Chromomycin A3 Is an Antibiotic Produced by Streptomyces Griseus

Total Page:16

File Type:pdf, Size:1020Kb

Chromomycin A3 Is an Antibiotic Produced by Streptomyces Griseus The Journal of Biochemistry, Vol. 59, No. 4, 1966 The Effect of Chromomycin A3 upon Nucleic Acid Metabolism of Bacillus subtilis SB-15 By MAKOTO KIDA*, MASAKO UJIHARA**, EINOSUKE OHMURA* and KYO KAZIWARA** (From *.ilicrobiological Research Laboratories and **Biological Research Laboratories, Research and DevelopmentDivision, Takeda Chemical Industries, Ltd., Higashiyodogawa-ku, Osaka) (Received for publication, October 16, 1965) Chromomycin A3 is an antibiotic produced and nucleic acids in growing cells of Bacillus by Streptomyces griseus No. 7 and its chemical subtilis SB-15 in connection with protein characterization has been recently established synthesis. by the exhaustive work of T a t s u o k a and his co-workers (1). Like similar antibiotics, MATERIALS AND METHODS this compound was shown to exhibit a potent Chromomycin A3, Lot No. 103 was a gift of Dr. bacteristatic effect on gram-positive bacteria K. M i z u n o in this laboratories. Bacillus subtilis SB-15 and antitumor activities against several trans was kindly given by Dr. J. Kawamata of Osaka plantable tumors (2). The recent reports University. Leucine-2-C14, 0.05ƒÊc per 0.62 mg., uracil- concerning the mechanism of action provided 2-C14, 2.6 me per mM, adenine-8-C'", 0.9 me per mM evidence that chromomycin A3 might act as and radioactive inorganic phoshate, 1 me per 0.025mg. a metabolic inhibitor for the synthetic path- were purchased from Daiichi Kagaku Co., Tokyo. Unless otherwise noted, bacterial cells were cultivated ways of nucleic acids in the neoplastic cells at 37°C in the basal medium consisting of (NH4)2HPO4, (3-5). Electronmicroscopic observations of 2.5 g. ; KH-P04, 1.5 g. ; NaCl, 5.0 g. ; MgSO4.7H2O, the chromomycin-treated Yoshida sarcoma 0.1 g. ; glucose, 5.0 g. ; casamino acid, 3.0 g. in 1,000 ml. cells revealed that several remarkable of distilled water. morphological changes occurred in both In the incorporation experiments using labeled nucleus and nucleolus***. In the biochemical leucine, uracil and adenine, the concentration of studies, it was found that the incorporation casamino acid was adjusted to 0.1 mg. per ml. When of radioactive inorganic phosphate into RNA the incorporation of P32, into the resting cells was and DNA of ascites sarcoma 180 cells was examined, the cells were incubated in 0.05 M Tris-HC1 significantly inhibited after exposure to buffer of pH 7.1. In order to study the effect of chromomycin A3 while energy producing the antibiotic on the growth of bacteria, overnight culture in 50 ml. of a bouillon medium at 37°C was systems such as respiration and glycolysis remained unaffected (3). Further, similar poured into 250 ml. of the basal medium and incubated for 3 hours. The cells during logarithmic phase were inhibitory actions upon the formation of RNA collected by centrifugation and resuspended in the were demonstrated by tracer experiments medium. Then, the optical density of cell suspension using human bone marrow cells (4) and was adjusted to between 0.3 and 0.4 in the Coleman ascites hepatoma cells of rats (5). However, photometer at 660m,,-,. little is yet known about the metabolic sites Extraction of the cells for the preparation of aci( of nucleic acids synthesis where chromomycin soluble nucleotides, RNA and DNA was carried ou A3 really inhibits. In order to approach these essentially according to the method of Schmidt Tannhauser (6). The nucleotide fraction solubl problems, we have studied in the present investigation the effect of chromomycin A3 in cold 6% perchloric acid and alkaline hydrolysate on the metabolism of acid soluble nucleotides of RNA were first treated with activated charcoal ant then subjected to column chromatographic analysis of *** Usui , T., personal communication. Dowex I (formate form). Subsequent characterizatioi *** U s u i, T., personal communication. 353 354 M. KIDA, M. UJIHARA, E. OHMURA and K. KAZIWARA of each component thus obtained was made by a incubated. The growth rate of the cells was chromatographic method modified by Kobata et al. followed by measuring the changes in the (7). For the isolation of higher molecular nucleic optical densities of cell suspensions at appro acids, the cells collected were extracted with 90% priate time intervals. As shown in Fig. 1, phenol containing 0.2%o sodium dodecyl sulfate (8), comparison of the growth curves in the followed by dialysis against 0.01 M Tris-HC1 buffer containing 5x l0-3 M MgCl.2 and the dialysate was presence of different amounts of the antibiotic separated by chromatography on methylated albumin with those of the control culture indicated column (9). The fractions corresponding to sRNA, 16 S-RNA and 23 S-RNA were hydrolyzed with 0.5 N potassium hydroxide at 37°C for 18 hours. The resulting