The Limnology of Two Dissimilar Subarctic Streams and Implications of Resource Development

Item Type Technical Report

Authors LaPerriere, Jacqueline D.; Nyquist, David

Publisher University of Alaska, Institute of Water Resources

Download date 06/10/2021 09:19:54

Link to Item http://hdl.handle.net/11122/1749 THE LIMNOLOGY OF TWO DISSIMILAR SUBARCTIC STREAMS AND IMPLICATIONS OF RESOURCE DEVELOPMENT by Jacqueline D. LaPerriere and David Nyquist

Report No. IWR-33 March, 1973 THE LIMNOLOGY OF TWO DISSIMILAR SUBARCTIC STREAMS

AND IMPLICATIONS OF RESOURCE DEVELOPMENT

by

Jacqueline D. LaPerriere Research Biologist

and

David Nyquist former Assistant Professor of Water Resources

l'his proJ'ect was suppor>ted in par>t by funds (P1"OJ'. B-01?-ALAS) pr>o­ vided by the United States Depar>tment of the Intel"ior>, Office of Water> Resources Researeh, as authorized under> the fvater> Resources Aet of 1964, as amended. EquaL SllPPOr>t was provided by the State of ALaska as r>e­ sear>eh funds (University of ALaska 234-2503).'

INSTITUTE OF WATER RESOURCES University of Alaska Fairbanks, Alaska 99701

Report No. IWR-33 March, 1973 ACKNo\-ILEDGE,lENTS

Thanks are extended to the four research assistants, James Clay, Timothy Hudson, LaHrence Peterson, and Dennis h1ard for their assistance. Special thanks are extended to Hol£gang Hebel, Aquatic Biological Technician, for his help in the field and laboratory. The assistance of the Institute of Narine Science, University of Alaska, in providing analysis of certain of the cherTIical nutrients is gratefully acknowledged.

ii CONTENTS

Lis t of Figures_ iv List of Tables vi

In-:W])UCTION 1 Description of Study Area 1 The Chatanika River . 3 Development on the Chatanika River 3 Goldstream Creek . 3 Development on Golds tream Creek. . 7 m:THODS. ...•.. 10 Physical and Chemical 10 Biological•.... 10 I~similation Study. 11

RESULTS. _...._..... 12 Physical and Chemical Study 12 Biota of the Two Streams. 12 Ben thos Thesis Study. . . 42 Dri f t Thes is Study. 42 Ass Imila tion Thesis Study 50

SF~-1}!ARY. . 55

REfERENCES 56

APPENDICES ..•...... 57 Appendix A. Spec.ies Diversity of Benthos and Drift Samples from the Chatanika River ...... 58 Appendix B. Species Diversity of Benthos and Drift Samples from Golds tream Cree.k...... 61 Appe.ndix c. The Significance of Selected Physical and Chemical Variables in Benthic Macroinvert~brate Distribution in a S",a11 Subarctic Stream, a thesis 65 Title Page ...• 65 Abstract. .... 66 Table of Contents. 67 Bib"liography . 68

iii Fig. 1. Location of study area .. 2

Fig. 2. Chatanika River study area 4

Fig. 3. Goldstream Creek study area. 6

Fig. 4. Chemical 2nd physical variations from nine Chatanika ~ River stations 2 1970-1971. .•...... •.. 13

Fig. 5. Chemical and physical variations from five Goldstream Creek stations, 1970-1971 ...... •••.. 20

Fig. 6. Diurnal chemical and physical variations from the Chatanika River, Elliott Bridge Station, July 22, 23, 1971 .... 27

Fig. 7. Diurna 1 chemical and physical variations frrml Goldstream Creek, June 28, 29, 1971. .. 28

Fii:!. 8. Diurnal chemical and physh:al variations from Goldstream Creek, August 13, 14, 1971 .• 29

Fig. 9. Chemical and physical variations from sixteen Chatanika River Stations, July 1, 2, 1971. ..•...... 30

F.i.g. 10. Chemical and physical variations from fourteen Chatanika River Stations, September 10, 1971 .. .• ..•... 31

Fig. 11. Chemical and physical variations from eleven Goldstream Creek stations, Hay 6, 7) 1971 ...... •.. > 32

Fig. 12. Chemical and physical variations from fourteen Gold- stream Creek stations. June 18, 1971 .... 33

Fig. 13. Chemical and physical variations from eight Goldstream Creek stations, July 19, 1971. ...•••.• . •. 34

Fig. 14. 'Chemical and physical variations from nine Goldstream Creek stations. August 19, 1971. • • ••.•.•.• 35

Fig. 15. Chemical and physical variations from eight Goldstream Creek stations, October 22, 1971 ....•.•.. 36

Fig. 16. Summer temperature variation and mayfly dis tribution in Goldstream Creek, 1971. 44

Fig. 17. The relationship betl-leen stream velocity and the number of Trichoptera (caddis £lies) col1ec ted; Sheep Crc:ek Bridge Station, Goldstream Creel( ...... • 45

iv FIGURES, Continued

Fig. 18. Numbers of Diptera ta,ken in five-minute drift samples; Goldstream Creek, June 14-15, 1971 .... 46

Fig. 19. Numbers of Diptera and Ephemercptera ta1.:en ir't five­ minute drift samples; Goldstream Creek, July 6-7, 1971 ...... 47

Fig. 20. Numbers of Diptera and Ephemeroptera taken in five­ minute drift samples; Golds tream Creek, July 29-30, 1971 ...... 48 F:i.g. 21. Numbers of Diptera and Ephemeroptct"a taken in five­ minute drift samples; Goldstream Creek, August 18-19, 1971 ...... " 49

v TABLES

Table t. Sampling Sites on the Chatanika River. ....••. .• 5

Table 2. Sampling Sites on Golds cream Creek...... 8

Table 3. The Algae of Colonization and Recolonization in the Chatanika River and Goldstream Creek•. 37

Table ll. Diatoms Identified as Epiphytic on Stones in Gold- stream Creek. . •...... •. 38

Table 5. Fauna Collected by Benthic and Drift Sampling (June, 1970 - October, 1971) ...... 39

Table 6. Total Number of Hayflies and Caddis Collected at Goldstream Stations (Benthos Thesis Study) • 43

T.:;;b1e 7. Natural Dissolved Oxygen Levels: Chatanika River 51

T~~le 8. Natural Dissolved Oxygen Levels: Goldstream Creek. 52

T,,;::le 9. Results of Five-Day Biochemi<..:al Oxygen Demand Tes ts; lm:uba tion Temperature'" 20 C...... ••... 53

Table 10. Results of Five-Day Biochemical Oxygen Demand Tests; Incubation Temperature = 4 c...... 54

vi INTRODUCTION

llCL"ause of the rela tiv~ly undeveloped condi tion of arctic and subarc­ tic Al.lska, 3n opportunity is presented to drmv up \.J'ater quality man2ge­ ment plans before extensive perturbation. These plans cannot, unfortun~ ately , be based upon those drawn up for more temperate regions "lhere much isknm\'n abou t na tural stream conditions, f or in thes e Alaskan areas, little is kno>m about the natural physical, chemical, and biological cycles of streams or about their ability to handle the stresses that will be exerted on them should development take place. The Chena River, in subarctic, interior Alaska, near the city of Fair­ banks, has been studied'to evaluate the impact of pending construction and operation of flood control structures (Frey, Hueller and Berry, 1970). This river hOI"ever has already been developed, especially along its 10l,er reaches where the city of Fairbanks is situated. The ",atersheds of the tHO streams chosen for this study roughly p2ral­ leI each other, although the Chatanika River \olatershed is about t1:-rice as long as that of Goldstream Creek. In addition to the dissimilarity in size, these two streams also differ in regard to terrain, at least along the respective stretches that Here studied. The Goldstrea::J Creek study area runs through a bog and extensive muskeg. The ChatanikaRiver, hm.;rever, was for the most part sampled in the area of mountainous ter­ rain. The intent of this study "as to obtain comprehensive physical and c.hemical data, to survey the resident invertebrates, and to evaluate the assimilative capabilities of both stre8rns. As an integral part of the main study, four research assist2nts de­ veloped thesis research topics. La,\·;rrence Peterson studied the seasonal, diurnal and dO~-:ilstrearn variations in selected physical and chemical parameters along both streams (Peterson, 1973) _ 11';0 students, Dennis \..,rard and James Clay, studied aspeets of the benthic macroinverteb rates of Goldstream Creek. Y.Jard's objective was lito determine lvhether temp2ra-'­ ture, velocity, dissolved oxygen, or pH operate singly, synergis tically, or addi tionally, to control or limit dis tribution of Ephemeroptera (may­ flies). Plecoptera (stoneflies), and Trichoptera (caddis flies), in Gold­ strc:am Creek" (Ivard, 1972). Clay's objective ,vas to determine the effect of stream discharge, temperature, and light intensity on the drift of Ephemeroptera (mayflies) and Diptera (true flies) in Goldstream Creek (Clay, 1973). Timothy Hudson conducted a study of the potential assimilative capa­ city of the streams by investigating their oxygen cycles (Hudson, 1973). One thesis, by Dennis Ward, is complete and selections from it are appended to this report. The remaining three theses are expected to be completed during 1973.

Description of Study Area

The interior Alaskan location of the t~i;'O streams (Fig. 1) subjects tlt(:i1l to \vide varia tions in climatological parameters. Considering the c:limate of Fairbanks, Alaska (the closest location \.,ith a first order weather station) J one can see that the gro~.Jing season for these streal7!S is relatively short. The ice-free season begins approxindtely in 022rly Nay 3.nd ends in October. Altbough this area experiences an extensive.

1 \ _ \4- \

F·19 ure 1. L oca ti-nv of study area period (averaging 115 days) l~len the air temperature remains below zero and pluITli1'lets as Im.;r as -66 F, the ice cover affords the streains protec­ tion from this extreme cold. Hm.Jever, the air temperature bas been knm.;n to reach 99 F in the stumner and the temperature of the '-later may become quite high, especially in the sha11mvs. Preci~)itation is an annual average of 12 inches Hith snmdall averaging 66.6 inches (Johnson and Hartman, 1969). SnmoJmelt and summer rains provide, on the average, the main discharges of these streams. Incident solar radiation varies Hidely throughout the year Hith day lengths as long as about tHenty-one hours at the summer solstice and as short as three hours forty minutes at the t-linter solstice, Hhen the sun never rises more than a te'\.v degrees above the hcrizon.

The Cha tanika River

The study area along the Chatanika River began at the headHaters (the confluence of Faith and NcNanus Creeks at an elevation of 1,400 feet) and continued about 60 river miles down to the Elliot Bridge, at an ele­ vation of 550 feet; the last point on the river accessible by road (Fig. 2). From here, the river flows an additional straight-line distance of approximately forty miles to Hhere it enters Ninto Flats and sHings nort.h\v2stW'ard to join the Tolovana River. TIle sampling sites along the river are listed in Table 1. The stream bottom throughout the study area consisted mainly of sand and shifting gravel interspersed with large boulders. Numerous deep pools are also found in this section of the river. DeveZop:.....e:nt on the Chatanika Rivel". The ~hatanika River hos felt thl~ influence. of man. Cleary Creek, which f10tvs into the Chatanika Rive.r near the Cha tanika Lodge at {-file 28 on the::: tees e HighHay, \-las dTedged for gold in the first half of this century. Some mining is still being done on the upper reaches of this creek but nol to the extent that it affects the Chatanika River. ';['he other major intrusion by man on the Chatanika River 't?as the building of Davidson Dam and Davidson Ditc.h, which supplied water to miners in the vicinity of Chatanika. The darn was construt.:ted at Nile 68 on the Steese Hight.,ray to divert water into Davidson Ditch, which was built on the ridges paralleling the river on its northHest side. After mining activity in the area subsided, a power­ house "as built at Nile 32 on the Steese Highl"ay to utilize the hydrau­ lic head for the generation of electricity. This pm"erhouse and Davidson Ditch have not been used since the flood of August, 1967, "hen the power­ house I·:as damaged to the extent that it was not economically feasible to repair it.

Goldstream Creek

Goldstream Creek (formed by the confluence of Pedro and Gilmore Creeks at an elevation of 880 feet) is a rather smalls tream tvhich flm'ls from mountainous terrain through extensive hog areas to i'-1into Flats where it ther.. flows into the Chatanika River. The study area on Goldstream Creek extended from Fox to the Dome sample site) '\.'lhich is located near the Dome spur of the Alaska Railroad, in the upper one-fifth of the Goldstr.eam drainage basin (Fig. 3). The upper portion of the study area is charac­ terized by a sand and gravel bottom, shallm" Hater, and relatively little vegetation in and over the stream. A transition zone occurs just belo'i'1

3 t -H-

I Cau]"r a , 6S 15

Glad"r C~cck

~!-f'-+I-I-I------11 ~ 10Mrl"s .-l

Figure 2.ChatCini~o Rive:- shady arcr.::J 'I'AULE I. SMIl'LINC SITES ON THIC CllATMHKA RIVER

Code Site Location

FCR Faith Creek Nile 69.2 Steese Highway. Sampled 10-100 yards above confluence Hith HcNanus Creek. HCR Hc.."ianus Creek Nile 69.2 Steese Highway. Saillpled 10 yards above confluence ",ith Faith Creek. H6S N 68.7 Nile 68.7 Steese Highway. Sampled 100 yards upstream from Davidson Dam. N66 N 66 Hile 66 Steese High,,,ay. Sampled near the bank opposite Horse Creek. CA Caribou Creek Sampled 100 yards dm'lnstream from Caribou Cteek near the bench mark (Approximately Nile 64 on the Steese Highway). CB liN 1225 Sampled 100 yards upstream from Cripple Creek near the bench mark (at an ele.vation of 1,225 feet). This is approximately }!ile 60.5 on the Steese Higrnvny. CC H 59.4 Sa",pled at Hile 59.4 on the Steese High,,,ay. CD Ca8sier Creek Sampled 100 ya.rds downs tream from Cassier Creek. N55 N 55.8 Sampled at Mile 55.8 on the Steese Highway. CE H 51.4 Sampled at Mile 51.4 on the Steese Highway. l'j~15 H !.5.4 Sampled at Hile i,5.4 on the Steese HighHay. SilR Steese Bridge Nile 39 on the Steese High\vay. Se.mpled the river at Chatauika Campground.

