Complete Mitogenome of the Edible Sea Urchin Loxechinus Albus: Genetic Structure and Comparative Genomics Within Echinozoa

Total Page:16

File Type:pdf, Size:1020Kb

Complete Mitogenome of the Edible Sea Urchin Loxechinus Albus: Genetic Structure and Comparative Genomics Within Echinozoa Mol Biol Rep DOI 10.1007/s11033-014-3847-5 Complete mitogenome of the edible sea urchin Loxechinus albus: genetic structure and comparative genomics within Echinozoa Graciela Cea • Juan Diego Gaita´n-Espitia • Leyla Ca´rdenas Received: 7 May 2014 / Accepted: 25 November 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract The edible Chilean red sea urchin, Loxechinus Hemicentrotus, whereas the other included species of albus, is the only species of its genus and endemic to the Mesocentrotus and Pseudocentrotus. Southeastern Pacific. In this study, we reconstructed the mitochondrial genome of L. albus by combining Sanger Keywords Loxechinus albus Á Mitochondrial genome Á and pyrosequencing technologies. The mtDNA genome Genome architecture Á Echinodermata had a length of 15,737 bp and encoded the same 13 pro- tein-coding genes, 22 transfer RNA genes, and two ribo- somal RNA genes as other animal mtDNAs. The size of Introduction this mitogenome was similar to those of other Echinoder- mata species. Structural comparisons showed a highly Metazoan mitochondrial DNA (mtDNA) is typically a conserved structure, composition, and gene order within circular double-stranded molecule of approximately Echinoidea and Holothuroidea, and nearly identical gene 12–20 kb length that contains 13 protein-coding genes organization to that found in Asteroidea and Crinoidea, (PCGs) involved in oxidative phosphorylation (OXPHOS), with the majority of differences explained by the inversions 22 transfer RNA (tRNA) genes necessary to translate the of some tRNA genes. Phylogenetic reconstruction sup- PCGs, two ribosomal RNA genes (rRNA), and a major AT- ported the monophyly of Echinozoa and recovered the rich non-coding region usually denominated the mito- monophyletic relationship of Holothuroidea and Echinoi- chondrial control region [1, 2]. Although the gene content dea. Within Holothuroidea, Bayesian and maximum like- and organization are notably conserved in most animal lihood analyses recovered a sister-group relationship phyla [3], some differences can be found among taxa; in between Dendrochirotacea and Aspidochirotida. Similarly particular, tRNA genes switch position more frequently within Echinoidea, these analyses revealed that L. albus than do larger protein-coding and rRNA genes [2, 4, 5]. In was closely related to Paracentrotus lividus, both being this context, a wide range of comparative studies have used part of a sister group to Strongylocentrotidae and Echino- mitochondrial genomes (mitogenomes) as phylogenetic metridae. In addition, two major clades were found within markers to resolve deep evolutionary relationships [6]by Strongylocentrotidae. One of these clades comprised all of comparing entire mitogenome sequences [1, 7–10]orby the representative species Strongylocentrotus and analyzing shared genome rearrangements (e.g., inversions and transpositions) at different taxonomic levels [3, 11, 12]. Electronic supplementary material The online version of this Thanks to rapid advances in next generation sequencing article (doi:10.1007/s11033-014-3847-5) contains supplementary material, which is available to authorized users. (NGS) techniques in recent years, the availability and number of entire mitogenome sequences for different tax- G. Cea Á J. D. Gaita´n-Espitia Á L. Ca´rdenas (&) onomic groups have considerably increased [10, 13]. To Facultad de Ciencias, Instituto de Ciencias Ambientales y date, a total of 38 mitogenomes of echinoderms have been Evolutivas, Universidad Austral de Chile, Casilla 567, Valdivia, Chile described and are publicly available in the Organelle e-mail: [email protected] Genome Resources of NCBI (http://www.ncbi.nlm.nih. 123 Mol Biol Rep gov). Of these mtDNA sequences, four represent crinoids, was extracted from gonads of eleven adults using a com- eight ophiuroids, eight asteroids, five holothurians, and 13 mercial RiboPureTMKit (Ambion, Carlsbad, CA, USA). echinoids. Comparative genomics within the phylum RNA quality was analyzed by Agilent 2100 Bioanalyzer Echinodermata have identified a very different gene order RNA assays (Santa Clara, CA, USA) and evaluated by involving at least eight rearrangement events (two inver- calculating the ratio of the 28S and 18S rRNA intensity sions, three transpositions, and three tandem-duplication– peaks. Total RNA was then submitted to Macrogen, Seoul, random-loss events) [12]. This order places crinoids and Korea (http://www.macrogen.com) for cDNA library con- ophiuroids, with the presence of several unassigned struction, library normalization, and cDNA pyrosequencing sequences (UAS) and some pseudogenes, as the most in a 454-GS FLX Titanium System (454 Life Sciences, divergent groups [14]. Additionally, holothurians and Branford, CT, USA). echinoids possess the highest degree of conservation in mtDNA gene order, with few changes in gene structure and Mitogenome assembly and annotation strong similarities in the origin of replication [15]. In particular, the mitogenome architecture of the latter group The raw data was trimmed and assembled using CLC (sea urchins and sand dollars) has been characterized by a Genomics Workbench software (CLC Bio, Aarhus, Den- pattern of organization unique from that of other echino- mark), using the parameters described in [21]. Gene derms [12, 16]. annotation and mapping were performed using Blast2GO Within the class Echinoidea, the edible Chilean red sea software [22] according to the main categories of Gene urchin, Loxechinus albus, is the only species of its genus. Ontology (GO; molecular functions, biological processes This sea urchin is distributed throughout the Chilean coast, and cellular components) [23]. From this database, genes from Arica (18°S) to Tierra del Fuego (55°S) [17]. Loxe- were filtered by homology (Blastx algorithm v2.2.29) to chinus albus is one of the most economically important those of other echinoids (Table 1) using Geneious Pro 5.5.6 species in the littoral benthic systems of the southeastern software [24]. To complete the remaining tRNAs and to Pacific in South America [18]. Harvesting of L. albus verify the intergenic region we design PCR primers for represents the largest extraction volume among world walking amplification (Table S1) using traditional Sanger urchin fisheries [19]. However, overfishing of the red sea sequencing. Similar procedure was used to validate the urchin along Chilean coasts is driving the decline or sequence quality of some genes with ambiguous features depletion of natural populations of this biological resource (e.g. nad4) by using independent primers located in the [20]. Currently, no information exists on the population flanking regions of the target genes (Table S1). genetic background of L. albus or its functional genomics Several PCRs were set up for a total of 10 sea urchins. that could link the metabolic responses of this species (e.g., Each reaction (25 lL total volume) consisted of 2 lLof expression of genes involved in OXPHOS) to the great DNA template, 2.5 lL109 PCR buffer, 0.5 lL BSA, environmental variation experienced along the Chilean 1 lL MgCl2 (2 mM), 1.5 lL of each primer, 0.5 lLof coastal upwelling. In this study, we reconstruct the com- dNTP mix (2.5 mM), 0.6 lL of Taq DNA polymerase plete mitogenome of L. albus by combining Sanger and (Invitrogen, Carlsbad, CA, USA), and 15.4 lL sterile dis- 454 sequencing technologies. Furthermore, we character- tilled water. PCR was performed with the following ized general features such as genome length, nucleotide parameters: an initial cycle of denaturation at 95 °C for biases, and gene structure and compared them with those of 5 min; followed by 30 cycles at 95 °C for 5 min, 50 °C for other echinoderms. Finally, we established the taxonomic 1 min, and 72 °C for 1 min; and terminated by a final relationships of L. albus at the class and family level. This extension at 72 °C for 10 min. PCR products and sequen- work should be useful for studies on evolution and con- ces were developed at Macrogen. servation genetics, as well as for those that integrate functional genomics with the physiology of this species