nucleotide constituents were analysed by a conventional paper electrophoresis. For measuring the incorporation of C'4-labeled amino acids into proteins, the protein fractions were isolated from the cells by means of Schneider' s procedure (10). Protein was determined by the method of Lowry (11). Radioactivity was determined by a Nuclear- Chicago thin window gas flow counter. RESULTS Effect of ChromomycinA3 on the Growth of Bacillus subtilis SB-15-In order to examine the effect of chromomycin A3 upon the growth of the bacteria, the cells collected FIG. 1. The effect of chromomycin A3 on after cultivation for 16 hours at 37°C were the growth of B. subtilis SB-15. resuspended in the basal medium andincubated.Incubation The growth at rate37°C. of the cells was followed by measuring the changes in the optical densities of cell suspensions at appro-priate time intervals. As shown in Fig. 1, comparison of the growth curves in the presence of different amounts of the antibiotic with those of the control culture indicated TABLE I The Effect of Chromomycin A3 on the Incorporation of P323 into Acid Soluble, RNA and DNA Fractions The cells were incubated at 37°C with the basal medium containing 1 ƒÊc per ml. of P321. Effect of Chromomycin A3 upon Nucleic Acid Metabolism 355 that the addition of 1.0 ƒÊg. per ml. of thus obtained were fractionated into the chromomycin A3 to the medium resulted in nucleic acid components as described in complete inhibition of the bacterial growth "MATERIALS AND METHODS ". whereas only slight growth retardation effect In Table I was summarized the radioac was observed with 0.05 jag. per ml. tivity incorporated into each fraction. It is Based on this observation, 10 ƒÊg, per ml. evident that both total radioactivity and of the antibiotic was used in further experi specific activity of the acid soluble fraction ments in order to ensure complete inhibition increased after 20 and 60 minutes. In contrast, of cell suspension of the initial optical density 55% and 72.5% decreases in the specific activi of 0.3-0.4. ties of the RNA fractions were observed as For studying incorporation of P321 into compared with the untreated cells. These the acid soluble nucleotides, RNA and DNA, results led to two possible interpretations ; aliquots of the cells collected during logarithmic secondary degradation of newly-synthesized growth phase were incubated with P32; in the RNA and the inhibition of metabolic processes presence of 10 ƒÊg. per ml. of chromomycin A3. involving RNA synthesis by the action of chro After 20 and 60 minutes' incubation, the cells momycin A3. However, the first possibility were removed and extracted with perchloric could be eliminated since the specific activity of acid and potassium hydroxide. The extracts the acid soluble fraction was markedly higher FIG. 2. Elution pattern of the acid soluble nucleotides from Dowex 1 column chromatography. The acid soluble fraction was applied to a column (0.5•~40cm.) of Dowex 1 X10 (formate form, 200-400 mesh). Concave gradient elution was carried out according to the previously described method (7). The flow rate was about 12 ml. per hour and fractions of 4 ml. per tube were collected at 5°C. 356 M. KIDA, M. UJIHARA, E. OHMURA and K. KAZIWARA ,than that of RNA. Thus, RNA synthesis soluble fraction decreased possibly as a result should be inhibited prior to its degradation. of consecutive degradation of the labeled With the resting cells treated under the nucleotides during incubation with Tris same condition, the formation of labeled RNA buffer. occurred at the same level as the control after These changes in the acid soluble incubation for 20 minutes while the radioac nucleotides pool of both growing and resting tivity of the acid soluble fraction sharply bacterial cells suggest that the effect of increased. Increasing the incubation time to chromomycin A3 might primarily related to 60 minutes, the radioactivity in the acid the metabolism of the acid soluble nucleotides. TABLE II Analysis of the Acid Soluble Nucleotides of Chromomycin A3 Treated and the Control Cells 1) UX was an uracil derivative of the molar ratio of Pi to uracil of 2. 2) AX composed of adenine, 1: ribose, 1: Pi, 4. 3) ( ): total optical density at 260 mƒÊ. Effect of Chromomycin A3 upon Nucleic Acid Metabolism 357 Quantitative Change of the Acid Soluble proteins was inhibited for 80% after 20 Fraction-For quantitative determination of minutes. However, in the experiments of the acid soluble nucleotide components, the short periods of incubation with chromomycin cells were treated with 10 ƒÊg. per ml. of A3, it was found that the incorporation of chromomycin A3 for 60 minutes and extracted labeled uracil into RNA stopped immediately with cold 6% perchloric acid. After treatment whereas labeling proteins with leucine-C14 still with activated charcoal, the extract was subjected to chromatographic analysis on Dowex i column.