CF H ~ , . 5 Sampled at Hi1.e 37.5 OIl the Steese Highway . CG N 35 Sampled at Hile 35 on the Steese Highl"ay. CH N 31.8 Sampled 200 yards ups tream frOl" the old Chata- nika pO\verhouse, Mile 31.8 on the Steese Highl"ay. H29 N 29 Sampled at Mile 29 on the Steese Highway. C::L Cleary Creek Sampled 100 yards downstream from Cleary Creek. CJ Glccier Creek Sampled 200 yards downstream from Glacier Creek. EBR Elliott Bridge Sampled at Mile 14 on the Elliott Highway. CK Lm,:er Chatanika Sampled about 2 miles upstreaill from Minto Flats.

5 r,',~'i, ~ T...... -.:i C"'. '--

~l \ ~~­ Il\a"oo' I, II f rH Cr"e~

, ...... o~/ ~~/ '/ l>/ a"4 C) (:) / ~ (>-'/. ~(o ,/ ...... 0" o , ...... 1"an 64 55 - \..; / ./ I' I ./ / ( / / t ) / t / --- ,/ N- - FaJrba'lla Jr. l ~ 4Mffes Oi I ,

I Fig"ra3.Goldstream Creak study oroa I the 13.:.:.11aine Bridge site }·,here Goldstream Creek becomes a meandering ~tr~aln widl relatively deep water, U "Iud and silt bottom, and extensive overgrm.,rth and tall trees along the bunks. The locations of the samp­ ling sites on Goldstream Creek are lis ted in Table 2. f}c'[h_'lopmcnt on Golds tl~cam C:J'ef3k. Gold H8Sdiscovered on Pedro Creek in 1902. Uetl'Jeen 1902 and 1959 the ~reek area near the community of Fox IWS extensively dredged and mined. The present channel of Goldstream Creek between the confluence of Pedro and Gilmore Creeks and Fox tvas constructed in 1957 by ~n independent miner to provide water to work his claim. The original channel of the creek is about 300 yards "est of the pres ent ~hannel. The characteris tics of Golds tream Creek changed during the intensive mining activity and the creek is still recovering.

7 r u TABLE 2. SMlPLI.NG SITES ON GOLDSTREMI CREEK ]

Code Site Location ] FOX Fox Sampled ,,,here the Steese Higl""ay crosses Gold­ stream Creek. ] GA Fox Creek Sampled Fox Creek 50 yards downs tream from Fox Spring (0.5 Nile Elliott fUglmay). ACS Above Lonstruc­ Sampled 100 feet ups tream from ne" bridge on tion site Goldstream Road. 1 BeS BelcH Lons truc­ Sampled 100 yards dmmstream ftom new bridge on tian site Goldstream Road. GC Goldstream above Sampled 10 feet ups tream from Engineer Creek. Engineer Creek CD Engineer Creek Sampled Engineer Creek 15 feet upstream from mouth. GE Goldstream below Sampled 30 feet do",nstream from Engineer Creek. Engineer Creek GF Goldstream above Sampled about 2 miles ups tream from Big Eldor­ Big Eldorado Creek. Creek GG Big Eldorado Sampled Big Eldorado Creek immediately above Creek the confluence 'dth Goldstream Creek. };.1) Ballaine Bridge Sampled "'here Ballaiue Road crosses the creek. GH Cemetery Road Sampled at thto end of the road which goes due north froin Non:hern Ligh ts ~femorial Cemetery. GI Golds tream above Sampled immediately above 0'Conner Creek. O'Conner Creek GJ O'Conner Creek Sampled O'Conner Creek upstream from its con­ (Golds tream) fluence with Goldstream Creek. GK O'Conner Creek S&~pled O'Conner Creek where Goldstream Road (Road) crosses the creek. GL Cabin Sampled at a cabin which is 0.35 miles from Happy on Sheep Creek Road. GN 0.4 Nile below Sampled 0.4 mile (straight line distance) down­ Cabin stream from cabin where the creek comes with­ in 100 feet of the Alaska Railroad tracks. GN 0.4 l'[ile Above Sampled 0.4 mile (straight line distance) up­ seRB stream from the Sheep Creek Road bridge over Goldstream Creek. The sample site was near a small creek flowing into Goldstream Creek from the sDuth\'1es t. SCRB Sheep Creek Road Sampled in an area ranging from 50 yards down­ s tream from the b ridge on Sheep Creek road to 100 yards upstream. C.Q Below SCRB Sampled 200 yards downstream from the bridge. GP Sheep Creek Sampled Sheep Creek 100 feet ups tream from con­ fI uence Hi th Golds tream Creek.

8 TABLE 2. SAHPLING SITES ON COLDSTREMf CrmEK, Continued

CL1de Site LocatLlll1

GQ Goldstream - Old Sampled 0.1 mile belO\; Sheep Creek at an old Bridge ,woden bridge. GR Noos e Creek Sampled Hoose Creek belO\; the Alaska Railroad tres tIe. DOJ.ffi Dome Sampled near the Dome Spur of the Alaska Rail­ road.

9 I i METHODS

Physical and Chemical

Twenty-one physical and chemical parameters plus air temperature were measured at the nine primary sites on the Chatanika River and the five primary sites on Goldstream Creek from August, 1970, until October, 1971. The Steese Bridge and Elliott Bridge sites on the Chatanika River and the Fox, Ballaine Bridge, and Sheep Creek Road Bridge sites on Goldstream Creek were the only sites sampled throughout the winter. I The analytical methods used to determine the chemical and physical parameters were of two types: expedient field methods and standard lab­ oratory techniques following theAPHA handbook (1969), StandaPd Methods for the Examination of Water and Wastewater. Of the twenty-one parame­ ters, alkalinity, carbon dioxide, conductivity, dissolved oxygen, pH, and water temperature were usually determined in the field. Analysis of the remaining parameters was done at the laboratories of the Institute of Water Resources and the Institute of Marine Sciences at the University of Alaska.

Biological

The Surber square foot bottom sampler with a nylon net was used in collecting all benthos samples. Each square foot sample was collected at a depth greater than two inches below the water-substrate interface. If large rocks or debris were encountered, each piece was examined, scraped clean, and subsequently discarded. After collection, each sample was tran~ sferred to a 20.3 em x 35.6 em polyethylene bag containing stream water. Any organisms adhering to the net were removed with forceps and placed in the sample container. Each sample was then fixed with 10 mls of formalin. The bags were securely tied and transported to the laboratory where the individual organisms were identified and enumerated. Drift measurements were made using the Wilco drift ~ampler which con­ sisted of a nylon mesh net (29 threads/em) mounted on a 30 em x 45 cm metal frame. This assembly was placed in the stream in such a manner that the net's longest dimension was perpendicular to the stream bed. The drift nets were placed in the stream for a period of five minutes, at which time they were removed and water was splashed around the out­ side of the net to consolidate the organisms in the bottom of the net assembly. The contents of each net were then transferred to a polyethyl­ ene bag which contained a 10% formalin solution. Upon return to the laboratory, the organisms were separated from the debris, using the sugar flotation method described by Anderson (1959), sorted into taxo­ nomic groups, and counted. Current velocities were made using a pigmy Gurley Meter. To cross­ section a stream, measurements with a Gurley Meter were taken every foot on the horizontal axis and every 2/10' (6.10 em) on the vertical axis. Depth measurements were taken to the nearest 1/10' (3.05 cm). Stream cross-sectioning was done once during every 24-hour sampling period dur­ ing the thesis study of drift. However, velocity was measured using a floating rod method during the thesis study of benthos. Velocity was then recorded as the average of three successive measurements of the stream current, the results being

10 reported in feet per second (fps) using a series of weighted dowel rods 1/2" (1. 27 cm) in diameter (Meyer. 1928). Water temperature readings were taken using a standard centigrade thermometer. Continuous light intensity readings were taken during the thesis study on drift using an Esterline-Angus Model AW DE milliammeter cali­ brated with a Luna-Pro light meter to which was attached an Interna­ I tional Rectifier silicon solar cell, model S5M. The solar cell was attached to the recorder by two 100' lengths of 22-gauge plastic covered wire. The solar cell was mounted on a 7.62 em x 12.70 cm piece of Plexi­ I glas, and the whole assembly was then placed on the stream bottom at a depth of approximately 15 cm. During the first 24-hour sampling period, only one solar cell was attached to the recorder. For the remaining three sampling periods, two I solar cells in series were used to attain greater sensitivity in light intensity measurements.

I Assimilation Study

Both streams were studied for one calendar year to d~termine the I effects that temperature, photosynthesis, respiration, and reaeration have on the dissolved oxygen content of the streams. In an attempt to delineate the oxygen content in the two streams over the year, dissolved oxygen, Biochemical Oxygen Demand (BOD), and reaera­ I tion were measured. Dissolved oxygen was measured by the alkaline-iodide-azide modifica­ tion of the standard Winkler test. Biochemical Oxygen Demand was meas­ ured according to Standard Methods for the Examination of Water and Wastewater, and replicates were run at an incubation temperature of 4 C. This modification of the standard method was made because the highest temperature annually reached on the average in these streams is less I than 20 C, the standard incubation temperature. Reaeration was measured with Plexiglas chambers similar to those used in an Oklahoma study (Stay, Duffer, DePrater and Keeley, 1967). The chamber bottoms were placed at the four bridge sites (two on each stream) and filled with stream bottom material (stones and/or sand). After an equilibration period of four to six weeks, the top of the chamber was I attached and the oxygen content of the water therein measured every four hours for twenty-four hours while the oxygen in the stream was measured every two hours. This experiment was repeated on another date at each site with a black chamber top attached. Dissolved oxygen in a stream is the net result of diffusion affected by temperature and pressure, additions by reaeration and photosynthesis, and depletion by respiration. The "light box" provides a measure of oxygen produced by photosynthesis minus that utilized in respiration. The "dark box" provides a measure of the oxygen that is used up by the respiration of aquatic organisms. Thus the amount of oxygen that enters a stream in a single day by reaeration can be calculated from the data collected in this experiment over 24 hours.

11 RESULTS

~s il:al anJChemic:al Study

The values for the chemical and physiL:al parameters measured approxi­ mately monthly along the Chatanika River study area are presented in Fig. 4; those obtained along the Goldstream Creek study area are shown j.n Fig. 5. A diurnal study of selected parameters \\128 conducted at the Elliott Bridge stetion on the Chatanika River. The results of this study are shm.;rn in Fig. 6. T,vo diurnal studies \\lere conducted simultaneously at the tive bridge stations along Goldstream Creek, and these data are pre­ sented in Figs. 7 and 8. In an attempt to evaluate the dm.,rnstream variation in selected para­ meters, both streams i

Biota of the Two Streams

Algae from the four reaeration boxes that Here left in the streams t\'cre identified. It should be noted that these are the algae of coloni­ zation and recolonization in these streams, as the stones when placed in thes e boxes Here for the mos t part free of 11ving algae. These identi­ fications are presented in Table 3. Stones from riffles in Goldstream Creek were returned to the labora­ tory Dud pen71anent mounts of the epiphytic diatoms ",ere made and the diatoms identified. These data ar~ presented in Table 4~ The invertebrates that ,vere collected in the benthic and drift samp"" ling programs and in the rea.eration chi1mber bottoms have b~en identified as completely as possible and this information is presented in Table s. llec.ouse of the feH samples taken, little can be said abollt the algae and, more specifica lly, the dia toms of the Creek and River. The invertebrates collected (Table ~)) shmv the dissimilarities be-

12 -

A Ilea llnlt)', .n1!)/ I Carbon pH ~B~ feR

MeR ~a~:'-- -l:::==-.._

M68 ~B--·· ==- ~B~~ M66

~B;'A ~~l~-- M 55 ;V 6.'JL.-----__--=--= _ ~B~ ~B~ ~ 10°1'00 5°1 \ ~B~-A 0\ 2~

J~~I~IMJJI J IArsiQI 1970 i971

I'igur" 4. Chemic" I and physical variations hom nino Chaic",ik", River slaiions, 1970 -1971 13,0 DI".>I y cd O.ygcn. mg/I I."- ;~...~' Wolcr r" mpero'I"". °e. 1e,o '..---/./ ."" ~... ~FCR 13.0J7.0:;---:------A _ ...... r~~J-J ~ ~ MeR 13.0 1------lo.ol--/ ------:~~~V--\------'-'--

7.oJ~./...'\~-d-6-.6--- __~__:~- l~...ilL.j ~j.....-.....-_M6_6_ 13.0, 10.0 I 14.4 ~j\ \ M55 l;~-,------...... -~-- ...... "".:l.. F! 4 M45 ... IO~'t:-~ ~ L 7,0 IJ,~ 10.0-1--...-./''''/------SSP. lIgl::;-j~------

10.~~ M29 7.0------J3Dl 10.0-1 .A 1 ~ 1 1 I r I I . 70·1 ~ 0 N 0 J F M1AlM1J I J [ AI s1 0 1 1970 1971 f'igulie4. ConOnuccl TurbhWy, JTU Color; Color Unil~ 5~ FeR 70b.10 ~~JL '>._==~==_ ° .-..------====-==- 2~.----~~_

