Statisticians
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Bates SWDENV the GIGGLES of BATES COLLEGE SINCE SOMEONE CLEVER DECIDED to MAKE a JOKE PAPER
The Bates SWDENV THE GIGGLES OF BATES COLLEGE SINCE SOMEONE CLEVER DECIDED TO MAKE A JOKE PAPER Housing office unveils new plan Skye Event Center and to handle housing shortage The Blue Goose: A re¬ view of Lewiston’s teem¬ ing social hot-spots modes of transit. “Someone gave ADAM BAUM us a tip to reserve a spot in a Papa STAFF WRITER John’s delivery car,” explains par¬ You may have heard of Tao ty guest Reese Witherspoon. “It night club in Las Vegas or The worked out great, we even got a 40/40 Club in New York, but few slices of pizza out of it.” what about Skye Event Center, While Club Skye has gained located in the heart of Lewis¬ a lot of attention for the recent ton’s exclusive Promenade Mall birthday event, the city’s most Shopping Center? Recently es¬ trusted drinking establishment, tablished, Club Skye follows The Blue Goose, has made some the likes of Vybz, Karma, and changes to try and keep up. Rondevu (accurate spelling ap¬ Widely esteemed among the parently off-trend) as the pre¬ Bates student community and miere location for Batesies and local social circuit for its laissez- Lewiston locals. Skye has burst faire rules and regulations, Lew¬ onto the Lewiston scene as the iston’s finest drinking establish¬ trendy spot for Bates students to ment “The Blue Goose” now nurse a (heavy handed) Long Is¬ requires each patron to perform Students indulge in a quick nap between classes in the Chase Hall Lounge, one of the low-chem op¬ land Ice Tea and dance until the a personalized talent act in order tions for students being placed in one of the new couch dorms. -
Department of Geography
Department of Geography UNIVERSITY OF FLORIDA, SPRING 2019 GEO 4167c section #09A6 / GEO 6161 section # 09A9 (3.0 credit hours) Course# 15235/15271 Intermediate Quantitative Methods Instructor: Timothy J. Fik, Ph.D. (Associate Professor) Prerequisite: GEO 3162 / GEO 6160 or equivalent Lecture Time/Location: Tuesdays, Periods 3-5: 9:35AM-12:35PM / Turlington 3012 Instructor’s Office: 3137 Turlington Hall Instructor’s e-mail address: [email protected] Formal Office Hours Tuesdays -- 1:00PM – 4:30PM Thursdays -- 1:30PM – 3:00PM; and 4:00PM – 4:30PM Course Materials (Power-point presentations in pdf format) will be uploaded to the on-line course Lecture folder on Canvas. Course Overview GEO 4167x/GEO 6161 surveys various statistical modeling techniques that are widely used in the social, behavioral, and environmental sciences. Lectures will focus on several important topics… including common indices of spatial association and dependence, linear and non-linear model development, model diagnostics, and remedial measures. The lectures will largely be devoted to the topic of Regression Analysis/Econometrics (and the General Linear Model). Applications will involve regression models using cross-sectional, quantitative, qualitative, categorical, time-series, and/or spatial data. Selected topics include, yet are not limited to, the following: Classic Least Squares Regression plus Extensions of the General Linear Model (GLM) Matrix Algebra approach to Regression and the GLM Join-Count Statistics (Dacey’s Contiguity Tests) Spatial Autocorrelation / Regression -
Statistics and GIS Assistance Help with Statistics
Statistics and GIS assistance An arrangement for help and advice with regard to statistics and GIS is now in operation, principally for Master’s students. How do you seek advice? 1. The users, i.e. students at INA, make direct contact with the person whom they think can help and arrange a time for consultation. Remember to be well prepared! 2. Doctoral students and postdocs register the time used in Agresso (if you have questions about this contact Gunnar Jensen). Help with statistics Research scientist Even Bergseng Discipline: Forest economy, forest policies, forest models Statistical expertise: Regression analysis, models with random and fixed effects, controlled/truncated data, some time series modelling, parametric and non-parametric effectiveness analyses Software: Stata, Excel Postdoc. Ole Martin Bollandsås Discipline: Forest production, forest inventory Statistics expertise: Regression analysis, sampling Software: SAS, R Associate Professor Sjur Baardsen Discipline: Econometric analysis of markets in the forest sector Statistical expertise: General, although somewhat “rusty”, expertise in many econometric topics (all-rounder) Software: Shazam, Frontier Associate Professor Terje Gobakken Discipline: GIS og long-term predictions Statistical expertise: Regression analysis, ANOVA and PLS regression Software: SAS, R Ph.D. Student Espen Halvorsen Discipline: Forest economy, forest management planning Statistical expertise: OLS, GLS, hypothesis testing, autocorrelation, ANOVA, categorical data, GLM, ANOVA Software: (partly) Shazam, Minitab og JMP Ph.D. Student Jan Vidar Haukeland Discipline: Nature based tourism Statistical expertise: Regression and factor analysis Software: SPSS Associate Professor Olav Høibø Discipline: Wood technology Statistical expertise: Planning of experiments, regression analysis (linear and non-linear), ANOVA, random and non-random effects, categorical data, multivariate analysis Software: R, JMP, Unscrambler, some SAS Ph.D. -