Recommended publications
  • Illuminating Dna Packaging in Sperm Chromatin: How Polycation Lengths, Underprotamination and Disulfide Linkages Alters Dna Condensation and Stability
    University of Kentucky UKnowledge Theses and Dissertations--Chemistry Chemistry 2019 ILLUMINATING DNA PACKAGING IN SPERM CHROMATIN: HOW POLYCATION LENGTHS, UNDERPROTAMINATION AND DISULFIDE LINKAGES ALTERS DNA CONDENSATION AND STABILITY Daniel Kirchhoff University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2019.233 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Kirchhoff, Daniel, "ILLUMINATING DNA PACKAGING IN SPERM CHROMATIN: HOW POLYCATION LENGTHS, UNDERPROTAMINATION AND DISULFIDE LINKAGES ALTERS DNA CONDENSATION AND STABILITY" (2019). Theses and Dissertations--Chemistry. 112. https://uknowledge.uky.edu/chemistry_etds/112 This Doctoral Dissertation is brought to you for free and open access by the Chemistry at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Chemistry by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Aloe Ferox 117 Table 9: Phytochemical Constituents of Different Extracts of Aloe CIM- Sheetal Leaves 119
    International Journal of Scientific & Engineering Research ISSN 2229-5518 1 Morphological, in vitro, Biochemical and Genetic Diversity Studies in Aloe species THESIS SUBMITTED TO OSMANIA UNIVERSITY FOR THE AWARD OF DOCTOR OF PHILOSOPHY IN GENETICS IJSER By B. CHANDRA SEKHAR SINGH DEPARTMENT OF GENETICS OSMANIA UNIVERSITY HYDERABAD - 500007, INDIA JULY, 2015 IJSER © 2018 http://www.ijser.org International Journal of Scientific & Engineering Research ISSN 2229-5518 2 DECLARATION The investigation incorporated in the thesis entitled “Morphological, in vitro, Biochemical and Genetic Diversity Studies in Aloe species’’ was carried out by me at the Department of Genetics, Osmania University, Hyderabad, India under the supervision of Prof. Anupalli Roja Rani, Osmania University, Hyderabad, India. I hereby declare that the work is original and no part of the thesis has been submitted for the award of any other degree or diploma prior to this date. IJSER Date: (Bhaludra Chandra Sekhar Singh) IJSER © 2018 http://www.ijser.org International Journal of Scientific & Engineering Research ISSN 2229-5518 3 DEDICATION I dedicateIJSER this work to my beloved and beautiful wife B. Ananda Sekhar IJSER © 2018 http://www.ijser.org International Journal of Scientific & Engineering Research ISSN 2229-5518 4 Acknowledgements This dissertation is an outcome of direct and indirect contribution of many people, which supplemented my own humble efforts. I like this opportunity to mention specifically some of them and extend my gratefulness to other well wisher, known and unknown. I feel extremely privileged to express my veneration for my superviosor Dr. Anupalli Roja Rani, Professor and Head, Department of Genetics, Osmania University, Hyderabad. Her whole- hearted co-operation, inspiration and encouragement rendered throughout made this in carrying out the research and writing of this thesis possible.
