Statistics and GIS Assistance Help with Statistics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Estimating Complex Production Functions: the Importance of Starting Values
Version: January 26 Estimating complex production functions: The importance of starting values Mark Neal Presented at the 51st Australian Agricultural and Resource Economics Society Conference, Queenstown, New Zealand, 14-16 February, 2007. Postdoctoral Research Fellow Risk and Sustainable Management Group University of Queensland Room 519, School of Economics, Colin Clark Building (39) University of Queensland, St Lucia, QLD, 4072 Email: [email protected] Ph: +61 (0) 7 3365 6601 Fax: +61 (0) 7 3365 7299 http://www.uq.edu.au/rsmg Acknowledgements Chris O’Donnell helpfully provided access to Gauss code that he had written for estimation of latent class models so it could be translated into Shazam. Leighton Brough (UQ), Ariel Liebman (UQ) and Tom Pechey (UMelb) helped by organising a workshop with Nimrod/enFuzion at UQ in June 2006. enFuzion (via Rok Sosic) provided a limited license for use in the project. Leighton Brough, tools coordinator for the ARC Centre for Complex Systems (ACCS), assisted greatly in setting up an enFuzion grid and collating the large volume of results. Son Nghiem provided assistance in collating and analysing data as well as in creating some of the figures. Page 1 of 30 Version: January 26 ABSTRACT Production functions that take into account uncertainty can be empirically estimated by taking a state contingent view of the world. Where there is no a priori information to allocate data amongst a small number of states, the estimation may be carried out with finite mixtures model. The complexity of the estimation almost guarantees a large number of local maxima for the likelihood function. -
Apple / Shazam Merger Procedure Regulation (Ec)
EUROPEAN COMMISSION DG Competition CASE M.8788 – APPLE / SHAZAM (Only the English text is authentic) MERGER PROCEDURE REGULATION (EC) 139/2004 Article 8(1) Regulation (EC) 139/2004 Date: 06/09/2018 This text is made available for information purposes only. A summary of this decision is published in all EU languages in the Official Journal of the European Union. Parts of this text have been edited to ensure that confidential information is not disclosed; those parts are enclosed in square brackets. EUROPEAN COMMISSION Brussels, 6.9.2018 C(2018) 5748 final COMMISSION DECISION of 6.9.2018 declaring a concentration to be compatible with the internal market and the EEA Agreement (Case M.8788 – Apple/Shazam) (Only the English version is authentic) TABLE OF CONTENTS 1. Introduction .................................................................................................................. 6 2. The Parties and the Transaction ................................................................................... 6 3. Jurisdiction of the Commission .................................................................................... 7 4. The procedure ............................................................................................................... 8 5. The investigation .......................................................................................................... 8 6. Overview of the digital music industry ........................................................................ 9 6.1. The digital music distribution value -
Bab 1 Pendahuluan
BAB 1 PENDAHULUAN Bab ini akan membahas pengertian dasar statistik dengan sub-sub pokok bahasan sebagai berikut : Sub Bab Pokok Bahasan A. Sejarah dan Perkembangan Statistik B. Tokoh-tokoh Kontributor Statistika C. Definisi dan Konsep Statistik Modern D. Kegunaan Statistik E. Pembagian Statistik F. Statistik dan Komputer G. Soal Latihan A. Sejarah dan Perkembangan Statistik Penggunaan istilah statistika berakar dari istilah-istilah dalam bahasa latin modern statisticum collegium (“dewan negara”) dan bahasa Italia statista (“negarawan” atau “politikus”). Istilah statistik pertama kali digunakan oleh Gottfried Achenwall (1719-1772), seorang guru besar dari Universitas Marlborough dan Gottingen. Gottfried Achenwall (1749) menggunakan Statistik dalam bahasa Jerman untuk pertama kalinya sebagai nama bagi kegiatan analisis data kenegaraan, dengan mengartikannya sebagai “ilmu tentang negara/state”. Pada awal abad ke- 19 telah terjadi pergeseran arti menjadi “ilmu mengenai pengumpulan dan klasifikasi data”. Sir John Sinclair memperkenalkan nama dan pengertian statistics ini ke dalam bahasa Inggris. E.A.W. Zimmerman mengenalkan kata statistics ke negeri Inggris. Kata statistics dipopulerkan di Inggris oleh Sir John Sinclair dalam karyanya: Statistical Account of Scotland 1791-1799. Namun demikian, jauh sebelum abad XVIII masyarakat telah mencatat dan menggunakan data untuk keperluan mereka. Pada awalnya statistika hanya mengurus data yang dipakai lembaga- lembaga administratif dan pemerintahan. Pengumpulan data terus berlanjut, khususnya melalui sensus yang dilakukan secara teratur untuk memberi informasi kependudukan yang selalu berubah. Dalam bidang pemerintahan, statistik telah digunakan seiring dengan perjalanan sejarah sejak jaman dahulu. Kitab perjanjian lama (old testament) mencatat adanya kegiatan sensus penduduk. Pemerintah kuno Babilonia, Mesir, dan Roma mengumpulkan data lengkap tentang penduduk dan kekayaan alam yang dimilikinya. -
