous encadrer durant ces cinq années. Nous voudrions lui exprimer notre reconnaissance pour ses précieux conseils lors de nos conversation scientifiques, pour son encadrement, sa vision scientifique, sa pédagogie et les conseils avisés qu'il nous a prodigués tout au long de ce travail de thèse.
    [Show full text]
  • Tool Use by Four Species of Indo-Pacific Sea Urchins
    Journal of Marine Science and Engineering Article Tool Use by Four Species of Indo-Pacific Sea Urchins Glyn A. Barrett 1,2,* , Dominic Revell 2, Lucy Harding 2, Ian Mills 2, Axelle Jorcin 2 and Klaus M. Stiefel 2,3,4 1 School of Biological Sciences, University of Reading, Reading RG6 6UR, UK 2 People and The Sea, Logon, Daanbantayan, Cebu 6000, Philippines; [email protected] (D.R.); lucy@peopleandthesea (L.H.); [email protected] (I.M.); [email protected] (A.J.); [email protected] (K.M.S.) 3 Neurolinx Research Institute, La Jolla, CA 92039, USA 4 Marine Science Institute, University of the Philippines, Diliman, Quezon City 1101, Philippines * Correspondence: [email protected] Received: 5 February 2019; Accepted: 14 March 2019; Published: 18 March 2019 Abstract: We compared the covering behavior of four sea urchin species, Tripneustes gratilla, Pseudoboletia maculata, Toxopneustes pileolus, and Salmacis sphaeroides found in the waters of Malapascua Island, Cebu Province and Bolinao, Panagsinan Province, Philippines. Specifically, we measured the amount and type of covering material on each sea urchin, and in several cases, the recovery of debris material after stripping the animal of its cover. We found that Tripneustes gratilla and Salmacis sphaeroides have a higher affinity for plant material, especially seagrass, compared to Pseudoboletia maculata and Toxopneustes pileolus, which prefer to cover themselves with coral rubble and other calcified material. Only in Toxopneustes pileolus did we find a significant corresponding depth-dependent decrease in total cover area, confirming previous work that covering behavior serves as a protection mechanism against UV radiation. We found no dependence of particle size on either species or size of sea urchin, but we observed that larger sea urchins generally carried more and heavier debris.
    [Show full text]
  • Evo Devo.Pdf
    FROM EMBRYOLOGY TO EVO-DEVO Dibner Institute Studies in the History of Science and Technology George Smith, general editor Jed Z. Buchwald and I. Bernard Cohen, editors, Isaac Newton’s Natural Philosophy Jed Z. Buchwald and Andrew Warwick, editors, Histories of the Electron: The Birth of Microphysics Geoffrey Cantor and Sally Shuttleworth, editors, Science Serialized: Representations of the Sciences in Nineteenth-Century Periodicals Michael Friedman and Alfred Nordmann, editors, The Kantian Legacy in Nineteenth-Century Science Anthony Grafton and Nancy Siraisi, editors, Natural Particulars: Nature and the Disciplines in Renaissance Europe J. P. Hogendijk and A. I. Sabra, editors, The Enterprise of Science in Islam: New Perspectives Frederic L. Holmes and Trevor H. Levere, editors, Instruments and Experimentation in the History of Chemistry Agatha C. Hughes and Thomas P. Hughes, editors, Systems, Experts, and Computers: The Systems Approach in Management and Engineering, World War II and After Manfred D. Laubichler and Jane Maienschein, editors, From Embryology to Evo-Devo: A History of Developmental Evolution Brett D. Steele and Tamera Dorland, editors, The Heirs of Archimedes: Science and the Art of War Through the Age of Enlightenment N. L. Swerdlow, editor, Ancient Astronomy and Celestial Divination FROM EMBRYOLOGY TO EVO-DEVO: A HISTORY OF DEVELOPMENTAL EVOLUTION edited by Manfred D. Laubichler and Jane Maienschein The MIT Press Cambridge, Massachusetts London, England © 2007 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher.
    [Show full text]
  • Echinodermata: the Complex Immune System in Echinoderms
    Echinodermata: The Complex Immune System in Echinoderms L. Courtney Smith, Vincenzo Arizza, Megan A. Barela Hudgell, Gianpaolo Barone, Andrea G. Bodnar, Katherine M. Buckley, Vincenzo Cunsolo, Nolwenn M. Dheilly, Nicola Franchi, Sebastian D. Fugmann, Ryohei Furukawa, Jose Garcia-Arraras, John H. Henson, Taku Hibino, Zoe H. Irons, Chun Li, Cheng Man Lun, Audrey J. Majeske, Matan Oren, Patrizia Pagliara, Annalisa Pinsino, David A. Raftos, Jonathan P. Rast, Bakary Samasa, Domenico Schillaci, Catherine S. Schrankel, Loredana Stabili, Klara Stensväg, and Elisse Sutton Echinoderm Life History and Phylogeny Echinoderms are benthic marine invertebrates living in communities ranging from shallow nearshore waters to the abyssal depths. Often members of this phylum are top predators or herbivores that shape and/or control the ecological characteristics All co-authors contributed equally to this chapter and are listed in alphabetical order. L. C. Smith (*) · M. A. Barela Hudgell · K. M. Buckley Department of Biological Sciences, George Washington University, Washington, DC, USA e-mail: [email protected] V. Arizza · G. Barone · D. Schillaci Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy A. G. Bodnar Bermuda Institute of Ocean Sciences, St. George’s Island, Bermuda Gloucester Marine Genomics Institute, Gloucester, MA, USA V. Cunsolo Department of Chemical Sciences, University of Catania, Catania, Italy N. M. Dheilly School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA N. Franchi Department of Biology, University of Padova, Padua, Italy © Springer International Publishing AG, part of Springer Nature 2018 409 E. L. Cooper (ed.), Advances in Comparative Immunology, https://doi.org/10.1007/978-3-319-76768-0_13 410 L.