Sequence analysis and genome annotation under environmental variation and climate change scenarios. Protein coding genes (PCGs), rRNA and noncoding sequences were identified by comparing alignments of homologous genes within complete mitogenomes of other Materials and methods echinoids (Table 1) using the BLAST tool implemented in Geneious Pro 5.5.6 [24]. The boundaries of both PCGs and RNA preparation, sequencing, and cDNA library rRNA genes were adjusted manually based on the locations of adjacent genes and the first start and stop codons in Samples of L. albus were collected in Los Molinos frame. All tRNA genes were located and folded into their (39°400S–73°120W), southern Chile. Total L. albus RNA proposed clover-leaf structures to confirm their secondary 123 Mol Biol Rep Table 1 List of the Echinodermata species included in the present study Taxonomic position GenBank accession Genome Length (bp) Class Order Family Species Echinoidea Echinoida Echinidae Loxechinus albus JX888466 15,737 Paracentrotus lividus J04815 15,696 Strongylocentrotidae Strongylocentrotus purpuratus X12631 15,650 Strongylocentrotus fragilis* KC898200 15,748 Strongylocentrotus intermedius* KC898198 15,718 Strongylocentrotus droebachiensis EU054306 15,710 Strongylocentrotus pallidus KC898197 15,552 Mesocentrotus nudus JX263663 15,709 Mesocentrotus franciscanus KJ526170 15,650 Pseudocentrotus depressus* KC898203 15,736 Hemicentrotus pulcherrimus*
Recommended publications
  • "Lophophorates" Brachiopoda Echinodermata Asterozoa
    Deuterostomes Bryozoa Phoronida "lophophorates" Brachiopoda Echinodermata Asterozoa Stelleroidea Asteroidea Ophiuroidea Echinozoa Holothuroidea Echinoidea Crinozoa Crinoidea Chaetognatha (arrow worms) Hemichordata (acorn worms) Chordata Urochordata (sea squirt) Cephalochordata (amphioxoius) Vertebrata PHYLUM CHAETOGNATHA (70 spp) Arrow worms Fossils from the Cambrium Carnivorous - link between small phytoplankton and larger zooplankton (1-15 cm long) Pharyngeal gill pores No notochord Peculiar origin for mesoderm (not strictly enterocoelous) Uncertain relationship with echinoderms PHYLUM HEMICHORDATA (120 spp) Acorn worms Pharyngeal gill pores No notochord (Stomochord cartilaginous and once thought homologous w/notochord) Tornaria larvae very similar to asteroidea Bipinnaria larvae CLASS ENTEROPNEUSTA (acorn worms) Marine, bottom dwellers CLASS PTEROBRANCHIA Colonial, sessile, filter feeding, tube dwellers Small (1-2 mm), "U" shaped gut, no gill slits PHYLUM CHORDATA Body segmented Axial notochord Dorsal hollow nerve chord Paired gill slits Post anal tail SUBPHYLUM UROCHORDATA Marine, sessile Body covered in a cellulose tunic ("Tunicates") Filter feeder (» 200 L/day) - perforated pharnx adapted for filtering & repiration Pharyngeal basket contractable - squirts water when exposed at low tide Hermaphrodites Tadpole larvae w/chordate characteristics (neoteny) CLASS ASCIDIACEA (sea squirt/tunicate - sessile) No excretory system Open circulatory system (can reverse blood flow) Endostyle - (homologous to thyroid of vertebrates) ciliated groove
    [Show full text]
  • Systematic Comparison of Sea Urchin and Sea Star Developmental Gene Regulatory Networks Explains How Novelty Is Incorporated in Early Development
    ARTICLE https://doi.org/10.1038/s41467-020-20023-4 OPEN Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development Gregory A. Cary 1,3,5, Brenna S. McCauley1,4,5, Olga Zueva1, Joseph Pattinato1, William Longabaugh2 & ✉ Veronica F. Hinman 1 1234567890():,; The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in under- standing the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea urchin development of equivalent territories and stages. Comparison of the GRNs identifies how novelty is incorporated in early development. We show how the GRN is resilient to the introduction of a transcription factor, pmar1, the inclusion of which leads to a switch between two stable modes of Delta-Notch signaling. Signaling pathways can function in multiple modes and we propose that GRN changes that lead to switches between modes may be a common evolutionary mechanism for changes in embryogenesis. Our data additionally proposes a model in which evolutionarily conserved network motifs, or kernels, may function throughout development to stabilize these signaling transitions. 1 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