20 -'J loOjL' --_-==~ ~BL-----""'------_}_/i-C...:..:{ . ------.- ~~l MoS ~~,------_ --~ ~~L .------...... _..;:"... oJ.'------_=-==... 2°1 l~._. ""...;;,>--__" ~BL-----...._,,---~_·~L6::::...6 50l ~~/\ 251 o I

5°L25 ~~L''''''-_--_---~---''-._ " o

5~ M29 25 I ______01..L------:a ...... EBR o JIFIMIA~I 1971

Fig ure 4. Continued O"lh,,:" Ph".phal". "'9/1 S ilie:u, mg/l Sullal~. mg/l N"~ChQ"9~~L-0.91 01 Se:ale: .p FCR O.O~]__...... _0.4_0_._\_.....---'- 3.0 2.0 o'0J.- / l.a MCR ~~3/ ~a/'­ -.------M6B ~BL ~3A/ M66

~B/\-- M55

M45 ~B ------M29

2.0~~ - J.O 9." 'o'.'O'J', 'M'A'M IJ','A','O' 1970 1971

Figure 4. Continued Figure 4. Con1int!ed FeR

1°1 M68 ~Jr-v~ .,--..----- ~~ M66 ~--~~_..::=====:->=~~,,- ]~ ,.------~B-- lH_ 1\'155 2':1 I.~J------IB___ 2.n~ 10 SBR I. ~l-~~------"-.---- o : r-::======_=::::::==::::::::... 2·°1 1~l_ h129 /.Ol'OJ:·=-::::::...------=~::::::::::::;:::.. EBR 13~ '-..-,- °A1SloINlo.IJ IFIMIAIM'J IJ IAISlcl 1970 1971

Figure4. Continued Conductivity, u mhos /em Olssolv'Ild Solids, mg/I 100~ ~ J J ------'-----=-.... feR ';~jr-O------~~- 1::0L 1DSO:J_'- ,-----__-' J ./ MeR l~~j~ /'-~ 100, _-----.---- soojL. -.:.M68_ l~~l~~ ~ l::j ~6 l~:r~ ~ 1:~j------~------'-M-,-5-5

l~:J,r--/ .~ o-'~e: ~:----- ~ "..~- 1005:~ ,.., ---- 155 A J S ' 0 J N IDI J F M IA J M I J I J I. A i s i 0 I 1970 1971

Figurc4. Continued A I\'cllni!y, m!l/l Carbon Di...l":." mgll PH

200 80 ° \~ 100-,l 7.0-,1 ~ \...../ FOX o~L .------6.0------.... 200- Ie lOO~ll / A- ~~h-~ :~~ .~ 0-11------._ 10 I"- .. BCS 0' 6.0.....''------200, 8°1

7.°1 B8 6.0-'------:J~----v-r;~ 6.0 - .. 20~ 8f)

Jooi -.J'.. DOME HA'S"O;N#O'J 'F1M'A'M'J'j jAcSaO~ 6.0- A S.!OiN~D;J~fJN"AIM.JIJIAf'510... )970 1971 1970 1971

Figure 5. Chemical end physicol variations from Hve Gold:;~reQm Creel, siaiions, 1970 -1971 &t-.~.1. jf:.. ·,.·.,..•,'f'.,·'ht. l::.oFli"l.•.. \...

.- "

:j 2°1 FOX o-~------']------=:-...~ - BCS ~oo~ --/' 100 .- . , 3AI~ 300 .. 200 BB , ,

100 ~ 370 300

200 200- SeRB

\00 \, 100 100 300.

20 DOME

100

1 S 1 0 I N I 0 ... J • F i M I A 1 M I J I j i A I S '0 r A SOH D j F M A 1970 1971 1970

figur(: 5 Continued Calcfam, Ing/l

FOX

4,0, 3.0-1 Res 2.~ / J3.6 \ '. 1:~1-J 12.8 ~ 26.4~~~ ------.~~~. 42,O~ BB :t, ~?' 38,0 39.6 ~~ ----~ 1.0----- 'seRB 2 ~~~ 10 O..J.------j----- 4,°1 DOME- .... ~~l / ~~J-/ 3'°1 /~ ~~j -/'- L1..--/ /. 10 O. A' S'O'N I oj J It IM~AIM1J I I AI 5'0' I~ ~ J A' S'o'.' D'J' F' M'A'M' J'J' A' ,'0' A' ,'d.' D'J' ,'M' A'M' J' ,'A' ,'0' 1970 1971 1970 1971 1970 1971

Figure 5 ...Connnued ....

AmmoAla Nllrlle - NlJragen, m3tl Nltra te· N lIragen. mgtl 0.025 ..0...1.00 o.2 " 0.02 • O'2~0 O'15~ 0.015 0·15 D~ 0.010 0.1 0.05 0.8 ...... ~. A' Q005 005 S i.-.- _ o i ~ ~ o.l-~~:::::::::=:::::::==::::::::::::::::. ~ .. O'2 0.02 0,20 BCS 0.15 0.0 IS 0.1 ;'Q62 0.' ro.61 0.0 ) 0.10 0.05g/ - ~ao05 0.05 w ---- O....J------vJ 2 BB 0'2l[J 0.1 S . 0. ~:;~ IT1 0.10°h 0.05- ~ jl/ o I 0.0; \I- I~:...:::!::::::::===:::::::.....-~==- 0.25 0.2.5 OAI 0.2 seRB 0.0150.02°1 0.15 0.010 0.1 ___--- 0.0 os 0.05 ~ ------0 L...:::::.:...~=::::!... _=:_: _ j~ti 0.2 0.02 D0 E O,L 0.015- 0.10 ,,_. ~O.OlO /\j/ 0.')5 ~O.005' 0-+-..,-...--,.--,,...... ,--.-...-,...-,-...... --.-....-....--...-. ~ I O+-A-i-'/""I0"""""1N-"-O"'r-J"T1-F'r)...,-r'lA.."r-,,""i'-J""-JTI-AT.S-:Ir--lI M A M JJ S O ASONOJ'FMAMJJ ASO ~ 1971 1970 1971 1970 \971

Figure5 Continued Turhl clify, J TU Solids, mg/l Color, Color Units 60 fOX ~ 60., 190 45 BCS IOO~75 30 30 50 I~ I 15 2~ )50 o O..L---- ~~ 169 ';~j 301 :3 /\ 15-]1 25~ 'J oj 00-: ~~ 103 I~~/\ 30 ~ ~~_. S_C_R_~ O...l..I _ __. 60" • ~ lO~ 120 \ ,~}-l! II- V 75-j :Wl~ \J 15-1 "- ~B DOME: O--f-.....,...... ,.....-,--.,...--r-..,...-..,----,.---.-.-'; -J-"-jF-r-t M--rj -A"'-j-M-rj-J"'j-J...."r--...... ,S--'-'-0....1 O~'O'Ni oj; 'F'M'A'M'J 'J lA'S'Ol J Ft-l'AMJ A 1970 1971 1971 1971 ..

, .~ ..... ,. "" ... ~-/ 12.~ ,-,-- .- FOX 9'~1 '~ 6.oJ 3'°11 ~--:::------_. 0 1 J2.g9.0 ~ -:--..:.-- -- 12 ~ BCS

o 12

3. o 12·°1 s "'\ --r-'\ D / \RB J,Oj 12,0'-:~11'\0.1 . ....:::=:=:1-~---~ 12 _.. ' i

3'J...... --~ ~'.--,-- -;N~r;-rJ"'f-r:~7~-r-----M J' J .. A r' S· ON'\ 0 I J• ,., f /' I J.... A S 0 j W 1970 F I .. I A ;971 - .J ' A S • 0 ' 1970. D J f M A 1?71

Figure 5..

--~ -_ ... ~--~. •

Orlho· PhoJPhn'", m!)! I SHiel>, mll/J Sulf .. le, mll!1 6.0 FOX

.,'

.0.2 BCS

SB

seRB

0.2 DOME 0.15 0.1 /\ 0.05 .~ L O-l---.-...... -..,...... ---,..--,.--..--T--r-T....,...-.-....;.-;.~ A SO", 0 J F M A M JJ A S' 0 A SO'" 0 J F M A M JJ A S 0 A SON OJ FMAMJ J AS 0 1970 1971 1970 1971 1970 1971

, Figure 5 Continued . , II

Q2 Iii E :z > ..... 0,1 u x

j 75J z oJ:==::::::=----~----~-......

::::: E'Q02 . ~ 9.0 z E N o QOl c5 z ci

8,0

~ 0.2 E ;r. 7,5 z c.. .

7.0

v o~'l r Q2 ::l "-tn E -<' ~ Ql

cP ",' ; I ..tI n.. .. « 5..G+-.--.,..---,---r---,r--r---'--'--~'-----';-i -jr- 1 --r, J-;---r1 I j I l~- I I I 1 j- lOOO l~OO moo 2200 0600 1000 WOQ 1M)':; 1&00 2200 0200 0600 le,::;0 Tim« r i",~

Figure 6. Diurnal chemlcol Cl nd phrsiccl VCikdi{Jr,:; h'orn Chofonika

River, Ell ie, if Bdc!ge siufjori r July 22, :2'::;, 'i971 E 200­ ~.. C> .J:. -~....-_-- f: 17 ,0.° . ..__ ...... ---. ::> ". 0-1 --,- ... E .E 15 %. ~ f'l ..,::> c ~ (I 0.0:1_:-. _ U ol "==: 10. 9. 0,015

~ 9. .J----~-~-~------:;;E \.,' .....----# '"E l3 d . ci oN 8 zaoos, oL-===-..:.------

-::. 0.05.l ..... ------~-- ...... ---.....---· E 0 -----

}> ~- 15; ..~ III" ~ o~ ~ 10 ...... c.. ~ "II ODJ..=_'_: _____ ~ .5 ..fJ-I.------

I-~t --~:--It___,--t-I____r--t o I ['"\I 'J-,I.., -'-j 0900 1300 1700 2100 OlaO 0500 (9)0 8"i}:; 13~O )70') 2?C) 0100 050) O;~'J Time lime

Fig Ur'C 'I. Di u;'l1olchemical and ph:.:sicd varloy!t.,lrJS f :"O!1"l Gcici:d r,~a fi1 Creek. June 28, 29, 1971 BB, _ 0.05, __ ------. ~' __ ....~~---...... "E':' 0.L-.I.... .- .. _

~~ ~-..-----><; Z > 15 :eM u . SCRS./ :> ..." 5 ~ :<: 0.0 1 ~ J25iL._~ _ 0.1------

:::::0005, m I E. oJ---~----+------z oN ZODOJ~::=:=.:==_:::::::~=-=___-_==~, ==::::::::~'. 8.5-'------.-,------...... 8.0 1 :~l//------~-----

Z

7.0 L~-----~·==-_·~

,p fJ' , EI r ...... - ~ .. J_----.---=..------.------_.... ""lI ~ ;.

2SD-] 6.0 I---~--- ..u. 2 "

\ \ I I O.J,-~..,--;----,Ir-.,.I-'l--.-r--r,-r,--;,r-" I. 0600 1:-;00 rJeo 18:'::'0 2200 02000600 1 im" Time I FiglHe8. Dium:d ch(~micul ond. ph¥sicol voricdions {rom GolJdreQm \ Creek. Augusf 13,14.1971 I

\ DiHof.~d Conduc!ivi'y, An, mon I" c O'Y\l€n, m,,/1 crl1hol/'m 2S C Nil r "9cn,r.',g/l 9.0 10.0 11.0 SO 90 130 0,05 0.15 1 I I I I I I I Orfl.,,- pn"'pl,,,',,, N ifrn" ~ '" J PH mull Hi1rcger.,mu/J :>: 21 7.0 7.5 8,0 0.05 O,C05 0,015 E., I J I I "u ".. c: -:; Hi lror" tJ r; ~ 3 ~ Nilrogen,m;;:,! I Si I.- 0 0" 5.0 10.0 15.0 l.5 .1.5 7.5 0,05 0.15 Q25 I I f I I I II, 1 Ui'3.":!t~~~ .::::::::-.~~;;:;) FeR 0 2 "::::-::.::.:.:;-~:.:'::.;..~,~~~~~~~ ~..;~,.:rJ!--::~'i:p:o:;:..'~ fP n (OS'OJ .. 3 G~:'!'~.::::'-!:'''S = ~~~~:rs~::'l [<:) h'keR a r~ ,:3 ""'=;:;::~~

M68 1.5 n .."1t.~-=.f'..:e;:..\-.i:~~ W-~U~~

~'i5~ a M66 4.0 ~~'T~.l-=:3 c a:~~ """~ t:"'~_~~~~~ ~~~ m CA 6.8 r:;;;:;~~~~~ w n l!:";-~':::-"":'."'~.~~ ~~~~c;:.:.~ lI2E!"~

~~,!.;'c,"~.Z"i:a~ ("'~ ;:: e13 10;9 .~',;~~ .. <;t e:.~~~ ,n~.?~

,""..\';o...~-"~ CD 13.0 u...:.;:;.;z:J..<'~ ~.c;.=-:-3~~~ === ~~Q '" M55 16.0 =" .. o tr.,.,d.1~~..r~ ='.""~"\)' .iJ-=U.~o.~~-n

s...~~ m::r~a.:;.".(..~....~ M45 27.9 l"'::-;~~m' ~~i.~ nJL,~~ ~u.