Gröbner Basis and Structural Equation Modeling by Min Lim a Thesis
Grobner¨ Basis and Structural Equation Modeling by Min Lim A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Statistics University of Toronto Copyright c 2010 by Min Lim Abstract Gr¨obnerBasis and Structural Equation Modeling Min Lim Doctor of Philosophy Graduate Department of Statistics University of Toronto 2010 Structural equation models are systems of simultaneous linear equations that are gener- alizations of linear regression, and have many applications in the social, behavioural and biological sciences. A serious barrier to applications is that it is easy to specify models for which the parameter vector is not identifiable from the distribution of the observable data, and it is often difficult to tell whether a model is identified or not. In this thesis, we study the most straightforward method to check for identification – solving a system of simultaneous equations. However, the calculations can easily get very complex. Gr¨obner basis is introduced to simplify the process. The main idea of checking identification is to solve a set of finitely many simultaneous equations, called identifying equations, which can be transformed into polynomials. If a unique solution is found, the model is identified. Gr¨obner basis reduces the polynomials into simpler forms making them easier to solve. Also, it allows us to investigate the model-induced constraints on the covariances, even when the model is not identified. With the explicit solution to the identifying equations, including the constraints on the covariances, we can (1) locate points in the parameter space where the model is not iden- tified, (2) find the maximum likelihood estimators, (3) study the effects of mis-specified models, (4) obtain a set of method of moments estimators, and (5) build customized parametric and distribution free tests, including inference for non-identified models. -
1 Reliability of Programming Software: Comparison of SHAZAM and SAS
Reliability of Programming Software: Comparison of SHAZAM and SAS. Oluwarotimi Odeh Department of Agricultural Economics, Kansas State University, Manhattan, KS 66506-4011 Phone: (785)-532-4438 Fax: (785)-523-6925 Email: [email protected] Allen M. Featherstone Department of Agricultural Economics, Kansas State University, Manhattan, KS 66506-4011 Phone: (785)-532-4441 Fax: (785)-523-6925 Email: [email protected] Selected Paper for Presentation at the Western Agricultural Economics Association Annual Meeting, Honolulu, HI, June 30-July 2, 2004 Copyright 2004 by Odeh and Featherstone. All rights reserved. Readers may make verbatim copies for commercial purposes by any means, provided that this copyright notice appears on all such copies. 1 Reliability of Programming Software: Comparison of SHAZAM and SAS. Introduction The ability to combine quantitative methods, econometric techniques, theory and data to analyze societal problems has become one of the major strengths of agricultural economics. The inability of agricultural economists to perform this task perfectly in some cases has been linked to the fragility of econometric results (Learner, 1983; Tomek, 1993). While small changes in model specification may result in considerable impact and changes in empirical results, Hendry and Richard (1982) have shown that two models of the same relationship may result in contradicting result. Results like these weaken the value of applied econometrics (Tomek, 1993). Since the study by Tice and Kletke (1984) computer programming software have undergone tremendous improvements. However, experience in recent times has shown that available software packages are not foolproof and may not be as efficient and consistent as researchers often assume. Compounding errors, convergence, error due to how software read, interpret and process data impact the values of analytical results (see Tomek, 1993; Dewald, Thursby and Anderson, 1986). -
A Guide to Statistical Software
A Guide to Statistical Software Commercially Available Software There are three general classes of software available using several different user interfaces. Statistical software begins to blend in one direction with relational database software such as Oracle or Sybase (software we do not discuss here) and with mathematical software such as MATLAB in the other direction. Mathematical software exhibits not only statistical capabilities flowing from code for matrix manipulation, but also optimization and symbolic manipulation useful for statistical purposes. Finally visualization software overlaps to some extent with software intended for exploratory data analysis. The user interfaces common range from command line to graphical user interfaces (GUI) to hybrid drag and drop system interfaces. We cast our net fairly widely in describing commercial software because of the general boundary crossing capabilities of the software systems. The