    [Show full text]
  • (Echinodermata: Holothuroidea) from the Latest Cretaceous Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universität München: Elektronischen Publikationen 285 Zitteliana 89 Short Communication First report of sea cucumbers (Echinodermata: Holothuroidea) from the latest Cretaceous of Paläontologie Bayerische Bavaria,GeoBio- Germany & Geobiologie Center Staatssammlung 1,2,3 LMU München für Paläontologie und Geologie LMUMike MünchenReich 1 n München, 01.07.2017 SNSB - Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 2 n Manuscript received Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissenschaften, 30.12.2016; revision ac- Paläontologie und Geobiologie, Richard-Wagner-Straße 10, 80333 Munich, Germany 3 cepted 21.01.2017 GeoBio-Center der Ludwig-Maximilians-Universität München, Richard-Wagner-Straße 10, 80333 Munich, Germany n ISSN 0373-9627 E-mail: [email protected] n ISBN 978-3-946705-00-0 Zitteliana 89, 285–289. Key words: fossil Holothuroidea; Cretaceous; Maastrichtian; Bavaria; Germany Schüsselwörter: fossile Holothuroidea; Kreide; Maastrichtium; Bayern; Deutschland The Bavarian Gerhardtsreit Formation (‶Gerhardts- 1993; Smith 2004) due to different reasons (Reich reiter Mergel″ / ‶Gerhardtsreiter Schichten″; cf. 2013). There are nearly 1,700 valid extant sea cucum- Böhm 1891; Hagn 1960; Wagreich et al. 2004), also ber species (Smiley 1994; Kerr 2003; Paulay pers. known as Gerhartsreit Formation (‶Gerhartsreiter comm.) known worldwide. The fossil record (since Schichten″; Hagn et al. 1981, 1992; Schwarzhans the Middle Ordovician; Reich 1999, 2010), by con- 2010; Pollerspöck & Beaury 2014) or ‶Gerhards- trast, is discontinuous in time and recorded ranges reuter Schichten″ (Egger 1899; Hagn & Hölzl 1952; of species with around 1,000 reported forms (Reich de Klasz 1956; Herm 1979, 2000) is exposed in Up- 2013, 2014, 2015b) since the early 19th century.
    [Show full text]
  • Gene Expression Patterns of Red Sea Urchins (Mesocentrotus Franciscanus) Exposed to Different Combinations of Temperature and Pco2 During Early Development Juliet M
    Wong and Hofmann BMC Genomics (2021) 22:32 https://doi.org/10.1186/s12864-020-07327-x RESEARCH ARTICLE Open Access Gene expression patterns of red sea urchins (Mesocentrotus franciscanus) exposed to different combinations of temperature and pCO2 during early development Juliet M. Wong1,2* and Gretchen E. Hofmann1 Abstract Background: The red sea urchin Mesocentrotus franciscanus is an ecologically important kelp forest herbivore and an economically valuable wild fishery species. To examine how M. franciscanus responds to its environment on a molecular level, differences in gene expression patterns were observed in embryos raised under combinations of two temperatures (13 °C or 17 °C) and two pCO2 levels (475 μatm or 1050 μatm). These combinations mimic various present-day conditions measured during and between upwelling events in the highly dynamic California Current System with the exception of the 17 °C and 1050 μatm combination, which does not currently occur. However, as ocean warming and acidification continues, warmer temperatures and higher pCO2 conditions are expected to increase in frequency and to occur simultaneously. The transcriptomic responses of the embryos were assessed at two developmental stages (gastrula and prism) in light of previously described plasticity in body size and thermotolerance under these temperature and pCO2 treatments. Results: Although transcriptomic patterns primarily varied by developmental stage, there were pronounced differences in gene expression as a result of the treatment conditions. Temperature and pCO2 treatments led to the differential expression of genes related to the cellular stress response, transmembrane transport, metabolic processes, and the regulation of gene expression. At each developmental stage, temperature contributed significantly to the observed variance in gene expression, which was also correlated to the phenotypic attributes of the embryos.
