Future Small Arms Requirements WBE 2.4 Load Balance and Support in Weapon Design Manipulation of Weapon Weight and Centre of Mass About the Vertical (Z) Axis
Total Page:16
File Type:pdf, Size:1020Kb
Future Small Arms Requirements WBE 2.4 Load Balance and Support in Weapon Design Manipulation of Weapon Weight and Centre of Mass About the Vertical (Z) Axis Jose Peralta-Huertas Alexi Natale Jonathan Honey DRDC – Toronto Research Centre Defence Research and Development Canada Scientific Report DRDC-RDDC-2016-R176 August 2016 IMPORTANT INFORMATIVE STATEMENTS In conducting the research described in this report, the investigators adhered to the policies and procedures set out in the Tri-Council Policy Statement: Ethical conduct for research involving humans, National Council on Ethics in Human Research, Ottawa, 2014 as issued jointly by the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council of Canada and the Social Sciences and Humanities Research Council of Canada. Template in use: (2010) SR Advanced Template.dotm © Her Majesty the Queen in Right of Canada, as represented by the Minister of National Defence, 2016 © Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la Défense nationale, 2016 Abstract A laboratory study was undertaken at Defence Research and Development Canada – Toronto Research Centre (DRDC – Toronto Research Centre) during the period of 12 January to 6 March 2015. Thirty two (32) Canadian Armed Forces (CAF) personnel (male, aged 21 to 40) were asked to shoot a number of simulated serials using the surrogate test bed on an instrumented 8-metre-wide indoor firing lane. The test bed was initially configured to simulate a C7A2 in size, weight, and centre of mass (CoM). The test bed weight, and balance were varied systematically resulting in four configurations as follows: N: same weight as C7A2, CoM at the same location as C7’s; 1.5A: 1.5 kg heavier that N configuration, CoM above C7’s (about 5 cm); 3A: 3 kg heavier that N configuration, CoM above C7’s (about 5 cm); and 3B: 3 kg heavier than N configuration, CoM below C7’s (about 2 cm). This was done by manipulating the position of the bolt-on weights along the vertical (Z) axis through the theoretical CoM. The CoM was manipulated along the local coordinate system of the weapon. For every change to the weapon’s center of balance and weight, the participants shoots two 5-round groupings. Data collected consisted of 6 marksmanship metrics collected using the SCATT software that is a simulated marksmanship system. A significant difference was found in only one measure, the Mean Group Centre Radius, during the standing hold serial. This measure for N condition was significantly smaller than the one for 3A condition (p = .04). In contrast, all heavy configurations (1.5A, 3A and 3B) failed in Overall (Weight, Balance and Acceptance) factors according to participants. These findings may indicate that weight and CoM manipulations on vertical (Z) axis have minimal effect on marksmanship in spite of poor acceptance among shooters. Significance to Defence and Security As technologies advance, there is increasing interest to add systems like thermal sights and grenade launchers to small arms. This research advises the defence community of the potential effects, such as fatigue and discomfort using the weapon that auxiliary devices added to a conventional weapon can cause. DRDC-RDDC-2016-R176 i Résumé Une étude en laboratoire a été entreprise par Recherche et développement pour la défense Canada – Centre de recherches de Toronto (RDDC – Centre de recherches de Toronto) du 12 janvier au 6 mars 2015. On a demandé à 32 membres du personnel des Forces armées canadiennes (FAC) (hommes âgés de 21 à 40 ans) d’effectuer un certain nombre de séries de tirs simulés à l’aide du banc d’essai de remplacement dans un couloir instrumenté de tir intérieur de 8 m de largeur. Le banc d’essai a d’abord été configuré pour simuler un C7A2 en taille, poids et centre de masse (CoM). On a fait varier systématiquement l’équilibre et le poids du banc d’essai, ce qui a permis d’obtenir quatre configurations : N : même poids que le C7A2, CoM au même endroit que celui du C7; 1.5 A : 1,5 kg plus lourd que la configuration N, CoM au-dessus de celui du C7 (environ 5 cm); 3A : 3 kg plus lourd que la configuration N, CoM au-dessus de celui du C7 (environ 5 cm); et 3B : 3 kg plus lourd que la configuration N, CoM en dessous de celui du C7 (environ 2 cm). Cela a été fait en manipulant la position des poids à boulonner le long de l’axe vertical (Z) par le CoM théorique. Le CoM a été manipulé le long du système de coordonnées locales de l’arme. Pour chaque changement de poids et de centre d’équilibre de l’arme, les participants ont procédé à deux groupements de cinq tirs. Les données étaient composées de six mesures d’adresse au tir recueillies à l’aide du logiciel