~~!;t SBP. 37,6 ~~~~~

~~ II CF 39.3 Q 0 umuuacaUUli ~~

C1$';'i.~~ ~b-l:XVt La CH t.5.8 Ci.."lrJt'z:wflta~ "" :t:':':~7';..;~~ .. OOZ!"'~~"'lr='r~ ~

~'~.~.e~ ~"""" iii M2~ 51,0 c;;;.,z:.~~~~~~ q ~ .~C'::.'tl:.l2oa~ "'~ ~

~ ..,. Ci 53,0 :"".ii't Ui '~~~ f;;:;l.t'l'~

CJ 55.8

~,·~Ch."LX':"J;'\."-..:-"'l'l'lt.l.~ll .., ".~ ~;'l.l:r ESP. 60.7 .r"=,=.':'".. ..-,...... ;.&,, ...... IN L30 (Q82i a t.lf~"~ f~'~~ Figul'e9. C he:"i1ie~11 C!nd phl'SjCc! variafir..HlS from s:i.deer. Chdo n lko I I , "'

DiS! clved Ccn,!,"clivify , A-rT1'monia O.ysen. mg/I umh~.'un 2S "c Nilr,,~c/l. mg/'

9.0 10.0 11.0 50 90 lJO 0.05 0,15 I I I • I I I J .. Orf:lo--p~O;i' 1".1 •. NiI.il e .. PH mg/l Hilrogcn.mgil =:t: 2 8.0 E 7.0 7.5 0.05 0.005 0.0l5 " J I • I 1 I ..u .." Nilrale " • ; Ton, p"r" lure, DC SHito_ mgtl -:;" "~ 1-I1,.0gen, m9/1 D S j Ie 0 0 31 5.0 10.0 15.0 1.5 4.5 7.5 0.05 0.15 0.25 , , I I , I , I I f:!..!~~~~~ .. FCf{ 0 2~dl'~r..a' 1:' 3 C'> tr.:.r~~-';:-=.L~ ..":;3.:.!'~

i::t;.~~~ G..~.':J..":.!'.~~ MeR 0 ~~~ t~ It:>. • C!:~~~~2..:t~~:' I:l M68 1.5 ~~ D ..... ==-;""""'=""1

C=J#AII:,",J!aI;~~ M66 4.0 £.!~.,.~~ rn

(~;-...!:SL~~~':1 l:r~~'~~ U CC 12.2 ~.:&!;t1L.:.:~ I G "'" ~~~'1d,."l tt...~~~.Yt.:ih"~~~

r;.~e;..i':":i::'"7-.-~""-=--':'~ ~':..~!tJ~~ f/155 16,0 .~~~ l.'l ~ ~..,..~

m=...;~ =~.= CE 20.2 ~~ G =~ == .f1,~~ I:I'.I:~;~~~&'.,.!,~

Bo.~~ !

~"::S"r::I~~~ 13 CG 42,2 ~~~.A..'I;J Ii ~ ~_i,:".- ~~;::

~f~~~l,-'7S~S t.='~~n..~~ M29 51.0 lJ::Ul';;i\nc&.~ l!:l m':I.."1Q r-.::e.~~~

[,~~~.:;'~~~:::I ~~~ a CI 53.0 R:."':i~~"::R-~U CI 1\1 r;:c'U;c;.~,;:) GH~~~~ ~.&!o~!C:i..·,~,~:t.I

~~~"";;';..~...;s: CJ 55E tl ~-r~',:;"l:

t.";::Ci:l.I~1,~.ri'~~~~ (;BR 60,7 r.: I DiHO!v"t1 C onducfiv; ly A. mmon,i D 25 a Nilr"9"" "'g/l 11 O'YY"~ ",g/1 umhc.l/-cm C 2.5 50 150 250 1 ;p Ip r I I ".. PH O""o~pho,phcf" Hi/rife mg/l Hi/regen mg/l ::;:: 2 5.5 6,5 7.5 0.05 0.15 0:25 0.005 0.015 E I I I 1 I I I I I c.. ~ "u Nilralc Si li(o " r. Y" m pe ru ",,"e °c mg/f I~ i/roge n mgll :;" > 3 0 5 i I" Co 0 5.0 25.0 2.0 .

1 't!'f~';l.';-.:,,-~~~-::::n.~~G1I a:~-=-~~ FOX 0 2 ~.:A.'::ts.;:.,~·A::r;:;.;JS .."""":·'- i:-~~ <';.~ 3. m

r.:i.~z-=-'t,~:=-;r--;:.:.:...~ G::.~....~ GA r..:::.r~';itt..:::;y,':Fj'··l~ Q m~

~~4.-.a~~-:'2i:~ BCS 1.6 f-~'---=:m~~~~

c.,~~~~.-"nc:::::=~ G!:.~.::

e-::.~~~.c.:!i'.'Z:::'~ e.:~'::"ltOl =.a GG rz-;,--"~..!:~~~ C"I ~Sl I:'ii.~l;l] e;r~

~~£&~~~ BS a,o ~l:.':i..... r:·~·"!::'~"""I"'S I

~~~ <=:ro.= GK ~2~~";Q=a":.~~ ,~" t,;.~~i1J

~~~..!:..~ seRB IB.I e.-~,,;~u\ln~·;~~:~n9.=J,c~ I

GP 2oJ* =,-..~ I

~~"t"_~~oi..~ GR 20.7* ~~~J:3!::::i!l~~

~i:i..t."n'":'i~ =<£";:) DOME 27,0 e:~~~.:zt~~:ns;~~~~, U':::::;'~1 I.-=.~

~ S" m ~ f e ! u k ~ n in' r i h u I " r y "I G" rd, f • e., ,n ere c k FiglJre:i1. Cher;-deu! UH(! ph}.sicd vur1c::dicns !njfi1 d~\.'cn G(,ldsin':om Creek daHons, rAay 6,'1, "19'11 Con

L'n'l"hDl!t;tJl ~.!jr:.C :?~ 5-0 250 0.05 0.i5 • I I I I I . Nilrif'" Qrfho-pho,r/'ule, .. PH "';1/1 Nitrogen, mg/I Z 5.5 6.5 7.5 0.05 0.1 5 0.25 f).005 O.0l5 F. I I I I I I I II

Ci ..~ t~ifrllle C" .. Temp-erafur-e, l::'C C :l Hilr09" n •••1 gil -;:; l 3 0 S i! ~ 0 0 5.0 15.0 25·0 2.0 4.0 6.0 8·0 0.05 O.lS ---~ I I I I I I I t I

1 tr~.:E't:'::',~";:-Z~~_:.~~ rc.~'::A-~~J·:J FOX a 2 L:'-"""=--:,"<,;==~.~~,,,,::'l U 3 n::.:.""::::'F.-,;:-:~_~

G/{ 0.2* [;) C-~=~~7o!r~~·~..Q.DZ!...,r:~

~~~~~ ~~r~ 1.6 '[~-~~":';:,.~_':4.~;;::'~~~~ ~ ncs ~~"":"l-;::?~~ r.J.=tn'::=Uiri:r;{;7~

GC 7..8 .r.­ C.";';L·3:~.m::~:';ii:r~~"iS1)

l."!:'::."~~-.r.:..."'t~ GD 2,8* £:.I.Li.;....~~. (l)

6CJit~~~~ GE 2.8 t! "~~~::-~~~G'.!..~

e.:~8',r:::::z~~~;t C2~~~~~ti:~~ GG 7.7* rn:;;..'";;!t~;-::'l...,t..""';""--""b~:r~..arli1 G!a ~";':'~·'~~-.. I""~-tja

~l'jj,:.'"~~47~ ~~~'lIt-:;r,'!7r~ 8S 8.0 n;-~~~·:,,:;,~~.e:~~ II t~~~·;!j Q,"~':'==

f~~""!::t-=t'.!:::ebe ... :::JC:!::S l:."l GK 14./* ~-;:t: .•~-::.:a..~~ P;~JIiI -e'i-~~n ~tl-~~=:;:m"l"Z>~ (: n (C~) 6)

~~l:~~j'~"''?~~~~ r~'l:":~~~eL'l:':',;(51 Gl 15.2 ~;.t.~':1"~;'~~~~~3;'4 \:.7"'~~';;17.':"';:;:·"'? G Q [0.91) c."'a~~~;..'t~

~~~~~Jr£.~ ~..:..~.:=:-..r~ ~~ SeRB 18.1 C?r.~~-=tr:!=::.g ('jo ~ ~;;:r:h~~-::1 I!J.,.~~:~~~~. (~."l~m

~~~~4~ ...·~ c::~~1;:4..~-£E:rd .tl~::i:;"\~~~ GO 18.2 1I:~;'~~-;::::!::.:.:;3 ~ Q ~~;'~'i~.~ E::!.""~...,;:?i,.'ri'r~ ~i'm

m:~~:-';:--~.:!::~M:Q"m fJZf~""f;V&~ t];~lO'ii:~ GO 2Q5 ,Co"...:...·;:'::::':;~.h"-~;c,:~-.~~r:~·,;Q a & t:t...s:.~....~-::J

c~~:::;:,:-:_~:-...!::_·~;',:~"':~~--::.:::;}-~~~.:"'.:~:;~.:;J_}J ~;'.:'.'..~ GH 20,7* -t::':7:·~'::!'Ei:-~~'?-";:'~;':L-::t'-::-.:=_!.:='" ....'::i:.·~.~~ r::.::";:::::;,::.~ t/. ~E:::l ~:r;:-::.:.:::-::.:::3 1.~·:..iii,~'::-;;:~~i::·~~Ji:iI t.Y:.~:::J'"':"~C:~~~"~~'3r~~

"* .5-an'lpfr- ~a'ke-n 1'[1 f"~'::.t}Jo"~· !:I-~ G('_;-:I~fri'-nln r.r~~!r. Figllre 12. Ch e mice 1 cd'd t:hY5:h':QI \'c!ikzficn So iroLl ~c".:de~n Go!dskeomC reek :dc.dions, june i 8, 19'11 Diucrv('rI Cond,,< livil y Anlrnooi CI , a·rgen. 1l1!j II umhr';l/c'1l1 25 DC ,I I'ilrogon mg/I .1 2.5 7.5 I I ns 50 I I I 1 1.(0 250 Q05 0.15 ~ I I I I u I PH Odho_ ph~,[>holo Nilrile ~ Ing/I 'I 5,5 rHlr<>~en mgll E 6.5 i I 7.5 0,05 0.J5 Cl ! I , 0.25 0.005 0.015 .. .. I I I I I U .. C I ..c 1"",pcrature,oC Nilra'e -:" l Silica IHg/1 Co ,/ , Sile Nilroyen 0 0 5.0 15·0 "'9/1 I 2.5.0 2.0 A.O 6.0 1 i I I I rw 0.05 I f I 0'15 tZ':~!}'.;-,...-:-:~;:W:'::.1.;3£:''::''::'"i~-:.:-~''l FOX 0 2 (':'::;,::.:-..r21.;::'~::~.i!'l I I;'~--~,,,,,'!'''':''U,;;;t~.:~~:::.!~~~~.::tt.~~::; 13 J [~c"'-":.,., .. C) e'"'2V''';.;''~:'~-!7""-S2:~~'.?:":,::: CC?""'::-:l

GA 0,2* t.~~s~~ c= ~~~

BCS 1.6 ~~~~ ~~-::z=:I 'Uri~~~~_~ ru ~:~ L":::.:=i':~-.,r;':-~~'l::.~

aa eD l£L'; t;:-$ t-~'"'L""~LS'J.t

GH 12.1 l'->'::'_=ll::"'""",,,,-",,-.._ .•'11 ~,;=~~~W'~,~:::u~ t<: ~""""'-""""'~ ~~~~'~':..ll);

~.{f!~-Z,,:~ Gl 15,2 (u...5t;;'i~~~~ l;J:.~~!;,!~ 1;:crl Q t!~~~ l'l 1t"'I.~~--r~~BrS" t'....rr~::t

~:~-= seRB 18.1 ~i;-~~ ~~r-:~~~-= rs 1'".:::1 ,,=-~~~~ rl.7 ~"='== ~.~~~ GO 2Q5 t&~ "'~ ~tt....~ I Di"cfv ~ d COl1uudivily A'l1rncnta O=yllen ",g/I urn Ito, /e rn 2~ "c NHro!l"n mg/I I I 2:;0 0.05 0.15 2.5 ;:5 12.5 50 ISO I J I I I II ~Ii PH o rlho- ph", ph "I" Ir i Ie .::. mg/f Hi Irogel1 mg/I 2 ~ 5.5 6.5 7.5 0.05 0.15 0,25 0,005 0.015