    [Show full text]
  • ASSESSMENT of COASTAL WATER RESOURCES and WATERSHED CONDITIONS at CHANNEL ISLANDS NATIONAL PARK, CALIFORNIA Dr. Diana L. Engle
    National Park Service U.S. Department of the Interior Technical Report NPS/NRWRD/NRTR-2006/354 Water Resources Division Natural Resource Program Centerent of the Interior ASSESSMENT OF COASTAL WATER RESOURCES AND WATERSHED CONDITIONS AT CHANNEL ISLANDS NATIONAL PARK, CALIFORNIA Dr. Diana L. Engle The National Park Service Water Resources Division is responsible for providing water resources management policy and guidelines, planning, technical assistance, training, and operational support to units of the National Park System. Program areas include water rights, water resources planning, marine resource management, regulatory guidance and review, hydrology, water quality, watershed management, watershed studies, and aquatic ecology. Technical Reports The National Park Service disseminates the results of biological, physical, and social research through the Natural Resources Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies, and proceedings of technical workshops and conferences are also disseminated through this series. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. Copies of this report are available from the following: National Park Service (970) 225-3500 Water Resources Division 1201 Oak Ridge Drive, Suite 250 Fort Collins, CO 80525 National Park Service (303) 969-2130 Technical Information Center Denver Service Center P.O. Box 25287 Denver, CO 80225-0287 Cover photos: Top Left: Santa Cruz, Kristen Keteles Top Right: Brown Pelican, NPS photo Bottom Left: Red Abalone, NPS photo Bottom Left: Santa Rosa, Kristen Keteles Bottom Middle: Anacapa, Kristen Keteles Assessment of Coastal Water Resources and Watershed Conditions at Channel Islands National Park, California Dr. Diana L.
    [Show full text]
  • (Echinoidea, Echinidae) (Belgium) by Joris Geys
    Meded. Werkgr. Tert. Kwart. Geol. 26(1) 3-10 1 fig., 1 tab., 1 pi. Leiden, maart 1989 On the presence of Gracilechinus (Echinoidea, Echinidae) in the Late Miocene of the Antwerp area (Belgium) by Joris Geys University of Antwerp (RUCA), Antwerp, Belgium and Robert Marquet Antwerp, Belgium. Geys, J., & R. Marquet. On the presence of Gracilechinus (Echinoidea, in the of — Echinidae) Late Miocene the Antwerp area (Belgium). Meded. Werkgr. Tert. Kwart. Geol., 26(1): 00-00, 1 fig., 1 tab., 1 pi. Leiden, March 1989. Some well-preserved specimens of the regular echinoid Gracilechinus gracilis nysti (Cotteau, 1880) were collected in a temporary outcrop at Borgerhout-Antwerp, in sandstones reworked from the Deurne Sands (Late Miocene). The systematic status of this subspecies is discussed. The present state of knowledge of the Echinidae from the Neogene of the North Sea Basin is reviewed. Prof. Dr J. Geys, Dept. of Geology, University of Antwerp (RUCA), Groenenborgerlaan 171, B-2020 Antwerp, Belgium. Dr R. Marquet, Constitutiestraat 50, B-2008 Antwerp, Belgium, Contents — 3 Introduction, p. 4 Systematic palaeontology, p. 6 Discussion, p. Echinidae in the Neogene of the North Sea Basin—some considerations on 8 systematics, p. 10. References, p. INTRODUCTION extensive excavations the of E17-E18 indicated E3 Because of along western verge motorway (also as ‘Kleine and Ring’) at Borgerhout-Antwerp (Belgium), a remarkable outcrop of Neogene Quaternary beds accessible from The was March to November 1987. outcrop was situated between this motorway and the and extended from the the both ‘Singel’-road, ‘Stenenbrug’ to ‘Zurenborgbrug’, on sides 4 of the exit.
    [Show full text]
  • First Record of the Irregular Sea Urchin Lovenia Cordiformis (Echinodermata: Spatangoida: Loveniidae) in Colombia C
    Muñoz and Londoño-Cruz Marine Biodiversity Records (2016) 9:67 DOI 10.1186/s41200-016-0022-9 RECORD Open Access First record of the irregular sea urchin Lovenia cordiformis (Echinodermata: Spatangoida: Loveniidae) in Colombia C. G. Muñoz1* and E. Londoño-Cruz1,2 Abstract Background: A first record of occurrence of the irregular sea urchin Lovenia cordiformis in the Colombian Pacific is herein reported. Results: We collected one specimen of Lovenia cordiformis at Gorgona Island (Colombia) in a shallow sandy bottom next to a coral reef. Basic morphological data and images of the collected specimen are presented. The specimen now lies at the Echinoderm Collection of the Marine Biology Section at Universidad del Valle (Cali, Colombia; Tag Code UNIVALLE: CRBMeq-UV: 2014–001). Conclusions: This report fills a gap in and completes the distribution of the species along the entire coast of the Panamic Province in the Tropical Eastern Pacific, updating the echinoderm richness for Colombia to 384 species. Keywords: Lovenia cordiformis, Loveniidae, Sea porcupine, Heart urchin, Gorgona Island Background continental shelf of the Pacific coast of Colombia, filling Heart shape-bodied sea urchins also known as sea por- in a gap of its coastal distribution in the Tropical Eastern cupines (family Loveniidae), are irregular echinoids char- Pacific (TEP). acterized by its secondary bilateral symmetry. Unlike most sea urchins, features of the Loveniidae provide dif- Materials and methods ferent anterior-posterior ends, with mouth and anus lo- One Lovenia cordiformis specimen was collected on cated ventrally and distally on an oval-shaped horizontal October 19, 2012 by snorkeling during low tide at ap- plane.