    [Show full text]
  • Investigation and Engineering of Polyketide Biosynthetic Pathways
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 12-2017 Investigation and Engineering of Polyketide Biosynthetic Pathways Lei Sun Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Biological Engineering Commons Recommended Citation Sun, Lei, "Investigation and Engineering of Polyketide Biosynthetic Pathways" (2017). All Graduate Theses and Dissertations. 6903. https://digitalcommons.usu.edu/etd/6903 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INVESTIGATION AND ENGINEERING OF POLYKETIDE BIOSYNTHETIC PATHWAYS by Lei Sun A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSPHY in Biological Engineering Approved: ______________________ ____________________ Jixun Zhan, Ph.D. David W. Britt, Ph.D. Major Professor Committee Member ______________________ ____________________ Dong Chen, Ph.D. Jon Takemoto, Ph.D. Committee Member Committee Member ______________________ ____________________ Elizabeth Vargis, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2017 ii Copyright© Lei Sun 2017 All Rights Reserved iii ABSTRACT Investigation and engineering of polyketide biosynthetic pathways by Lei Sun, Doctor of Philosophy Utah State University, 2017 Major Professor: Jixun Zhan Department: Biological Engineering Polyketides are a large family of natural products widely found in bacteria, fungi and plants, which include many clinically important drugs such as tetracycline, chromomycin, spirolaxine, endocrocin and emodin.
    [Show full text]
  • Computational Pharmacogenomics Screen Identifies Synergistic Statin
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.07.286922; this version posted September 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. van Leeuwen et al Computational pharmacogenomics screen identifies synergistic statin-compound combinations as anti-breast cancer therapies Jenna van Leeuwen1,2, Wail Ba-Alawi1,2, Emily Branchard2, Joseph Longo1,2, Jennifer Silvester1,3, David W. Cescon1,4,5, Benjamin Haibe-Kains1,2,6,7,§, Linda Z. Penn1,2,§, Deena M.A. Gendoo8,§ 1Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON, Canada, M5G 1L7 2Princess Margaret Cancer Centre, University Health Network, 101 College Street, Toronto, ON, Canada, M5G 1L7 3Institut de Recherches Cliniques de Montréal, 110 Pine Avenue West, Montreal, QC, Canada, H2Q 1R7 4Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Toronto, ON, Canada, M5G 2C1 5Division of Medical Oncology and Hematology, Department of Medicine, University of Toronto, 27 King’s College Circle, Toronto, ON, Canada, M5S 1A1 6Department of Computer Science, University of Toronto, 10 King’s College Road, Toronto, ON, Canada, M5S 3G4 7Ontario Institute of Cancer Research, 661 University Avenue, Suite 510, Toronto, ON, Canada, M5G 0A3 8Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK § Co-corresponding authors Address for correspondence: Regarding computational aspects, Dr. Haibe-Kains <Benjamin.Haibe- [email protected]> and Dr. Gendoo <[email protected]>; regarding statin aspects, Dr.
    [Show full text]
  • WO 2016/123419 Al 4 August 2016 (04.08.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization I International Bureau (10) International Publication Number (43) International Publication Date WO 2016/123419 Al 4 August 2016 (04.08.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12Q 1/68 (2006.01) C07H 21/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/US2016/015503 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 29 January 2016 (29.01 .2016) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 62/1 10,050 30 January 2015 (30.01.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: PRESIDENT AND FELLOWS OF HAR¬ TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, VARD COLLEGE [US/US]; 17 Quincy Street, Cam DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, bridge, MA 02138 (US).
    [Show full text]
  • A Review of the Different Staining Techniques for Human Metaphase Chromosomes
    Department of Chemistry University College London University of London A Review of the Different Staining Techniques for Human Metaphase Chromosomes Ana Katrina C. Estandarte Submitted in partial fulfillment of the requirements for the degree of Masters in Research !at the University of London February 24, 2012 Abstract This review investigates the different staining techniques for human metaphase chromosomes. The higher order organization of chromosomes still remains unclear today. There are various imaging techniques that can be used to study chromosomes. Staining increases the contrast of chromosomes under these different imaging techniques while banding allows the identification of chromosomes and the abnormalities present in it, and provides information about the chromosomal substructures. The different stains that can be used for studying human metaphase chromosomes with light, fluorescence and electron microscopy, and coherent x-ray diffraction imaging are discussed. By understanding the underlying mechanism of staining and banding, an insight on the relation of the chromosomal bands with the chromosomal substructures is provided. Moreover, through this review, an understanding of how the structure of the stain affects its mode of binding to the chromosomes and how this mode of binding, in turn, affects the mechanism of band formation are achieved. The information obtained from this review can then be used to develop a suitable stain for studying the structure of human metaphase chromosomes with different imaging techniques. Copyright
    [Show full text]
  • Application of Fluorescent Staining of Chromosomes to Genetic Studies in Citrus