SCATT, qui est un système d’adresse au tir simulé. On a constaté une différence importante dans une seule mesure, le Mean Group Centre Radius, pendant la série de maintien debout. Cette mesure de la condition N était considérablement plus petite que celle de la condition 3A (p = 0,04). Par contre, toutes les configurations lourdes (1.5 A, 3A et 3B) ont échoué en ce qui a trait aux facteurs globaux (poids, équilibre et accueil), selon les participants. Ces constatations peuvent indiquer que la manipulation du poids et du CoM sur l’axe vertical (Z) a un effet minimal sur l’adresse au tir malgré l’accueil mitigé des tireurs. Importance pour la défense et la sécurité Au fur et à mesure que les technologies évoluent, on est de plus en plus intéressé à doter les armes de petit calibre de systèmes comme les lance-grenades et les viseurs thermiques. La présente recherche met la communauté de la défense au courant des effets potentiels des dispositifs auxiliaires ajoutés à une arme conventionnelle, comme la fatigue et l’inconfort. ii DRDC-RDDC-2016-R176 Table of Contents Abstract ................................ i Significance to Defence and Security ..................... i Résumé ................................ ii Importance pour la défense et la sécurité .................... ii Table of Contents ........................... iii List of Figures ..............................v List of Tables ............................. vi Acknowledgements ........................... vii 1 Introduction .............................1 2 Methods ..............................2 2.1 General Overview .........................2 2.2 Clothing ............................3 2.3 Instrumentation..........................3 2.3.1 Manipulation of the CoM Along the Vertical (Z) Axis .........4 2.3.2 Weight Conditions (Total Weight of Weapon): ...........6 2.4 Shooter System..........................7 2.5 Firing Serials ..........................8 2.6 Data Measures ..........................9 2.7 Test Protocol ......................... 10 2.8 Statistical Analysis ....................... 11 3 Results .............................. 12 3.1 Objective Results ........................ 12 3.1.1 Hold .......................... 12 3.1.2 Pivot .......................... 13 3.2 Subjective Results Questionnaire .................. 14 3.2.1 Overall Metrics ...................... 15 3.2.2 Specific Metrics ...................... 16 4 Discussion ............................. 18 4.1 NATO RTO Implications ..................... 19 5 Conclusion ............................ 20 References .............................. 21 Annex A Study Information Sheet ..................... 23 Annex B Participant Information ..................... 25 Annex C Configurations......................... 29 Annex D User Acceptance Questionnaire .................. 31 List of Symbols/Abbreviations/Acronyms/Initialisms............... 33 DRDC-RDDC-2016-R176 iii List of Figures Figure 1: Modular weight, size and center of balance of the test bed concept. From Kelly et al. (2013). .......................... 4 Figure 2: Test bed with aluminum rig (frontal view). .............. 5 Figure 3: Test bed with aluminum rig (lateral view). .............. 5 Figure 4: Recommended CoM adjustability along (Z) axis for weapon test bed; modified from McKee and Tack (2009). ................... 6 Figure 5: SCATT shooter system. ..................... 7 Figure 6: Seven level Likert type acceptability scale. .............. 9 Figure 7: SCATT shooter training system and test bed setup. ........... 11 Figure 8: Overall acceptance metric rankings. ................. 16 Figure C.1: N configuration. ........................ 29 Figure C.2: 1.5A configuration. ....................... 29 Figure C.3: 3A configuration. ........................ 30 Figure C.4: 3B configuration. ........................ 30 iv DRDC-RDDC-2016-R176 List of Tables Table 1: Participant shooting and military experience. ............. 3 Table 2: Depiction of firing serials. .................... 8 Table 3: Marksmanship performance measures. ................ 9 Table 4: Descriptive statistics for the hold applications. ............. 12 Table 5: Descriptive statistics for the pivot applications. ............ 13 Table 6: Overall acceptance descriptive statistics. ............... 15 Table 7: Specific metric rankings distribution (Fail = Likert rating less than four). .. 16 DRDC-RDDC-2016-R176 v Acknowledgements We would like to acknowledge the important contribution of Capt G. Pajuluoma to the technical design and data collection in this study. He also contributed extensively with the statistical data analysis. One other major contributor was Ed Nakaza whose advice was pivotal for our understanding of the technical challenge that the study entailed. Special thanks to Jim Clark who contributed most of the report pictures. vi DRDC-RDDC-2016-R176