    [Show full text]
  • And Red Sea Urchins
    NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA By Johnathan Centoni A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology Committee Membership Dr. Sean Craig, Committee Chair Dr. Brian Tissot, Committee Member Dr. Paul Bourdeau, Committee Member Dr. Joe Tyburczy, Committee Member Dr. Erik Jules, Program Graduate Coordinator May 2018 ABSTRACT NEGATIVELY CORRELATED ABUNDANCE SUGGESTS COMPETITION BETWEEN RED ABALONE (Haliotis rufescens) AND RED SEA URCHINS (Mesocentrotus franciscanus) INSIDE AND OUTSIDE ESTABLISHED MPAs CLOSED TO COMMERCIAL SEA URCHIN HARVEST IN NORTHERN CALIFORNIA Johnathan Centoni Red abalone and sea urchins are both important herbivores that potentially compete with each other for resources like food and space along the California coast. Red abalone supported a socioeconomically important recreational fishery during this study (which was closed in 2018) and red sea urchins support an important commercial fishery. Both red sea urchins and red abalone feed on the same macroalgae (including Pterygophora californica, Laminaria setchellii, Stephanocystis osmundacea, Costaria costata, Alaria marginata, Nereocystis leutkeana), and a low abundance of this food source during the period of this project may have created a highly competitive environment for urchins and abalone. Evidence that suggests competition between red abalone and red sea urchins can be seen within data collected during the years of this study (2014-2016): a significantly higher red sea urchin density, concomitant with a significantly lower red abalone density, was observed within areas closed to commercial sea urchin harvest (in MPAs) compared to nearby reference areas open to sea urchin harvest.
    [Show full text]
  • X-Ray Microct Study of Pyramids of the Sea Urchin Lytechinus Variegatus
    Journal of Structural Biology Journal of Structural Biology 141 (2003) 9–21 www.elsevier.com/locate/yjsbi X-ray microCT study of pyramids of the sea urchin Lytechinus variegatus S.R. Stock,a,* S. Nagaraja,b J. Barss,c T. Dahl,c and A. Veisc a Institute for Bioengineering and Nanoscience in Advanced Medicine, Northwestern University, 303 E. Chicago Avenue, Tarry 16-717, Chicago, IL 60611-3008, USA b School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA c Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA Received 19 June 2002, and in revised form 23 September 2002 Abstract This paper reports results of a novel approach, X-ray microCT, for quantifying stereom structures applied to ossicles of the sea urchin Lytechinus variegatus. MicroCT, a high resolution variant of medical CT (computed tomography), allows noninvasive mapping of microstructure in 3-D with spatial resolution approaching that of optical microscopy. An intact pyramid (two demi- pyramids, tooth epiphyses, and one tooth) was reconstructed with 17 lm isotropic voxels (volume elements); two individual demipyramids and a pair of epiphyses were studied with 9–13 lm isotropic voxels. The cross-sectional maps of a linear attenuation coefficient produced by the reconstruction algorithm showed that the structure of the ossicles was quite heterogeneous on the scale of tens to hundreds of micrometers. Variations in magnesium content and in minor elemental constitutents could not account for the observed heterogeneities. Spatial resolution was insufficient to resolve the individual elements of the stereom, but the observed values of the linear attenuation coefficient (for the 26 keV effective X-ray energy, a maximum of 7.4 cmÀ1 and a minimum of 2cmÀ1 away from obvious voids) could be interpreted in terms of fractions of voxels occupied by mineral (high magnesium calcite).