    [Show full text]
  • An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity CBD Technical Series No
    Secretariat of the CBD Technical Series Convention on No. 75 Biological Diversity 75 An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity CBD Technical Series No. 75 AN UPDATED SYNTHESIS OF THE IMPACTS OF OCEAN ACIDIFICATION ON MARINE BIODIVERSITY The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the copyright holders concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This publication may be reproduced for educational or non-profit purposes without special permission, provided acknowledgement of the source is made. The Secretariat of the Convention would appreciate receiving a copy of any publications that use this document as a source. Reuse of the figures is subject to permission from the original rights holders. Published by the Secretariat of the Convention on Biological Diversity. ISBN 92-9225-527-4 (print version); ISBN 92-9225-528-2 (web version) Copyright © 2014, Secretariat of the Convention on Biological Diversity Citation: Secretariat of the Convention on Biological Diversity (2014). An Updated Synthesis of the Impacts of Ocean Acidification on Marine Biodiversity (Eds: S. Hennige, J.M. Roberts & P. Williamson). Montreal, Technical Series No. 75, 99 pages For further information, contact: Secretariat of the Convention on Biological Diversity World Trade Centre, 413 Rue St. Jacques, Suite 800, Montréal, Quebec,Canada H2Y 1N9 Tel: +1 (514) 288 2220 Fax: +1 (514) 288 6588 E-mail: [email protected] Website: www.cbd.int Cover images, top to bottom: Katharina Fabricius; N.
    [Show full text]
  • Complete Mitogenome of the Edible Sea Urchin Loxechinus Albus: Genetic Structure and Comparative Genomics Within Echinozoa
    Mol Biol Rep DOI 10.1007/s11033-014-3847-5 Complete mitogenome of the edible sea urchin Loxechinus albus: genetic structure and comparative genomics within Echinozoa Graciela Cea • Juan Diego Gaita´n-Espitia • Leyla Ca´rdenas Received: 7 May 2014 / Accepted: 25 November 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract The edible Chilean red sea urchin, Loxechinus Hemicentrotus, whereas the other included species of albus, is the only species of its genus and endemic to the Mesocentrotus and Pseudocentrotus. Southeastern Pacific. In this study, we reconstructed the mitochondrial genome of L. albus by combining Sanger Keywords Loxechinus albus Á Mitochondrial genome Á and pyrosequencing technologies. The mtDNA genome Genome architecture Á Echinodermata had a length of 15,737 bp and encoded the same 13 pro- tein-coding genes, 22 transfer RNA genes, and two ribo- somal RNA genes as other animal mtDNAs. The size of Introduction this mitogenome was similar to those of other Echinoder- mata species. Structural comparisons showed a highly Metazoan mitochondrial DNA (mtDNA) is typically a conserved structure, composition, and gene order within circular double-stranded molecule of approximately Echinoidea and Holothuroidea, and nearly identical gene 12–20 kb length that contains 13 protein-coding genes organization to that found in Asteroidea and Crinoidea, (PCGs) involved in oxidative phosphorylation (OXPHOS), with the majority of differences explained by the inversions 22 transfer RNA (tRNA) genes necessary to translate the of some tRNA genes. Phylogenetic reconstruction sup- PCGs, two ribosomal RNA genes (rRNA), and a major AT- ported the monophyly of Echinozoa and recovered the rich non-coding region usually denominated the mito- monophyletic relationship of Holothuroidea and Echinoi- chondrial control region [1, 2].
    [Show full text]
  • The Molecular Evolution of Sperm Bindin in Six Species of Sea Urchins (Echinoida: Strongylocentrotidae)
    The Molecular Evolution of Sperm Bindin in Six Species of Sea Urchins (Echinoida: Strongylocentrotidae) Christiane H. Biermann1 Department of Ecology and Evolution, State University of New York at Stony Brook The acrosomal protein bindin attaches sperm to eggs during sea urchin fertilization. Complementary to ongoing functional biochemical studies, I take a comparative approach to explore the molecular evolution of bindin in a group of closely related free-spawning echinoid species. Two alleles of the mature bindin gene were sequenced for each of six species in the sea urchin family Strongylocentrotidae. The nucleotide sequences diverged by at least 1% per Myr at both silent and replacement sites. Two short sections ¯anking the conserved block show an excess of nonsynonymous substitutions. Each is homologous to a region that had been identi®ed as a target of selection in other sea urchin comparisons. A large proportion of the bindin-coding sequence consists of a highly variable repeat region. Bindin sequences, even including the large intron, could not resolve the branching order among ®ve of the species. Introduction For several sympatric groups of free-spawning ma- polypeptide backbone (Foltz 1994; Stears and Lennarz rine animals, gamete recognition proteins have been 1997). Bindin, on the contrary, is 100% protein (Minor, found to be under positive selection for interspeci®c di- Gao, and Davidson 1989), and therefore potentially con- vergence (Vacquier and Lee 1993; Swanson and Vac- tains speci®city information in its primary structure. quier 1995; Metz and Palumbi 1996). The sea urchin With recombinant deletion mutants, Lopez, Miraglia, family Strongylocentrotidae contains at least nine exter- and Glabe (1993) showed that either of the two variable nally fertilizing species, all of which occur in the North domains of bindin, on either side of the conserved mid- Paci®c with partly overlapping ranges (Jensen 1974; Ba- dle region, is suf®cient to impart speci®c gamete agglu- zhin 1998).
    [Show full text]