~ I , J I I r II .,tl "v ,. Nilrale T~nlperQlure Q" r. °c , 3 Nilroge,", mg/I 0 Sile a a 5.0 15.0 251) 2.0 4.0 61) 8.0 Q05 0.15 - J J I I 1 I J J I 1 f;::~-:::':.!:i:':::::::z:::'~4;.~':::".:;".;~ S POX 0 2 "'~::~,·~o ... "_;;c.",,-::'::c,:.~,,~'~·:m o B 3 t=::>..'cl:;l

~~~~~'U ~~~J:3 GCS 1,6 ~~~~~-"-~-'ii""~~;r~ 1.2 ~ ~~'1.'!T;;a

BB aD

e:~'~~':-:i!;~~ ~"'?:~~(e..W-~4 ~ GK 12.1 t::;c;;..~-:r:.~..:;t~~";dI~';:;';';:i·="~ Ii Q r~"i.V.;:Jo t:;:;;':"'"~""TU:~~ 1.='::::;;:::;;

lt~~:=tffi~~~~"V""~ ~.!::':':;::"~ GL 15.2 (=!~t..':::::-;.:Ji:~~---~;3 0 ~~~;D. ~':"ili~~~~~

~~a..,.';.l:5t.' ...._,~ ~~~~~ 18.1 ["F.!~~~~~'":l:~~- ...!:._:Il ~ seRB ~~"SS"~--e: E=zf~- ...*:;.J1d.~-'-='::

l.n~~~-J..-~S l~~~~~ l':'~~ GO 20.5 f':'.&Z-~~...z...~~4t7~:a1 l'r~~.u.",:;:;;nli<:<~ c:: 0 (Q.97) f:J r:~'t"?.,!o.~-=;'~~ <-::;;l e=:~~

DOME 27.0 1.~""::::..~~""'i."Z:'<.l:;'Ji:...~"':::::;;~~~ a ~--.:-..~ f"~~~~.u=~-:;~~.~

~,f .. SOr.'lrle Ic.l:el1 ill fri bcJery 01 Gold,lre"", ere"k

Figllie14. Chern!cc:i and phY$fccl t'orirdiQn5 fr·crn nine Go!dsf.eatn Creek sfalionsJA~;9US~19,1971 DiBol·~d C"nducliviJy, J Ammonia o. YQ

>< GA 0,2 A

BCS 1.6 "~~~~J;:;::: :>rJ::i._;,a:-~"r-~ G'

IttT~~

.",~~..: 8.0 ~~ ...~~ ~~~---~...!. -,n;~~~:...:.o I .. ~"''''''" l:~~~ ~-.;;.~~

r....~"'1?~~~~ Gl 1.5. 2 tQi;Jr~~~~1.'U, ~~'I:,,;.)'1C:' •.;.. ..=tS n I r-.Y5-~~~~

1;:~r~..~~zr.=.L~ SeliEl J8.1 ,~-~~

GO 20.5

t:Z:1J::~I7:'~~A":i"~ 27.0 'C-~.:u::~.n:..t~"';'"~

* S"n'pr~ ln~en in fributary of Gold.lream Creek

Figure-i5. Chc,,-;ical Clnd r-:hrskd \.'Gri'JtioIH hom Q;Gf;~ Go!d:;freom

Crc::k Stcd'ionsr October 22.1971 TABLE 3. THE ALGAE OF COLONIZATION AND RECOLONIZATION IN THE

CHATANIKA RIVER AND GOLDSTREAN CREEK

Elliott Bridge Station Steese Bridge Station

MowJeotia sp. Ulotlzr'?:x sp. (with epiphytic dia toms) Gomphoncr::a sp. Rhizoclonium sp. TabellarZa. sp. Gomphoi1el7la sp. pennate diatoms Tabeltaria sp. pennate diatoms

Ballaine Bridge 511 eep Creek Bridge substrate mainly sand: Chlamydomona.s sp. (some in palmella unsuitable for fila­ stage) mentous algae Chtadophoraa sp. (balls)

37 TABLE 4. DIATONS IDENTIFIL-n AS EPIPHYTIC

ON STONES IN GOLDSTRE,.\}f CREEK

F'ox Station Beloh" Construction Sit;~ Station Sheep Creek Bridge lJr'cb-ittSonia sp. BidduZphia sp. (?) Caloneis sp. Caloneis sp. CeratoY!.e1:s sp. Cel"atoneis sp. Ceratoneis sp. COSCiliOdiscus sp. or Cc,-:;loteZla Cymbella sp. C!}mlJella sp. sp. (girdle vie\.]) Eutonia sp. Diatoma sp. C~J.'rbeUa sp. Fragi laria s p • Eunoti..a sp. Mel"'idion sp. Gonrphonema sp. F1ugilaria sp. llc:J'icuZa sp. Tohellal'ia sp. Gomphonema sp. Sywdra sp. Meridian sp. '7a1J e lIal"'i G. S P • Navicula sp. Tabellcn~ia s p •

38 TAllLE 5. FA.UNA COLLECTED llY BENTHIC AND DRHT SMlPLING

ClUNE, 1970 - OCTOBER, ]97])

Chatanika Goldstream River Creek

Chordata Os teich thyes - bony fishes Perciformes Cottidae - sculpins x x f{ematoda x x Annelida Oligochaeta x x Arthropoda Arachnida Araneati - spiders Acarina Trombidiformes - \·,ater mites Crustacea Copepoda Insecta Collembola - springtails Ephemeroptera - mayflies Arthroplea sp. Baetis sp. Ceniygma sp. Ephemere Ua sp. Iron sp. Pseudocto eon sp. Rhithl'ogena sp. Hep taginidae unidentified Plecoptera - stoneflies AlZoperZa sp. Chloropel1 la sp. Eucapnopsis sp. Isogenus s p. Isoperla sp. NemourQ sp. PQl'Qcapnia sp. Peltope11 la sp. PerlinelZa sp. Thysanoptera - thrips (nori-aquatic) Coleoptera - beetles Haplidae HapUus sp. Dytiscidae ilgabus sp. x Or'eodytes sp. x ------

39 TABLE 5. FAU~A COLLECTED BY BEtJTHIC AND DRIFT SAMPLING (JUNE, 1970 ­ OCTOBER, 1971), Continued

Chatanika Goldstream River Creek

Col Boptera - beetles) cant. Hydroscaphidae HydY'08caplza sp. x Staphylinidae Emplenota sp. x Emplenota aPenar~a x Trichoptera - caddis flies Beraeidae unidentifi·ed x Brachycentridae Bl·a.chycentr'U.s sp. x x Leptoceridae Leptocella sp. x Setodes sp. x '1'1>iacifodes sp. x Limnephilidae unidentified x: x Phryganeidae Phrygan'ia sp. x ?t·aostonris sp. x Rhyacoph ilidae Rhyacophila sp. Lepidoptera - butterflie_<; and moths Pyralididae unidentified* x Diptera - true flies Tipulidae - crane flies Antocha sp. x: D-icranota sp. x Dol-ichopeza sp. x ElUptera sp. x Helius sp. x Holorusia sp. x LonqU1~io sp. x Pmudelphomyia sp. x Pentaneura sp. Pha lacrocerca sp. x 'J'l>isgoma s p • x Culicidae - mosquitoes Anopheles sp. x Dixidae Papadixa sp.

* Currently in transit to the Canadian National Museum for idenUfica­ tian.

40 TABLE 5. FAUN/\. COLLECTED 13Y BENTHIC AND DRIFT SAHPLING (JUNE, 1970 ­ OCTOBER. 1971). Continued

Chatanika Goldstream River Creek

Diptera - true flies, cant. Simulidae - blackflies unidentified Chironornidae** - "nonbiting " Calopsectra sp. x CardiacZad-iu,s sp. x chirorlOmus sp. x CorynoneUr'a sp. x Diplocladius sp. x Pi'ocZad-ius sp. x Prodiamesa sp. x Stictoch-iY'onomus sp. x Tanypus sp. x x Trichotanupus sp. x x Ceratopogonidae - rYbiting midges II Cul'icoides sp. x Dc.lSyhela sp. x SphaeT'omias sp. x Stilobezz-ia sp. x Rhagionidae - snipe flies Athel~ix sp. x x unidentified x Tabanidae - horseflies and deerflies Ch:l'lJsops sp. x Dolichopodidae - "long-Iegged flies If Dolichopus sp. x Empididae - "dance flies II liemerodromia sp. x unidentified x x Sciomyzidae - trmarsh flies 11 Sciomyaa sp. Sepedon sp. Nuscidae Lispocephala sp. x unidentified Hymenoptera - wasps Cm1 aphractus sp. (?) x

:~* H2l1Y individuals .of the Chironornidae are Dot pasi tively identified, therefore this list may be incomplete. t\>'cen the:; treams quite ,.,rell. The mayflies (Ephemeroptera) and s tone­ Uies (P.lecoptera) of the Cll.:Itanika River are, more diverse than those of tile t:vJrlstre

Ben thos Thesis Study

The thesis study on the benthos was res tricted to the consideration of the Ephemeroptera (mayflies) and Trichoptera (caddis flies). The to­ tals collected for each order at each station are presented in Table 6 • ..'ltternpts Kere made to treat these data to determine Hhether temperature. velocity. dissolved oxygen, and pH had any effects on the distribution of these orders in location and in time in Goldstream Creek. Secause of the strong time dependence imposed on the data by the meta­ morphic development of the mayflies, no effects could be separated out. This time dependency is clearly illustrQ.ted in Fig. 16 Hhich consists c't plots of temperature variation and mayfly nywph number \/a"'-iation for each station. It can be seen that the end of the period of high popula­ tion of nymphs and the beginning of emergence occurred near the same date. (August 24. 1971) at each station. A time dependency this strong can obsL:ureany other relationsh ip in the data. The Trichoptera are less dependent on the time of year as a stimulus to pupation and emergence. This is at least true for the order as a 1,.;l-:.ole, in contrast to the mayflies which, as their common name implies. ~merge at a specific time of year. In this study the Trichoptera at the Sheep Creek Bridge station, where the greatest number Here collected. were found to have an tnverse rela­ tionship between their dis trihution and stream velocity (Fig. 17).

Drift Thesis Study

During the summer of 1971. the drift of invertebrates was measured at Fox on Goldstream Creek during four 24-hour sampling periods. Heasure­ Dents of stream discharge. tvater temperature. and light intensity ",ere alno made during these sampling periods. In this study. a strong time­ dependence tvas found in the data which obscured any other relati.onships that might exist with stream discharge, water temperature. or light in­ tens ity. Because of their dominance in numb ers, th e Epllemeroptera and the Diptera were the only orders considered in the study. Figs. 18, 19) ~O, and 21 illustrate the time-of-day dependency of the drift. The peak drift oc.curred at nigh t I except for the first sampling period in ,.,rhi-cll

42 TABLE 6. T01;AL NUHBER OF HAY FLIES AJ'!D CADDIS

FLIES COLLECTED AT GOLDSTREAtl STATIONS

(BENTHOS THES IS STUDY)

FOX BCS BB seRB

Date Hay- Caddis Hay- Caddis Hay- Caddis Hay- Caddis flies flies fli·es flies flies flies flies flies

6-14-71* 0 0 0 0 0 0 0 1 6-24-71 0 0 0 0 9 11 2 0 7-19-71 151 0 124 1 194 3 29 11 8-4-71 123 0 360 3 184 11 131 59 e-18-71 33 0 134 2 38 2 15 66 9-6-71 15 3 64 3 25 4 32 82 10-16-71 8 6 2 2 3 0 1 1

Totals 330 9 684 11 453 31 210 220

-/, 6-14, 6-24, and 7-19 are representativE of samples of 3 square feet. All totals after 7-19-71 represent samiJles of 5 square feet.

43 14 FOX Temerature - --. 90 Mayflies 10 /"------__ 60 6 ------'- 30 2 -...... -- ~~O 14 BCS 90 0 /-..;-- 0 10· ... / ---- 60 l.L! ---. 0::: 6 30 (\J ::J - -- -....,- y... f- 2 ...... {.(-.. o::.f. 0 "- 0:: if) W IJJ r. 14 - ~:>~...-- BB -.J :,0;. -..---. ---. --. "'- 90 lL W 10 -- 1- ~ 60 <.:::,.- -- ~.... 6 ------...... ---- ...... , 30 ...... 0

14 ".....------...... sea ---""-. 90 10 "'- 60 6 --- "'- " 30 2 "-. ~---r--.-,---~ 0 14 24 19 4 24 6 16 JUNE JULY AUGUST SEPT. OCT. i971

Fig. 16. SlanN:';Y' tcmpeY'atuN; ?Ja1~ic.,/c!z u!,d ";ayfly disL7'ibutioYl -Liz Colds"tl"e::,wl Cj"::3ei.:.~ 19?1. o 40 o EVENT OCCURRED.' Once 0 35 Twice 6 Thrice 0

30

o· 25 -

20 o o

10-

5

I o 01 I a I CL__---'o~.'-..-. ...1.-..-.>..-1..__--11 2.0 3.0 4.0 5.0 STREAM VELOCITY, fps

. 17. '2(>:,,' i\~LaL-ioilSh·tp 013/.;(:';;'6"" :c~~::';;JJ:; ",.,tocit?:;, and the n~,:~bel~ Cj~'" '1ill-Lchol){-el'1a (ca.ddis ..7"~Z ::cs) \:?o ZZ~c tco"1;,~ ::"-::hl2ep Ci'~ eX,: 2r¥idgc Ertal;{c'rl;, GoZ(lsr,::'~·2'_:~·-·~ -S-'1.·~eJ<. ·48

< 40

"'l- 0 24 w...~.- coW ~ ::> z 16

8

ol..-.l----I>.---..Jo....----\_--J._--I.._---l._...-l-_-L.._-.J..._-L-1_...... l-~-J 1200 1600 2000 2400 0400 0800 1200 TIME, hrs.

?{g. 18. Ivutl1beJ:~2 cJ'::- [rip-t.ex-a ',t,:t:._>2i 1 -::;.: J-:"--rj)e-r~'i-·/::{t2. C:l--r-"i' ..r~-C S(/l:~'_Oli'~d;