The Evolution of Econometric Software Design: a Developer's View
Journal of Economic and Social Measurement 29 (2004) 205–259 205 IOS Press The evolution of econometric software design: A developer’s view Houston H. Stokes Department of Economics, College of Business Administration, University of Illinois at Chicago, 601 South Morgan Street, Room 2103, Chicago, IL 60607-7121, USA E-mail: [email protected] In the last 30 years, changes in operating systems, computer hardware, compiler technology and the needs of research in applied econometrics have all influenced econometric software development and the environment of statistical computing. The evolution of various representative software systems, including B34S developed by the author, are used to illustrate differences in software design and the interrelation of a number of factors that influenced these choices. A list of desired econometric software features, software design goals and econometric programming language characteristics are suggested. It is stressed that there is no one “ideal” software system that will work effectively in all situations. System integration of statistical software provides a means by which capability can be leveraged. 1. Introduction 1.1. Overview The development of modern econometric software has been influenced by the changing needs of applied econometric research, the expanding capability of com- puter hardware (CPU speed, disk storage and memory), changes in the design and capability of compilers, and the availability of high-quality subroutine libraries. Soft- ware design in turn has itself impacted applied econometric research, which has seen its horizons expand rapidly in the last 30 years as new techniques of analysis became computationally possible. How some of these interrelationships have evolved over time is illustrated by a discussion of the evolution of the design and capability of the B34S Software system [55] which is contrasted to a selection of other software systems. -
International Journal of Forecasting Guidelines for IJF Software Reviewers
International Journal of Forecasting Guidelines for IJF Software Reviewers It is desirable that there be some small degree of uniformity amongst the software reviews in this journal, so that regular readers of the journal can have some idea of what to expect when they read a software review. In particular, I wish to standardize the second section (after the introduction) of the review, and the penultimate section (before the conclusions). As stand-alone sections, they will not materially affect the reviewers abillity to craft the review as he/she sees fit, while still providing consistency between reviews. This applies mostly to single-product reviews, but some of the ideas presented herein can be successfully adapted to a multi-product review. The second section, Overview, is an overview of the package, and should include several things. · Contact information for the developer, including website address. · Platforms on which the package runs, and corresponding prices, if available. · Ancillary programs included with the package, if any. · The final part of this section should address Berk's (1987) list of criteria for evaluating statistical software. Relevant items from this list should be mentioned, as in my review of RATS (McCullough, 1997, pp.182- 183). · My use of Berk was extremely terse, and should be considered a lower bound. Feel free to amplify considerably, if the review warrants it. In fact, Berk's criteria, if considered in sufficient detail, could be the outline for a review itself. The penultimate section, Numerical Details, directly addresses numerical accuracy and reliality, if these topics are not addressed elsewhere in the review. -
Estimating Road Transport Fuel Demand Elasticities in the Uk: an Empirical Investigation of Response Heterogeneity
1 ESTIMATING ROAD TRANSPORT FUEL DEMAND ELASTICITIES IN THE UK: AN EMPIRICAL INVESTIGATION OF RESPONSE HETEROGENEITY Ahmad Razi Ramli Centre for Transport Studies Department of Civil and Environmental Engineering Imperial College London Submitted for the Diploma of the Imperial College (DIC), PhD degree of Imperial College London March 2014 2 DECLARATION OF ORIGINALITY I hereby declare that I am the sole author of this thesis and have personally carried out the work contained within. The contribution of my supervisor was only supervisory and editorial. I further declare that all sources cited or quoted are indicated and acknowledged in the list of references in this thesis. ……………………………………………… Ahmad Razi Ramli 3 COPYRIGHT DECLARATION ‘The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work’. 4 ABSTRACT The main aim of this dissertation is to estimate fuel demand elasticities for the UK road transport sector. Despite being extensively studied, there is a renewed need for the estimation of fuel demand elasticities so that they might be more reflective of recent trends and changes in consumption patterns. At present, understanding the fuel demand sensitivities is especially important for policy making purposes. A review of the empirical literature on fuel demand revealed three important areas of concern. -
Omegahat Packages for R