    [Show full text]
  • DNA Variation and Symbiotic Associations in Phenotypically Diverse Sea Urchin Strongylocentrotus Intermedius
    DNA variation and symbiotic associations in phenotypically diverse sea urchin Strongylocentrotus intermedius Evgeniy S. Balakirev*†‡, Vladimir A. Pavlyuchkov§, and Francisco J. Ayala*‡ *Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525; †Institute of Marine Biology, Vladivostok 690041, Russia; and §Pacific Research Fisheries Centre (TINRO-Centre), Vladivostok, 690600 Russia Contributed by Francisco J. Ayala, August 20, 2008 (sent for review May 9, 2008) Strongylocentrotus intermedius (A. Agassiz, 1863) is an economically spines of the U form are relatively short; the length, as a rule, does important sea urchin inhabiting the northwest Pacific region of Asia. not exceed one third of the radius of the testa. The spines of the G The northern Primorye (Sea of Japan) populations of S. intermedius form are longer, reaching and frequently exceeding two thirds of the consist of two sympatric morphological forms, ‘‘usual’’ (U) and ‘‘gray’’ testa radius. The testa is significantly thicker in the U form than in (G). The two forms are significantly different in morphology and the G form. The morphological differences between the U and G preferred bathymetric distribution, the G form prevailing in deeper- forms of S. intermedius are stable and easily recognizable (Fig. 1), water settlements. We have analyzed the genetic composition of the and they are systematically reported for the northern Primorye S. intermedius forms using the nucleotide sequences of the mitochon- coast region (V.A.P., unpublished data). drial gene encoding the cytochrome c oxidase subunit I and the Little is known about the population genetics of S. intermedius; nuclear gene encoding bindin to evaluate the possibility of cryptic the available data are limited to allozyme polymorphisms (4–6).
    [Show full text]
  • The Panamic Biota: Some Observations Prior to a Sea-Level Canal
    Bulletin of the Biological Society of Washington No. 2 THE PANAMIC BIOTA: SOME OBSERVATIONS PRIOR TO A SEA-LEVEL CANAL A Symposium Sponsored by The Biological Society of Washington The Conservation Foundation The National Museum of Natural History The Smithsonian Institution MEREDITH L. JONES, Editor September 28, 1972 CONTENTS Foreword The Editor - - - - - - - - - - Introduction Meredith L. Jones ____________ vi A Tribute to Waldo Lasalle Schmitt George A. Llano 1 Background for a New, Sea-Level, Panama Canal David Challinor - - - - - - - - - - - Observations on the Ecology of the Caribbean and Pacific Coasts of Panama - - - - Peter W. Glynn _ 13 Physical Characteristics of the Proposed Sea-Level Isthmian Canal John P. Sheffey - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 31 Exchange of Water through the Proposed Sea-Level Canal at Panama Donald R. F. Harleman - - - - - - - - - - - - - - - - - - - - - - - - - - - 41 Biological Results of the University of Miami Deep-Sea Expeditions. 93. Comments Concerning the University of Miami's Marine Biological Survey Related to the Panamanian Sea-Level Canal Gilbert L. Voss - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 49 Museums as Environmental Data Banks: Curatorial Problems Posed by an Extensive Biological Survey Richard S. Cowan - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 59 A Review of the Marine Plants of Panama Sylvia A. Earle - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 69 Ecology and Species Diversity of
    [Show full text]
  • Sea Urchins As an Inspiration for Robotic Designs
    Sea urchins as an inspiration for robotic designs Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Stiefel, K. and Barrett, G. (2018) Sea urchins as an inspiration for robotic designs. Journal of Marine Science and Engineering, 6 (4). 112. ISSN 2077-1312 doi: https://doi.org/10.3390/jmse6040112 Available at http://centaur.reading.ac.uk/79763/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.3390/jmse6040112 Publisher: MDPI All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Journal of Marine Science and Engineering Review Sea Urchins as an Inspiration for Robotic Designs Klaus M. Stiefel 1,2,3 and Glyn A. Barrett 3,4,* 1 Neurolinx Research Institute, La Jolla, CA 92039, USA; [email protected] 2 Marine Science Institute, University of the Philippines, Dilliman, Quezon City 1101, Philippines 3 People and the Sea, Malapascua, Daanbantayan, Cebu 6000, Philippines 4 School of Biological Sciences, University of Reading, Reading RG6 6UR, UK * Correspondence: [email protected]; Tel.: +44-(0)-118-378-8893 Received: 25 August 2018; Accepted: 4 October 2018; Published: 10 October 2018 Abstract: Neuromorphic engineering is the approach to intelligent machine design inspired by nature.
    [Show full text]