rJozc..sLY'f3G..,Hj ~--:peek~ ~lu:ile 14~15;J 1871. VeY4 ti:::clZ. l-f~

180

1i. I 4 Of' ,W l- ~Ioor

z 60'

20

«140 n:: w l- e.. °100Z lJ,j 2 w I G... W 50 0.:­o o Z

2T.....L.- ...... _-'-__,l__....4...... _-'--_...... --.-"'O'-_-'--_-'-_-..I..-_-' 1300' 1700 2100 0100 0500 0900 1300 TIME, hrs.

pig. 1D. Nwnr..:ers of Diptera Clnd Ephemeiooptera tQken Ln five­ m::nute c..'Ioift sampleD; Gcld.sty;;;::am Cl°e.ek.> J1d:; 6-7.> 1971. Vertical l-ines l'epY'c~s(mt the I'Cr?ge in ricwiber­ oj organisms fOl' fow' 2oeptic:I.te ${impZ~s. 50

0

20 T

« 16 et:w I i tL I 0 12 1 2w " I ~ 1 W I 8 CL ~ 1 w - 1 I ~ !~ 0 0 4 I, \l z 1 ~ P 1

0 I I I I .J 2100 0100 0500 0900 HOO TI f\~E, hrs. p"Zg. 20. Number's of D-ipte:Nl o.:-:d ~ 2m~~'opt8Y'a. taken iYl fh)e- mimde dl~ift sampZes; ';:]~:i2t1~earn C1Y:ek.; ,July 2.')-.30.; 1[) 71 . VeY'ticQ Z. liilt;;G ~>8pre2 ent the l'ange ·in number's of organisms foP :r::;;D:' l's>L?:cate samples. 200

160

<1 ffil20 t- o.. o "I- o 80 o 2:

40

o'-'----'I.-l.....-J"--ol---L----l.--J,.--:.-l._...... l._-.l.._--J...... l---'-...... J---'---l-~_ 1100 1500 1900 2300 0300 0700 1100 TIME, hrs.

P"ia. 21. NumbeY'8 of DipteYu and Ep!:;;;mcl'opteY'Q taken in. five­ minute drift sa:rr:p'LGS; Coldstl'earfi Cl"8Ck.. At{gust 13-1;).. 1 El71. VeJ"tical linGs l'I2p1"CSEmt the range in i:Wi:Oel".8 of oT~gai-~£S]1f3 .r02~ fC'7Aj~ 11 02pli-ea-te sar:lpZes. so fe\v organisms \oJere. collected that there \V'3S no apparent p2tterl1 to the drift.

AssiiJilation Thesis .S~

Dissolved oxygen sampling 'io)3S run approximately once. a month at the four bridge stations of this study. These data are tabulated in Tables 7 and 8. Biochemical Oxygen Demand t\7as determined th rough out the Hinter of 1970 through 1971. These data are tabulated in Table 9, ,,,hich presents the standard 20 C, 5-day test results, and in Table 10, Hhich presents 5-day results for an incubation temperature of 4 C. The dissolved oxygen measurements show the oxygen regime as it is knm.,rn under \oJinter ice in this area. The larger streams remain fairly Hell oxygenated, perhaps because ice formation takes place during the period of moderate flOl' and then is follo,,,ed by a drop in Hater level, ~·ihich leave.s an air space bet1\7een the ice and the water. The smaller streams seem to have the lO'ioJes t dissolved oxygen as break-up approaches. The effects on the b iota of this low dissolved oxygen, alo'l& ",ith the low temperatures, may not be harmful. Even the arctic grayling, 'fhymal­ Z:w al1ct-icus, has been found in the Chena Ri\Ter ,,,here oxygen was essen­ tially measuring zero concentration (Roguski, 1972). The five-day BODs measured on these streuIDS prOVide values that ap?roach those of temperate zone streams in \"inter. As ".;as expected, th-')se BODs incubated at 4 C yielded 1m-ver values. The reaeration portion of this thesis study was not a success because of several factors: the chambers leaked 'valer, rhus not effeccively iso­ lating the chambers from the stream; the choice of the Hinkler tes t for njo;~asuring the dissolved m....ygen in the chCl,nb,,:r made frequent scmpling i,"i ttl proper repl iCD.tion j.mposs ible; and tIl e failure to run the ligh t and dark chambers simultaneoilsly introduced errors that could not be over-

50 TABLE 7. NATURAL DISSOLVED OX'YGE"I LEVELS: CHATANIKA RIVER

Date Time D.O. (mg/1)

Elliott Bridge Site:

Oct. 30, 1970 1600 10.3 Kov. 6, 1970 16('0 i1.5 Nov. 11, 1970 1500 7.2 Nov. 20, 1970 1500 9.9 Ja.n. 12, 1971 1300 9.5 ~fan.:h 16, 1971 0900 9.6 July 2.2 , 1971 1300 9.3 July 28, 1971 1500 9.7

Steese B6dge Site:

Oct. 30, 1970 1700 10.9 f.;ov. 6, 1970 1700 11.6 Nov. 11, 1970 1600 8.6 Nov. 20, 1970 1600 10.6 Jan. 12, 1971 l",OO 10.9 Na=. 16, 1971 1400 11.0 Au g . 5, 1971 1400 W.9 A'.J.g. 16, 1971 1500 11.4

51 TABLE 8. NATURAL DISSOLVED OXYGEN LEVELS: GOLDSTREAM CREEK

Date Time D.O. (rng/l)

BaIlaioe Road Site:

Nov. -,? 1970 1600 10.2 i\ov. 13, 1970 1600 8.4 l\OV. 18, 1970 1500 10.5 Jan. a, , 1971 1100 7.1 i·jar. 13, 1971 1300 1.7 Apr. 14, 1971 1800 0.3 June 28 ) 1971 1300 9.1 Aug. 13, 1971 1400 10.5 Sept. 1, 1971 1300 11.1 Se? t. 7, 1971 1400 11.1

Sheep Creek Site

Nov. -,? 1970 1600 8.6 No ...... 13, 1970 1700 8.3 Nov. 18, 1970 1600 7.5 Dei; . 7, 1970 1500 5.9 D';:':L. 9, 1970 1500 6.1 J2:1- 9, 1971 1300 4.2 FE2. 21, 1971 0700 1.2 Fe;; . 23, 1971 1500 1.2 Feb. 27, 1971 1200 1.5 Har. 13, 1971 1500 0.2 Apr. 14, 1971 1800 0.1 Ju~e 28, 1971 1700 8.3 Aug. 13, 1971 1400 10.4 Sept. 9, 1971 1400 11.1 Sept. 14, 1971 1500 U.8

52 TABLE 9. RESULTS OF FIVlc-!JAY BroClIE'HCAL OXYGEN m,HAND TESTS;

[1,CUl\AT ION TENI'ERATURE = 20 C

CIl\TANIKA InVER:

Date Steese Bri.dg{~ Elliott Bridge

10/30/70 1.3 mg/l 2.1 mg/l 11/06/70 0.3 mg/l 0.3 mg/l 11/11/70 0.2 mg/l 0.3 mg/l 11/20/70 0.4 mg/l 0.6 mg/l 01/12/71 0.1 mg/l 0.4 mg/l 03/16/71 0.5 mg/l 1.0 mg/l

GOLDSTREAH CREEK:

Date ______-"-"===-:::..:c===-Ballaine Bridge --=~=___"_':..:::..::'_'__'=="'_Sheep Creek Bridge

W/26/70 2.1 mg/l 1. 7 mg!l 11/02/70 0.5 mg/l 0.5 mg!l 11/13/70 1.0 mg/l 0.5 mg!l 11/18/70 0.9 mg/l 0.5 mg!l V/07/70 3.4 mg!l 12/09/70 1.1 mg/l 0]/09!71 0.7 mg/l 1.0 mg/l 02!21!71 0.6 mg!l 02!27/71 1.1 mgil 03/13! 71 0.6 mg/l 0.8 mg/l 04/13/71 1.1 mg/l 0.8 mg!1 TABLE 10. RESULTS OF FIVE-DAY BIOCHEI1ICAL OXYGEN DENAND TESTS;

INCUBATION TENPERATUlill ~ 4 C

CW\.TANIKA RIVER:

Date Steese Bridge Elliott Bridge

10/30/70 0.1 mg/l 0.2 mg/1 11/06/70 0.0 mg/1 0.1 mg/l 11/11/70 0.0 mg/1 0.0 mg/l 11/20/70 0.0 mg/l 0.0 mg/l 01/12/71 0.0 mg/1 0.0 mg/1 03/16/71 1.2 mg/1 0.2 mg/1

GOLDSTREAN CREEK:

Date BaIJaine Bridge Sheep Creek 13 ridge lJ /02/70 0.1 mg/l 0.2 mg/1 11/13/70 0.3 mg/1 0.3 mg/l 11/18/70 0.3 mg/1 0.3 mg/1 12/07/70 0.8 ng/1 12 /09170 0.4 mg/l 01/09/71 0.1 mg/1 0.3 mg/1 02/21/71 0.2 mg/l 0'2/27/71 0.2 ng/l 03 113/71 0.7 mg/1 0.6 mg/1 Of, /13/71 0.2 mg/1 0.6 mg/1

54 SUNHARY

The objectives of this project were: 1. To establish a baseline record of the current flora and fauna before ~hanges due to the development by man can occur; 2. To compile a qualitative and quantitative standcrd against which future populations can be compared; 3. To assess the sources and the amounts of nutrients being contributed to the streams; and 4. To investigate the effect the present addition of nutri­ ents is having on tile community productivity. The first objective l,as fulfilled Hith the exception of incomplete recording of the flora of the streams. The terres trial flora was not sampled, and the aquatic vascular plants Hhich Here assumed to be absent I,ere also not sampled. The algal '

55 REFERENCES

Anderson, R. D. (1959). A modified flotation technique for sorting bot­ t;,m fauna samples. Limnol. Oceanog., f!., 223-225.

Clay, J. R., III (1973). Drift of benthic invertebrates in Golds tream Creek. H. S. thesis, University of Alaska, Fairbanks. In pi"epara- tio>! •

Frey, P. J., Hueller, E. W., and Berry, E. C. (1970). The Chena River: A study of a subarctic stream. Federal Hater Quality Administration Project No. 1610. Alaska Hater Laboratory, College. 96 pp.

Hudson, T4 A. (1973). Oxygen balance on two subarctic streams. H. S. thesis, University of Alaska, Fairbanks. In prepa.ration.

Johnson, P. R. and Hartman C. I". (1969). 2>wil'onmental Atlas of Alaska. University of Alaska, Institute of Water Resources and Institute of Arctic Environmental Engineering, Fairbanks. III pp.

Heyer, A. F. (1928). Elements of Hyci"olofT!, 2r,d ed. John IHley & Sons, New York. p. 423.

Peterson, 1. A. (1973). An investigation of selected physical and chemi­ cal characteristics of two subarctic streams. M. S. thesis, Univer­ sity of Alaska, Fairbanks. In prepc:.":patLcrrl.

Roguski, G.. (1972).. P3psof'!al corrm21n-Z:cD.tion~

Stay, F .. S .. , Jr .. , Duffer, H. R., De-Prater} R. L., and Keeley, J. H. (1967). The components of o"'ygenation in flo,"ing streams. Federal l,ater Pollution Control Agency, Robert S. Kerr {,later Research Center, Ad a, Oklah oma .

Taras, H. J., Greenberg, A. E., Hoak, R. D., and Rand, H. C., eds. (1969). Standard Methods fOl' the Exam-ination of flater- aild f/aste­ lL'ater. American Public Health Association, Hashington, D. C.

Usinger, R. L. (1963). Aquatic of CaUfon'lia. University of California Press, Berkeley. liard, D. L. (1972). The significance of selected and chemical variables in benthic macroinvertebrate distribution ina small subarctic stream. H. S. thesis, University of Alaska, Fairbanks. 62 pp. APPENDICES

57 APPENDIX A

SPECIES DIVERSITY OF BENTHOS AND DRIFT

SA}WLES FROM THE CHATfu~IiZA RIVER

Site Sample Type Date Species Diversity

1. FCR Riffle 9-04-70 1.37 Riffle 9-04-70 0.99 Pool 9-04-70 0.00 Riffle 10-07-70 0.81 Pool 10-07-70 0.00 Riffle 7-01-71 1.52 Drift, 11:00 p.m. 7-01-71 2.39 7-15-71 0.00 Riffle 10-17-71 1.00

2. MCR Riffle 9-04-70 1.58 Riffle 9-04-70 1.37 Pool 9-04-70 1.37 Riffle 10-07-70 2.06 Pool 10-07-70 2.37 Riffle 7-01-71 0.82 Drift 7-01-71 1.52 Pool 7-01-71 0.00 7-15-71 0.99 Riffle 10-17-71 0.72

3. M68 Riffle 9-04-70 0.96 Riffle 9-04-70 1. 79 Pool 9-04-70 1.84 Pool 9-04-70 1.00 Riffle 10-07-70 1.51 Pool 10-07-70 1.53 Riffle 7-01-71 0.92 Pool 7-01-71 0.00 Drift 7-01-71 1.92 Riffle 9-10-71 0.00 Drift 9-10-71 1.37

4. H66 Horse Cr. 7-15-70 0.00 Riffle 9-04-70 1.58 Riffle 9-04-70 0.76 Pool 9-04-70 1.00 Pool 9-0t;-70 0.00 IP 9-04-70 0.70 Riffle 10-07-70 1.32

58 I

I APPENDIX A I SPECIES DIVERSITY OF BENTHOS AND DRIFT SA~WLES FROM THE CHATANIL~ J RIVER, Continued: I Site Sample Type Date Species Diversi ty

under 10" ice 11-11-70 1.32 I Riffle 7-02-71 1.77 Pool 7-02-71 1.37 Drift, 100 hrs. 7-02-71 1.49

I 5. !'I55 Riffle 9-04-70 0.92 Riffle 9-04-70 1.84 Pool 9-04-70 1.89 I Pool 9-04-70 0.95 Riffle 10-07-70 0.92 Pool 10-07-70 1.50 I Riffle 7-01-71 0.91 Pool 7-02-71. 0.00 Drift, 1630 hrs. 7-02-71 1.61 Riffle 9-10-71 1.00 I Drift 9-10-71 0.00