News The Newsletter of the R Project Volume 1/1, January 2001 Editorial by Kurt Hornik and Friedrich Leisch As all of R, R News is a volunteer project. The editorial board currently consists of the R core devel- Welcome to the first volume of R News, the newslet- opment team plus Bill Venables. We are very happy ter of the R project for statistical computing. R News that Bill—one of the authorities on programming the will feature short to medium length articles covering S language—has offered himself as editor of “Pro- topics that might be of interest to users or developers grammer’s Niche”, a regular column on R/S pro- of R, including gramming. This first volume already features a broad range Changes in R: new features of the latest release • of different articles, both from R core members and other developers in the R community (without Changes on CRAN: new add-on packages, • whom R would never have grown to what it is now). manuals, binary distributions, mirrors, . The success of R News critically depends on the ar- Add-on packages: short introductions to or re- ticles in it, hence we want to ask all of you to sub- • views of R extension packages mit to R News. There is no formal reviewing pro- cess yet, however articles will be reviewed by the ed- Programmer’s Niche: nifty hints for program- itorial board to ensure the quality of the newsletter. • ming in R (or S) Submissions should simply be sent to the editors by email, see the article on page 30 for details on how to Applications: Examples of analyzing data with • write articles. -
Gröbner Basis and Structural Equation Modeling by Min Lim a Thesis
Grobner¨ Basis and Structural Equation Modeling by Min Lim A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Statistics University of Toronto Copyright c 2010 by Min Lim Abstract Gr¨obnerBasis and Structural Equation Modeling Min Lim Doctor of Philosophy Graduate Department of Statistics University of Toronto 2010 Structural equation models are systems of simultaneous linear equations that are gener- alizations of linear regression, and have many applications in the social, behavioural and biological sciences. A serious barrier to applications is that it is easy to specify models for which the parameter vector is not identifiable from the distribution of the observable data, and it is often difficult to tell whether a model is identified or not. In this thesis, we study the most straightforward method to check for identification – solving a system of simultaneous equations. However, the calculations can easily get very complex. Gr¨obner basis is introduced to simplify the process. The main idea of checking identification is to solve a set of finitely many simultaneous equations, called identifying equations, which can be transformed into polynomials. If a unique solution is found, the model is identified. Gr¨obner basis reduces the polynomials into simpler forms making them easier to solve. Also, it allows us to investigate the model-induced constraints on the covariances, even when the model is not identified. With the explicit solution to the identifying equations, including the constraints on the covariances, we can (1) locate points in the parameter space where the model is not iden- tified, (2) find the maximum likelihood estimators, (3) study the effects of mis-specified models, (4) obtain a set of method of moments estimators, and (5) build customized parametric and distribution free tests, including inference for non-identified models. -
Sigmaplot 11: Now with Total Sigmastat Integration
SigmaPlot 11: Now with Total SigmaStat Integration Imagine my joy as I discovered a complete package of publication-quality graphics software with analytic and presentation tools John A. Wass, Ph.D., in: Scientific Computing International, Jan/Feb 2009 The SYSTAT people who market this product have thrown me a curve. For years, I have bemoaned the fact that most of the upgrade and development efforts that went into the SigmaPlot/SigmaStat software seemed to be biased to the plot side. When I observed that the new package was merely named SigmaPlot, and I further failed to find SigmaStat integration features (the stuff that connects the two programs), the Figure 1: SigmaPlot graphics and wizards, including the Quick Start natural conclusion seemed to be that the statistical Menu (upper right) and the graph program was jettisoned in favor of the graphics. wizard (bottom center) The above introductory narrative is intended to alert the reader to this editor’s long- time love affair with SigmaStat. It was the first statistical software that I used, (seemingly) the first to make a seamless transition from DOS to Windows, and the very first to offer that wonderful Wizard to we befuddled amateur statisticians. My introduction to SigmaPlot came much later, and use of that was only stimulated when the two became integrated. Later on, a pharmacology menu was added and the usage of the plotting software was greatly extended. Of course, the new version has added further graphics and helps to make an already useful program even easier to use. It is now a complete package of publication-quality graphics software with analytic and presentation tools. -
Towards a Fully Automated Extraction and Interpretation of Tabular Data Using Machine Learning