    Japanese Journal of Plant Science ©2007 Global Science Books Application of Fluorescent Staining of Chromosomes to Genetic Studies in Citrus Masashi Yamamoto Faculty of Agriculture, Kagoshima University, Korimoto, Kagoshima 890-0065, Japan Correspondence : [email protected] ABSTRACT The application of staining with the guanine-cytosine specific fluorochrome chromomycin A3 (CMA) of citrus chromosomes to genetic studies is reviewed. When CMA staining is performed, the existence of characteristic CMA banding patterns with high levels of diversity and heterozygosity in citrus chromosomes is demonstrated. Similar CMA banding patterns have been observed in related species. Thus, CMA banding patterns of chromosomes have been considered to provide very important information for phylogenic studies in citrus. Chromosomal identification of citrus has also progressed rapidly by means of the CMA banding method. Chromosomes exhibiting the same CMA banding pattern were separated and classified using the relative sizes of fluorescent bands as indices. All nine chromosomes of haploid citrus were identified by this method. Analysis of the chromosomal configuration of parental materials and their progeny was efficient for genetic improvement in citrus. Characteristic chromosomes could be used as a marker for the parent-progeny relationship since these chromosomes are transmitted from the parents. In particular, CMA chromosome staining is a very powerful tool for ploidy manipulation. The advantage of using CMA staining is that the entire chromosomal
    [Show full text]
  • Downloaded and Curated
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.25.432909; this version posted February 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Description and analysis of glycosidic residues in the largest open natural products database Authors: Jonas Schaub; Institute for Inorganic and Analytical Chemistry; Friedrich-Schiller University, Lessing Strasse 8, 07743, Jena, Germany; [email protected]; ORCID: ​ ​ 0000-0003-1554-6666 Achim Zielesny; Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665, Recklinghausen, Germany; [email protected]; ORCID: 0000-0003-0722-4229 ​ ​ Christoph Steinbeck*; Institute for Inorganic and Analytical Chemistry; Friedrich-Schiller University, Lessing Strasse 8, 07743, Jena, Germany; [email protected]; ​ ​ ORCID: 0000-0001-6966-0814 ​ Maria Sorokina*; Institute for Inorganic and Analytical Chemistry; Friedrich-Schiller University, Lessing Strasse 8, 07743, Jena, Germany; [email protected]; ORCID: ​ ​ 0000-0001-9359-7149 Corresponding author emails: [email protected], [email protected] ​ ​ ​ Abstract: Natural products (NP), biomolecules produced by living organisms, inspire the pharmaceutical industry and research due to their structural characteristics and the substituents from which they derive their activities. Glycosidic residues are frequently present in NP structures and have particular pharmacokinetic and pharmacodynamic importance as they improve their solubility and are often involved in molecular transport, target specificity, ligand-target interactions and receptor binding. The COlleCtion of Open Natural prodUcTs (COCONUT) is currently the largest open database of NP and therefore a suitable starting point for the detection and analysis of the diversity of glycosidic residues in NP.
    [Show full text]
  • WO 2016/138496 Al 1 September 2016 (01.09.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/138496 Al 1 September 2016 (01.09.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12Q 1/68 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 16/0 19962 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 26 February 2016 (26.02.2016) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/126,230 27 February 2015 (27.02.2015) US (84) Designated States (unless otherwise indicated, for every 62/162,471 15 May 2015 (15.05.2015) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: CELLULAR RESEARCH, INC.
    [Show full text]
  • Biosynthesis of Polyketides in Streptomyces
    Review Biosynthesis of Polyketides in Streptomyces Chandra Risdian 1,2,*, Tjandrawati Mozef 3 and Joachim Wink 1,* 1 Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany 2 Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI), Bandung 40135, Indonesia 3 Research Center for Chemistry, Indonesian Institute of Sciences (LIPI), Serpong 15314, Indonesia; [email protected] * Correspondence: [email protected] or [email protected] (C.R.); [email protected] (J.W.); Tel.: +49-531-6181-4222 (C.R.); +49-531-6181-4223 (J.W.) Received: 18 March 2019; Accepted: 27 April 2019; Published: 6 May 2019 Abstract: Polyketides are a large group of secondary metabolites that have notable variety in their structure and function. Polyketides exhibit a wide range of bioactivities such as antibacterial, antifungal, anticancer, antiviral, immune-suppressing, anti-cholesterol, and anti-inflammatory activity. Naturally, they are found in bacteria, fungi, plants, protists, insects, mollusks, and sponges. Streptomyces is a genus of Gram-positive bacteria that has a filamentous form like fungi. This genus is best known as one of the polyketides producers. Some examples of polyketides produced by Streptomyces are rapamycin, oleandomycin, actinorhodin, daunorubicin, and caprazamycin. Biosynthesis of polyketides involves a group of enzyme activities called polyketide synthases (PKSs). There are three types of PKSs (type I, type II, and type III) in Streptomyces responsible for producing polyketides. This paper focuses on the biosynthesis of polyketides in Streptomyces with three structurally-different types of PKSs. Keywords: Streptomyces; polyketides; secondary metabolite; polyketide synthases (PKSs) 1. Introduction Polyketides, a large group of secondary metabolites, are known to possess remarkable variety, not only in their structure, and but also in their function [1,2].