6. H45 Riffle 7 C 7-15-70 1.92 I Riffle 9-04-70 1.67 Riffle 9-0LI -70 2.92 Pool 9-04-70 1.30 Pool 9-04-70 1.87 I Riffle 10-07-70 1.50 Pool 10-07-70 0.81 Riffle 7-02-71 2.42 I Drift, 1110 hrs. 7-02-71 2.22 Pool 7-02-71 2.88

I 7. SBR Riffle 7-15-70 2.24 Pool 7 C 7-15-70 2.10 Riffle 10-07-70 1.84 Pool 10-07-70 2.24 I under 4" ice 11-11-70 1.00 Riffle 7-01-71 1.93 Pool 7-01-71 1.10 I Drift 7-01-71 0.81 Drift 9-10-71 0.00 I B. CG Riffle 9-04-70 1.37 Riffle 9-04-70 0.83 Pool 9-04-70 2.00 \ • APPENDIX A •,. ------'------SPECiES DlVI':RSlTY OF BENTHOS AND DRIFT SAHPLES FRO!'! THE CHATANIKA • RIVER, Continued; Site Sample Type Date Species Diversity

•I Pool 9-04-70 0.70 9. H29 7-15-70 0.51 Pool 8 C 7-15-70 1.46 I Pool 9-04-70 0.72 Pool 9-04-70 0.00 Riffle 9-04-70 0.00 Riffle 9-04-70 0.92 I Riffle 10-07-70 1.79 Pool 10-07-70 2.24 Riffle 9-10-71 1.50 I Drift 1720 hrs. _._------0.92 Bottom ------1.97

10. EBR Riffle 9-04-70 1.58 I Riffle 9-04-70 0.70 Pool 9-04-70 1.00 Pool 9-04-70 0.00 I 10-07-70 0.81 Pool 10-07-70 1.00 under 12 II ice 11-11-70 1. 28 I Riffle 9-10-71 1.45 Drift 9-10-71 0.00 Drift 12'1 H2O, 1100 hrs. ------1.50 I Bottom ------2.12

11. CK Riffle 7-09-71 2.48 I Drift 1?1I- , 5 min. 7-09-71 1.60 I I I I I APPENDIX B

SPECIES 'DIVERSITY OF BENTHOS AND DRIFT

SAHPLES FRON GOLDSTREAM CREEK

Site Sample Type Date Species Diversity

1- FOX 8-10-70 0.80 Riffle 9-09-70 1.37 Pool 9-09-70 0.60 I 10-28-70 1.00 Riffle 10-29-70 1.01 Pool 10-29-70 1.78 Riffle under ice 10-29-70 0.87 I Benthos thesis samples 6-24-71 0.59 II 7-19-71 1.48 II 8-04-71, no. 1 0.47 I 11 8-04-71, no. 2 0.47 II 8-04-71 , no. 3 1.05 II 8-04-71, no. 4 0.32 I It 8-04-71, no. 5 0.40 II 8-18-71, no. 1 1. 73 Tl 8-18-71, no. 2 1.32 II 8-18-71, no . 3 1.15 I .11 8-18-71, no. 4 1.19 11 8-18-71 , no. 5 1.24 11 10-14-71 1.58 II " 10-16-71, no. 1 2.55 II 10-16-71, no. 2 1.25 11 10-16-71, no. 3 2.23 I Drift thesis samples 6-14-71, 12 N 1.66 II 6-14-71, 1 PM 1.12 11 6-14-71, 2 PM 2.06 II 6-14-71 , 5 PM 0.00 I It 6-14-71 , 7PM 0.97 It 6-14-71, 9 PM 1.65 " 6-14-71, 10 PM 1.52 I " 6-14-71, 12 M 1.67 " 6-15-71, 2 AM 1.77 II 6-15-71, 5 AN 1.50 I II 6-15-71, 8 AN 1.35 It 6-15-71, 10 AN 1.71 " 6-15-71 , 11 AM 1.44 11 7-06-71, 1 PM 1.58 I " 7-06-71, 3 PM 1.35 " 7-06-71, 6 PM 1.38 I I h1 • I APPENDIX Il I SPECIES DIVERSITY OF BENTHOS AND DRIFT SAMPLES FROM THE GOLDSTREAM I CREEK, Continued: I Site Sample Type Date Species Diversity

Drift thesis samples 7-06-71, 9 PM 1.62 I n 7-06-71 , 11 PM 1.62 n 7-06-71, 12 M 1.44 n 7-07-71, 3AM 1.42 n 7-07-71, 8AM 1.67 I n 7-07-71, 10 AN 1.50 n 7-07~71, 12 N 1.75 n 7-29-71, 1 PM 1.30 I n 7-29-71, 2 PM 1.98 " 7-29-71, 3 PM 1.60 " 7-29-71, 4 PM 1.68 I " 7-29-71, 5 PM 1.80 " 7-29-71 , 6 PM 1.70 " 7-29-71, 7 PM 1.55 " 7-29-71, 9 PM 1.58 I " 7-29-71, 10 PM 1.49 " 7-29-71, 11 PM 1.20 " 7-29-71, 12 M 1.32 I n 7-30-71, lAM 1.17 " 7-30-71, 2AM 1.28 " 7-30-71, 3AM 1.25 " 7-30-71 , 4 At'! 1.39 I " 7-30-71 , SAM 1.28 " 7-30-71, 6AM 1.35 " 7-30-71, 7 AM 1.59 I " 7-30-71 , 8AM 1. 79 " 7-30-71, 9 AM 1.91 " 7-30-71 , 12 N 1.36 I " 8-18-71 , 11 AM 1.17 " 8-18-71 , 12 N 1.25 " 8-18-71 , 1 PM 1.38 I n 8-18-71 , 2 PM 1.26 " 8-18-71 , 3 PM 1.13 n 8-18-71 , 4 PM 1.07 n 8-18-71 , 5 PM 1.30 I n 8-18-71, 6 PM 1.30 n 8-18-71, 7 PM 1.24 " 8-18-71, 8 PM 1.50 I " 8-18-71 , 10 PM 1.35 n 8-18-71, 11 PM 1.39 n I 8-18-71, 12 M 1.54 I 62 • • APPENDIX B

SPECIE3 DIVERSITY OF BENTHOS AND DRIFT SAJWLES FROM THE GOLDSTREAM • CREEK, Continued: • II Site Sample Type Date Species Diversi ty

Drift thesis samples 8-19-71, lAM 1.40 " 8-19-71, 2AM 1.36 " 8-19-71, 3AM 0.63 • " 8-19-71 , 4AM 1.29 " 8-19-71, SAM 1.27 " 8-19-71, 6 AM 1. 20 " 8-19-71 , 7 AM 1.44 • 8-19-71 , " 8 AM 1.15 " 8-19-71, 10 AM 1.29 • 2. ACS 2G 8-10-70 1.92 Pool 9-09-70 2.24 I 7-15-71 1.79

3. BCS Dunbar 4G 8-10-70 0.95 I Riffle 9-09-70 0.00 Pool 9-09-70 0.00 Riffle 10-29-70 1.91 I Pool 10-29-70 1.31 6-24-71 0.16 7-15-71 1.04 7-19-71 0.00 I Benthos thesis samples 8-04-71 , no. 1 0.65 " 8-04-71, no. 2 0.51 " 8-04-71, no. 3 0.54 I " 8-04-71, no. 4 0.32 " 8-04-71, no. 5 0.30 " 8-04-71 , no. 6 0.27 I " 8-18-71, no. 1 0.81 " 8-18-71, no. 2 0.57 " 8-18-71, no. 3 0.53 " 8-18-71, no. 4 0.00 I " 8-18-71, no. 5 0.72 " 10-16-71 1.92 I 4. BB No label ------2.00 No label ------1. 70 Riffle 9-09-70 1.21 Riffle 10-29-70 0.25 I Pool 10-29-70 0.00 Diw ------0.00 •

I 63 • • APPENDIX B , SPECIES DIVERSITY OF BENTHOS AND DRIFT SAHPLES FROM THE GOLDSTREAM • CREEK, Cont inued: • • Site Sample Type Date Species Diversi ty 7-19-71 1.28 Benthos thesis samples 8-04-71, no. 1 0.58 " 8-04-71, no . 2 0.41 • 8-04-71, no. 3 0.51 " " 8-04-71 , no. 4 1.00 .. 8-18-71, no. 1 1.19 " " 8-18-71 , no. 2 0.59 " 8-18-71, no. 3 0.00 II " 8-18-71, no. 4 0.99 " 8-18-71, no . 5 ·0.00 " 10-16-71, no. 1 0.88 " 10-16-71, no. 2 2.32 • " 10-16-71, no • 3 1.00 5. GI 6-22-71 0.92 • 6. GJ 6-22-71 0.98 I 7. SCRB 8-10-70 1.22 9-04-70 2.31 Riffle 9-09-70 0.93 I Pool 9-09-70 0.39 Riffle 10-29-70 1.14 Riffle 10-29-70 0.00 I 6-24-71 1.68 7-19-71 1.20 Benthos thesis samples 8-04-71 , no. 1 2.18 ,j 8-04-71, no. 2 1.50 I " 8-04-71, no. 3 1.93 " 8-04-71, nO. 4 1.51 " 8-04-71, nO. 5 1.98 I " 8-18-71, no. 1 1.52 " 8-18-71, no. 2 1.10 " 8-18-71 , no. 3 1.38 I " 8-18-71 , no. 4 0.87 " 8-18-71, no. 5 0.64 " 10-16-71 , no. 1 0.00 " 10-16-71, no. 2 0.92 I " 10-16-71 , no. 3 1.00 I 8. DOME 9-09-70 0.00 I 1':1 I

APPENDIX C I I

I THE SIGNIFICANCE OF SELECTED PHYSICAL AND CHEMICAL VARIABLES IN BENTHIC ~~CROINVERTEBRATE DISTRIBUTION IN A

I SMALL SUBARCTIC STREAM I I A I THESIS I

I Presented to the Faculty of the University of Alaska in Partial Fulfillment

I of the Requirements I for the Degree of MASTER OF SCIENCE I I I By r Dennis Leon Ward, B.S. College, Alaska

April, 1972

65 APPENDIX C

ABSTRACT

The obje~tive of this study "as to determine lifhether temperature, velocity, dissolved oxygen, or pH operate singly, synergistically, or additionally, to control or limit dis tribution of Ephemeroptera, Plicop­ tera, and Trichoptera, in Goldstream Creek. It has been demonstrated that temperature ranges from 9.0 - 12.5 C promoted the greatest mayfly "ymphal development bet"een June 14, 1971 and October 16, 1971 in Gold­ stream Creek. Hayflies were dependent on velocity for distribution dur­ ing both high and 1m; density periods. Caddis flies Here velocity de­ Dendent du ring both high and low density periods. Natural biological gradation can be demonstrated in Goldstream Creek.

Advisor David Nyquist, Ph.D. Limnologis t Environmental Health Sciences Institute of Water Resources

66 Al'l'ENIHX C

TAJlLE OF CONTENTS

LIST OF TABLES .... vi LIST OF FIGURES •..• vii LIST OF ABBREVIATIONS. .viii

Chapter

1. INTRODUCTION. 1

2. GEOMORPHOLOGY 3

3. LOCATIONS AI'iD DESCRIPTIONS OF SAMPLING SITES. 5

4. LITERATURE REVlnl 8

GENERAL. .. 8 DISTRIBUTION 10 Velocity. 11 Dissolved Oxygen. 14 Hydrogen-Ion Concentration. 14

5. METHODS, TECHNIQUES, AND PROCEDURES 16 BENTHIC SA~WLING TECHNIQUE 16 VELOCITY ...•..•... 18 TE~WERATURE. •...... 20 HYDROGEN ION CONCENTRATION - pH. 20 DISSOLVED OXYGEN 20

6. S&~LE CALCULATIONS 21

7. RESULTS .... 26 TEMPERATURE . 26 VELOCITY &~D BIOLOGY 26 DISSOLVED OXYGEN .• 31 HYDROGEN ION CONCENTRATION - pH. 33-

8. DISCUSSION OF RESULTS . 35

9. S~frUillY A~D CONCLUSIONS 48

1l Ib11OGRAPHY 51

APPENDIX •. 57

67 APPENDIX C

BIBLIOGRAPHY

Adamstone, F. B. (1924). The distribution and economic importance of the bottom fauna of Lake Nipigon ,.,ith an appendix on the bottom fauna of Lake Ontario. ~7iv. Toponto Studies, BioI. 25. Onto Fish. Res. Lah. 24: pp. 33-100. fu,derson, R. O. (1959). A modified flotation technique for sorting bot­ tom fauna samples. Lvmwl. and Oceanogl'aplzy. !'., pp. 223-225.

Anon. (1937). Reg7:onaZ Planning Pa"t VII - Alaska. Its resources and development. Nat. Res. Committee. Alaska Res. Committee. U. S. Gov. P~inting Office. 213 pp.

Anon. (1952). Alaska. A reconnaissance report on the potential devel­ opment of hTater resources in the Territory of Alaska for irrigation, power, production, and other beneficial uses. U.S.D.I., U. S. Gov. Pringint Office. 286 Pl"

Anon. (1965). Standal'd Methods fm' the l!:'xamimtion of platep «tId i'laste­ (,;",te2'. Twelfth ed. A.P.Il.A., Ne', York, New York. 769 Pl"

Anon. (1968). Industl'ial f/aste Guide 0" Tnel'mal Pollution. U.S.D. I., F.W.P.C.A., Corvallis, Oregon. Sept. 112 Pl'.

Anon. (1970). I4([1Jfly IJhrtl'ibution as a f/atep i{,wlit-i/ Index. E.P.A., \!inona State College, lhnona, Ninn. 1116030 DOH. 39 Pl'.

Anon. (1971). Local climatological data. Fairbanks, Alaska. U.S. Dept. Corum. Environmental Data Service. National Climatic Center. Ash­ ville, N. C. 3 pp.

Arnold, F. and T. T. Nacan (1969). Studies on the fauna of a Shropshire hill stream. Field Studies. (G. n.) 2, p. 159.

Beak, T. W. (1938). Nethods of making and sorting collections for an ecological study of a stream. Avon Biol. Res., Annual Rept. 1936­ 1937, Prog. Rept. No. 111. pp.42-46.

Beck, H. H. (1955). Sugges ted method for reporting biotic data. Se'.Jagc' " Ind""tl'ial f/astes. 27; Pl'. 1193-1197.

Bell, H. 1. (1969). Effect of substrate typ·2.S on aquatic inscet di.stri­ Dution. :.TOU.I'. !Itnn. Acad. Sci. l2, p 79.

Ee.m;;OI1, X. G. (1955). Observations on anchor ice in a Nichigan trout stream. Ecol. 36 (3); Pl'. 529-530.

Betten, C. (1934). The caddis flies or Tricboptera of New York State.

68 APPENDIX C

Britt, N. \L (1955). NeH methods of collecting bottom fauna from ~:~':3.1s or bubble bottoms of lakes and streams. Ecot. 36 (3); pp. 524-5-:5.

Campbell, H. S. A. (1939). Biological indicators of intensity of :o:.:-eam pollution. Sew. "larks JoW'. 11; pp. 123-127.