UPTEC F 19050 Examensarbete 30 hp August 2019 Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Per Hedbrant Master Thesis in Engineering Physics Department of Engineering Sciences Uppsala University Sweden Abstract Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Teknisk- naturvetenskaplig fakultet UTH-enheten Motivation A challenge for researchers at CBCS is the ability to efficiently manage the Besöksadress: different data formats that frequently are changed. Significant amount of time is Ångströmlaboratoriet Lägerhyddsvägen 1 spent on manual pre-processing, converting from one format to another. There are Hus 4, Plan 0 currently no solutions that uses pattern recognition to locate and automatically recognise data structures in a spreadsheet. Postadress: Box 536 751 21 Uppsala Problem Definition The desired solution is to build a self-learning Software as-a-Service (SaaS) for Telefon: automated recognition and loading of data stored in arbitrary formats. The aim of 018 – 471 30 03 this study is three-folded: A) Investigate if unsupervised machine learning Telefax: methods can be used to label different types of cells in spreadsheets. B) 018 – 471 30 00 Investigate if a hypothesis-generating algorithm can be used to label different types of cells in spreadsheets. C) Advise on choices of architecture and Hemsida: technologies for the SaaS solution. http://www.teknat.uu.se/student Method A pre-processing framework is built that can read and pre-process any type of spreadsheet into a feature matrix. Different datasets are read and clustered. An investigation on the usefulness of reducing the dimensionality is also done. -
Kwame Nkrumah University of Science and Technology, Kumasi
KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI, GHANA Assessing the Social Impacts of Illegal Gold Mining Activities at Dunkwa-On-Offin by Judith Selassie Garr (B.A, Social Science) A Thesis submitted to the Department of Building Technology, College of Art and Built Environment in partial fulfilment of the requirement for a degree of MASTER OF SCIENCE NOVEMBER, 2018 DECLARATION I hereby declare that this work is the result of my own original research and this thesis has neither in whole nor in part been prescribed by another degree elsewhere. References to other people’s work have been duly cited. STUDENT: JUDITH S. GARR (PG1150417) Signature: ........................................................... Date: .................................................................. Certified by SUPERVISOR: PROF. EDWARD BADU Signature: ........................................................... Date: ................................................................... Certified by THE HEAD OF DEPARTMENT: PROF. B. K. BAIDEN Signature: ........................................................... Date: ................................................................... i ABSTRACT Mining activities are undertaken in many parts of the world where mineral deposits are found. In developing nations such as Ghana, the activity is done both legally and illegally, often with very little or no supervision, hence much damage is done to the water bodies where the activities are carried out. This study sought to assess the social impacts of illegal gold mining activities at Dunkwa-On-Offin, the capital town of Upper Denkyira East Municipality in the Central Region of Ghana. The main objectives of the research are to identify factors that trigger illegal mining; to identify social effects of illegal gold mining activities on inhabitants of Dunkwa-on-Offin; and to suggest effective ways in curbing illegal mining activities. Based on the approach to data collection, this study adopts both the quantitative and qualitative approach. -
SQSTM1 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis
ORIGINAL CONTRIBUTION SQSTM1 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis Faisal Fecto, MD; Jianhua Yan, MD, PhD; S. Pavan Vemula; Erdong Liu, MD; Yi Yang, MS; Wenjie Chen, MD; Jian Guo Zheng, MD; Yong Shi, MD, PhD; Nailah Siddique, RN, MSN; Hasan Arrat, MD; Sandra Donkervoort, MS; Senda Ajroud-Driss, MD; Robert L. Sufit, MD; Scott L. Heller, MD; Han-Xiang Deng, MD, PhD; Teepu Siddique, MD Background: The SQSTM1 gene encodes p62, a major In silico analysis of variants was performed to predict al- pathologic protein involved in neurodegeneration. terations in p62 structure and function. Objective: To examine whether SQSTM1 mutations con- Results: We identified 10 novel SQSTM1 mutations (9 tribute to familial and sporadic amyotrophic lateral scle- heterozygous missense and 1 deletion) in 15 patients (6 rosis (ALS). with familial ALS and 9 with sporadic ALS). Predictive in silico analysis classified 8 of 9 missense variants as Design: Case-control study. pathogenic. Setting: Academic research. Conclusions: Using candidate gene identification based on prior biological knowledge and the functional pre- Patients: A cohort of 546 patients with familial diction of rare variants, we identified several novel (n=340) or sporadic (n=206) ALS seen at a major aca- SQSTM1 mutations in patients with ALS. Our findings demic referral center were screened for SQSTM1 muta- provide evidence of a direct genetic role for p62 in ALS tions. pathogenesis and suggest that regulation of protein deg- radation pathways may represent an important thera- Main Outcome Measures: We evaluated the distri- peutic target in motor neuron degeneration. bution of missense, deletion, silent, and intronic vari- ants in SQSTM1 among our cohort of patients with ALS.