    [Show full text]
  • Description and Analysis of Glycosidic Residues in the Largest Open Natural Products Database
    biomolecules Article Description and Analysis of Glycosidic Residues in the Largest Open Natural Products Database Jonas Schaub 1 , Achim Zielesny 2, Christoph Steinbeck 1,* and Maria Sorokina 1,* 1 Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Lessing Strasse 8, 07743 Jena, Germany; [email protected] 2 Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany; [email protected] * Correspondence: [email protected] (C.S.); [email protected] (M.S.) Abstract: Natural products (NPs), biomolecules produced by living organisms, inspire the pharma- ceutical industry and research due to their structural characteristics and the substituents from which they derive their activities. Glycosidic residues are frequently present in NP structures and have particular pharmacokinetic and pharmacodynamic importance as they improve their solubility and are often involved in molecular transport, target specificity, ligand–target interactions, and receptor binding. The COlleCtion of Open Natural prodUcTs (COCONUT) is currently the largest open database of NPs, and therefore a suitable starting point for the detection and analysis of the diversity of glycosidic residues in NPs. In this work, we report and describe the presence of circular, linear, terminal, and non-terminal glycosidic units in NPs, together with their importance in drug discovery. Keywords: natural products; glycosides; bioactivity; glycosidic residues; sugars; carbohydrates; Citation: Schaub, J.; Zielesny, A.; deglycosylation; cheminformatics; Chemistry Development Kit; CDK Steinbeck, C.; Sorokina, M. Description and Analysis of Glycosidic Residues in the Largest Open Natural Products Database. 1. Introduction Biomolecules 2021, 11, 486. https:// Natural products (NPs) are biologically active molecules produced by living organ- doi.org/10.3390/biom11040486 isms.
    [Show full text]
  • Subject Index
    Subject Index A DNA binding 38-40 DNA strand breaks 37 Scatchard plot 36 ACIMBO 146 effects on nuclear nucleic acid 58 Aclacinomycin 59 and nuclear damage 36 Aclacinomycin A 60,63-5,67 Adriamycin macromolecule complexes and catalase 65,71 79 and DNA binding 64 Adriamycin-ara-C 106 and DNA strand breaks 64 Adriamycin-14-benzoate 94 and DNA synthesis 64 Adriamycin-14-(1-naphthalene acetate) and RNA synthesis 64 94 Acridine orange 2 Adriamycin-14-octanoate 94,120 Acridine yellow 3 Agglutination 25 Acridones 26-9 Aklavine 68 alkaloids 28 Aklavinone 59 nitroacridone 27 Albumin microspheres 79 thioacridone 27 Alcindromycin 66 Acriflavine 1, 2 Aldehyde reductase 109 Acrolein 11 0 Alkaline elution 37,206,316,318, Acronycine 28 335,336,344 and DNA synthesis 28 Alkaline sucrose sedimentation 206, detoxification 28 218,222,316,322 metabolism 28 Alkylated DNA 244 and RNA synthesis 28 Alkylated RNA 244 Actinomycins 24, 104, 148 Alkylating acridines 3, 4 inhibition of RNA synthesis 25 Alkylating agents 233ff, 284 Actinomycin D 37,104,129,150 local administration of 264 DNA damage 105 Alkylation of DNA bases 300 AD32 74,97,104 Alkylation products 300 cell cycle effects 74 7-a1kylguanines 300 AD41 97 Alkyltransferase 346,355 Adamanty1 substituents 385 Allopurinol 111 Adenocarcinoma 386 Ametantrone 82-5 Adriamycin 21,35-53,57-86,94, D-aminoacid oxidase 111 96, 104, 108 L-aminoacid oxidase 111 cardiotoxicity of 57 9-aminoacridine 1,18,22,23 chromatin binding 36-7 imino form 10 chromatin compaction 37 Aminopterin 368,380 395 396 Subject Index AML 121 Ataxia
    [Show full text]