Cairns, John Jr. and Ker.neth L. Dickson (197::..). A simple method fo::- the biological assessment of the effects of waste discharges on aqua~~c bottom-dwelling organisms. Jour. Wat. Poll. Control Fed. 40; pp. 739­ 930.

Clifford, H. E. (1969). Limnological features of a northern brown~~~ter stream, ~vith special reference to the life his tories of the aqua:.:...: inseds. Ar:eY'. ;'·1idlal1.d Nat. ~, 578 pp.

COi.,rles, R. P. and D. N. Schwitalla (1923). The hydrogen ion conceE:: ::-30- tion of a creek; its \vaterfall, SHamp, and ponds. Ecol. i, pp. -02.- 417.

Davis, H. S. (1938). Instructions for conduc.ting stream and lake S'''::=-­ veys. U. S.Bur. Fish., Fish Cire. 26, 5S pp.

Dodds, G. S. and F. L. Hisa,... (1924). Ecological studies of aqu.:l.tic :':1­ ~;ects: II. Adaptions of mayfly nymphs to swift streams. EcoL 5. pp. 137-488.

Dodds, G. S. and F. L. Hismll (1925). Ecological studies of aquatic iL1.­ sec~s: III. Adaptions of caddis larvae to swift streams. ~~~t. i, pp. 123-137.

Eckenfe1der, W. W. and D. J. 'O'Conner (1961). Biological Waste Tr6C~­ ment. Pergamon Pr.ess. New York. 299 pp.

Ellis, H. H (1937). Detection and measurement of stream pollution. u. S. Bur. of Fisheries. Bull. 48. 365 pp.

Forbes, S. A. (1928). The biological survey of a river sys tem - its ob­ jects, methods, and results. III. Dept. Reg. Education, Div. Nat. lUs t. Survey. 11.., 277 pp.

Frey, P. J. (1969). Ecological changes in the Chena River. U. S. Dept:. of the Tnt., Fed. \Vater Poll. Control Ass., Alaska l~ater Lab., Col­ lege, Alaska. 41 pp.

Pre;', P. J., E. H. r-lue11er, and E. C. Berry (1970). The Chena River - a study of a :oubarctic stream. F.H.O.A., Dept. of Int., Alaska 1~.;,t ..·I- . lab., College, Alaska. 96 pp.

69 APPENDIX C

Frison, T. H. (J.935). The stoneflies, or Plecoptera, of Illinois. nI. !Mt. [jist. Sm'vey iJull. Vol. xx, IV; pp. 281-468.

Fullner, Richard H. (1971). A comparison of macroinvertegrates collec~ ted by basket and modified multiple-plate samplers. Jour. War. Poll. Control Fed. Q, pp. 365-554.

Gaufin, A. R. (1957). The use and value of aquatic insects as indica­ tors of organic enrichment. Biol. P:!'cb. in [-later Pollution. U. S. Pub. Health Service. pp. 136-140.

Gaufin, A. R. (1962). Environmental requirements of Plecoptera. BioI. Prob. in Water Pollu~ion. Third Sem. Aug, 13-17. pp. 105-110.

Gaufin, A. R., E. K. Harris, and J. H. Halter (1956).' A statistical evaluation of stream bottom sampling data obtained from three stan­ dard samples. Ecol. 1I, Pl'. 643-648.

Gaufin, A. R. and C. M. Tarzwell. Aquatic invertebrates as indicators of stream pollution. U. S. Pub. Health Service Rept. ~, pp. 57-64.

Gose, K. (1968). On the succession of benthic communities in rapids of the Yoshino River. Bial. At-I;. 2.!., pp. 122-157.

Grant, P. R. and R. J. HacKay (1969). Eco10gical segregation of syste­ 8ati~ally related stream insects. Cx-:. JouJ.'. Zool. !!J.., 691 pp.

Gray, P. (1970). 1'he Encyclopedia of the BiologIcal Scienoes. Second ed. Van Nos trand Reinhold Co. 1,027 pp.

Greenfield, R. E. and .G. C. Baker (1920). Relationship of [H+] concen­ trations of natural vlaters to CO 2 content. r.TouP. Indust. and Eng. ::/zem. 12, Pl'. 989-992.

Harbo, S. (1971). Personal co~~unication. Assoc. Prof. Biometrics. Biology Dept., University of Alaska, College, Alaska.

BESS, A. D. (1941). N6' limnology sampling equipment. Linmol. Soc. Am., Spec. Pub. No.6. 5pp.

Hynes, H. B. N. (1970). The ecology of flo,"ing '-laters in relation to managewent. Jour. War. Poll. ContpoL c2d. ~, 418 Pl'.

Hynes, H. B. N. (1966) . The BioZogy of FoLluted ['/a.ters. Liverpool Univ. Press. 209 Pl'.

Hynes, H. B. N. (1962). The significance of macroinvertebrates in the stl~dy of mild river pollution. BioI. Frob. in lvater Pollution. U. S. Dept. Health, Education, and \·lelfare. Third sem. Aug. 13-17. pp. 235-240.

70 APPENDiX C

Hynes, H.B. N. (1941). The and ecology of nymphs of British Pleco?tera. TlUns. Roya l En t. Soc. of London. 21., PI'· 459-557. lIutchinsc,n, G. E. (1957). A 'fpeatise on LirrclOlogy. John Hiley and Sons Inc. ,-; e", York. Vol. 1. lde, F. P. (1940). Quantitative determination of the fauna of rapid ;,ater. Univ. Toronto Studies. BioI. Ser. 47, Pub. Ont. Fish. Res. Lab. 59, Pl'. 1-20.

Ide, F. P. (1930). The effect of temperature on the dis tribution of mayfly fauna of a stream. Univ. Toronto Studies. BioI. Ser. 39. Pub. Ont. Fish. Res. Lab. 50, PI'. 3-76.

Johnson, R. R. and C. H. Hartman (1969). Envil'omnental Atlas of Alaska. LA.LE. Inst. I-iat. Res., Univ. of Alaska, College, Alaska III PI'.

Jones, J. R. E. (1964). Fish and River Pollution. ButtenTorks and Corn., London. 203 PI'.

Klein, L. (1957). Aspects of River Polluti9n. Academic Press, Inc., New York. 621 PI'.

Leonard, J. H. (1962). Environmental requir;ements of Ephemeroptera. Bioi. Prob. -in ~';u.t. Poll., U. S. Dept. cf Health, Education, and h'cl ..... fare. Third sem. Aug. 13-17.

Leonard, J. W. (1939). Comments on the adequacy of accepted stream bot­ tom sampling techniques. Trans. N. A. lildf. Conf. PI'. 289-295.

Linduska, J. P. (1942). Bottom types as a factor influencing the local dis trib ution of mayfly nymphs. Can. Ent. !!!-' PI'. 26-30.

Linsley, R. R., H. A. Kohl;er, and J. L. H. ?aulhus (1958). Hydrolog1J f01' Eng-lneers. HcGraw-Hill Book Company, Inc. 340 PI'.

Lyman, F. E. (1956). Euvironmentalfactors affecting distribution of mayfly nymphs in Douglas Lake, Hichigan. Eeol. 37 (3), PI'. 566-576.

Ha~Kay, R. T. (1969). Aquatic insect comm~~ities of a small stream in i-lont St. Hilaire, Quebec. Jow'. F1:sh. Res. Bd. Can. ~, 1157.

}lackenthun, K. H. (1969). Temperature and aquatic life. Pub. hTorks 100, !'c, 88 PI'·

~';ojLkenthun, K. ~[. (1969), 'l'he PY'a(jtic~::: o.T~ :·,·:.:tel~ POZZliY;-C,:,n. H£oloidY. U. S. Dept. of Int., Di\'. of Tech. Support. 281 PI'.

}1;::.;;..:;3.U, T. T.· (1958). Ne.thods of sampling bCLtarn fauna in stony streri.<,~. Hitt. Int. Ver. LimnoL §., Pl'. 1-21.

71 APPENDIX C

}lason, H. T., Jr., J. B. Anderson, and G. E. Horrison (1967). A lime­ stone-filled artificial substrate sampler-float unit for collecting m3croinverteb rates in large streams. ?rog. Fish-cu.Z t . 29) 74.

HorrOl>, J. E. (1971). The effects of ""ter quality and quantity of the fauna of a non-glacial Alaskan river. Univ. of Alaska. IHR Rept. ­ 15. College, Alaska. S pp.

Needham, J. G. (1934). Quantitative studies of stream bottom foods. Tyuns. Amero Fish. Soc. Vol. 64, pp. 238-257.

Needham, J. G. and P. R. Needham (1963). A Guide to the Study of Fresh rlater Biology. Holden-Day, Inc. s.f. pp. 79-103.

Needham, J. G., J. R. Traver, and Y. C. Hsu. (1969). The Biology of Mayflies. E. H. Classey, LTD. Hampton, I1iddlesex, England. 757pp.

Nyquist, D. (1971). The limnology of tHO dissimilar sub-arctic streams and implications or resource development. Unpub. Data. Inst. Wat. Res., Univ. of Alaska, College, Alaska.

Patrick, R. (1961). A study of the numbers and kinds of species found in rivers in eastern United States. Pl\:)(}. Acad. Ilc...1t. Sci. Phil. l.l3, 215 pp.

Pal~rit:k) R. (1950) . Biological measure of stream conditions. Sew. Ind. fvqstes. n., 921 pp. l:'ercival, E. and H. \,hitehead (1929). A quantitative study of fauna of some types of strean beds. Eeol. 17, 282 Pl'.

Pennak, R. H. (1953). Fresh-f/ater Invertebrates of the Unii;ed States. The Ronald Press Conpany. Ne" York. 769 pp.

Peterson, L. A. (1971). An investigation af selected chemical character­ istic.s in tHO sub~arctic streams. Unpub. data. Institute of {.,Tat. Res., University of Alaska.

Reid, G. K. (1961). EC5logy of Inland [later'S u.rtd Estuaries. Reinhold Book Corp. Ne" York. 375 Pl"

Ricker, Iv. E. (1934). An ecological classification of certain Ontario streams. Univ. of TCr'onto Studies. BioI. 37. Pub. Dnt. Fish. Res. Lob. ~, pp. 1-114.

Hoback, S. S. (1962). ED,-~iromrental requirements of irichopte.ra. BiD!'. FroD. l:-ff- r'iat. PcIlz.c:;{/)i'1.. U. S. Dept. Hlth. Ed. and h7elftlre. Third Sem. Aug. 13-17. pp. 118-126.

Ross, H. H. (1952). The c.addis fly gC.:1US molannodes in North America.

72 APPENDIX C

l:,'nt. lle1.L)s. Vol. LXIII. i. pp. 85-87.

S<:ih'jer, C. H. and P. L. rfcCarty (1967). ChemistlOY foY' Scm-itaFy Engin­ eel'S. HcGraw-Hill Book Company. 518 pp.

St:ha11ock, B. S., E. H. Hueller. and R. C. Gordon (1970). Assimilative capacity of arctic: rivers. Unpub. data. No.7. Alaska Hater Lab. College. Alaska.

Shelford. V. E. (1925). The hydrogen-ion concentration of certain ~vest­ ern inland waters. EcoZ. ~. pp. 279-287.

Shelford, V. E. and S. Eddy (1924). Methods for the study of stream CO~llunities. EcoZ. 10, pp. 382-391.

Sloan. \V. C. (1956). The distribution of aquatic insects in t~.,o Florida springs. EcoZ. 1, pp. 81-98.

Surber, S. H. (1937). Ra.inbow trout and bottom fauna production in one mile of stream. Trans. Am. Fish. Soc. ~,pp. 193-202.

Surber, T. (1922). Biological surveys and invAstigations in Minnesota. :Tluns. Am. l;tish.. Sec ~ Z!., pp. 534-552.

TarzHell, C. H. and A. R. Gaufin (t953). Seme important bi.ological ef­ fects of pOllution often disl"Pgarded in stre.am surveys. Purdue Univ. Bull. Froc. of the Eighth Industrial Haste Conf. pp. 295-316. u. S. Geological Survey. (1966). Topographic Haps: Fairbanks D-2 Mol and NE Quadrangles. ,A}IS 3450, IV mol and tIE, 1: 24000, series, 0301.

Usinger, R. L. (1963). AqiJ.at'ic Insects of CalifOl?i1ia l.c;ith Keys to NOl'-th Amel°{/.!W'. Genel'a and Califolonia Spec-Des. Univ. of California Press. Berkeley and Loss Angeles. 508 pp.

l{elch, P. S. (1948). Lir:mologi.cal Met.hods. HcGrat'l-Hill Book Company. 381 pp.

Ihlding. J. L. (1940). A ne~v square-foot aquatic sampler. Limn. Soc. Spec. Pub. No.4. 4 pp.

73