SAS® System for Statistical Analysis SAS began as a statistical analysis system in the late 1960's growing out of a project in the Department of Experimental Statistics at North Carolina State University. The SAS Institute was founded in 1976. Since that time, the SAS System has expanded to become an evolving system for complete data management and analysis. Among the products making up the SAS System are products for: management of large data bases; statistical analysis of time series; statistical analysis of most classical statistical problems, including multivariate analysis, linear models (as well as generalized linear models), and clustering; data visualization and plotting. A geographic information system is one of the products available in the system. The SAS System is available on PC and UNIX based platforms, as well as on mainframe computers. -
Sarajevo Business and Economics Review 38/2020 1
Sarajevo Business and Economics Review 38/2020 1 Sarajevo Business and Economics Review 38/2020 ZBORNIK RADOVA / SARAJEVO BUSINESS AND ECONOMICS REVIEW EKONOMSKI FAKULTET U SARAJEVU BROJ 38 Izdavač: Ekonomski fakultet Izdavačka djelatnost Glavni i odgovorni urednik: Dekan Prof. dr. Jasmina Selimović Redakcija Prof. dr. Elvir Čizmić, urednik Prof. dr. Jasmina Selimović, Doc. dr. Selena Begović, Prof. dr. Maja Arslanagić Kalajdžić, Doc. dr. Mirza Kršo, sekretar DTP: Anesa Vilić Sarajevo, 2020. ISSN CD ROM: 2303 - 8381 ISSN online izdanje: 2303 - 839X 2 Sarajevo Business and Economics Review 38/2020 SADRŽAJ/TABLE OF CONTENTS ORIGINALNI NAUČNI RADOVI/ORIGINAL PAPERS Analysis of the factor of savings of private profit enterprises in BiH by application of ECM methodology 9 Irma Đidelija, Rabija Somun Kapetanović Comparison of structural equation modelling and multiple regression techniques for moderation and mediation effect analysis 29 Lejla Turulja, Nijaz Bajgoric Examination of the impact of household income on expenditure on clothing and footwear in Bosnia and Herzegovina and Serbia 51 Hasan Hanić, Milica Bugarčić, Lejla Dacić Modelling the employment in Croatian hotel industry using the Box-Jenkins and the neural network approach 79 Tea Baldigara Share of adults who order goods or services online influenced by share of those with digital skills broken down by gender: cluster analysis across 97 European countries Ksenija Dumičić, Blagića Novkovska, Emina Resić PREGLEDNI NAUČNI RADOVI/REVIEW PAPERS Foreign direct investments in Western Balkan -
STAT 3304/5304 Introduction to Statistical Computing
STAT 3304/5304 Introduction to Statistical Computing Statistical Packages Some Statistical Packages • BMDP • GLIM • HIL • JMP • LISREL • MATLAB • MINITAB 1 Some Statistical Packages • R • S-PLUS • SAS • SPSS • STATA • STATISTICA • STATXACT • . and many more 2 BMDP • BMDP is a comprehensive library of statistical routines from simple data description to advanced multivariate analysis, and is backed by extensive documentation. • Each individual BMDP sub-program is based on the most competitive algorithms available and has been rigorously field-tested. • BMDP has been known for the quality of it’s programs such as Survival Analysis, Logistic Regression, Time Series, ANOVA and many more. • The BMDP vendor was purchased by SPSS Inc. of Chicago in 1995. SPSS Inc. has stopped all develop- ment work on BMDP, choosing to incorporate some of its capabilities into other products, primarily SY- STAT, instead of providing further updates to the BMDP product. • BMDP is now developed by Statistical Solutions and the latest version (BMDP 2009) features a new mod- ern user-interface with all the statistical functionality of the classic program, running in the latest MS Win- dows environments. 3 LISREL • LISREL is software for confirmatory factor analysis and structural equation modeling. • LISREL is particularly designed to accommodate models that include latent variables, measurement errors in both dependent and independent variables, reciprocal causation, simultaneity, and interdependence. • Vendor information: Scientific Software International http://www.ssicentral.com/ 4 MATLAB • Matlab is an interactive, matrix-based language for technical computing, which allows easy implementation of statistical algorithms and numerical simulations. • Highlights of Matlab include the number of toolboxes (collections of programs to address specific sets of problems) available. -
Peer Institution Research: Recommendations and Trends 2016
Peer Institution Research: Recommendations and Trends 2016 New Mexico State University Abstract This report evaluates the common technology services from New Mexico State University’s 15 peer institutions. Based on the findings, a summary of recommendations and trends are explained within each of the general areas researched: peer institution enrollment, technology fees, student computing, software, help desk services, classroom technology, equipment checkout and loan programs, committees and governing bodies on technology, student and faculty support, printing, emerging technologies and trends, homepage look & feel and ease of navigation, UNM and UTEP my.nmsu.edu comparison, top IT issues, and IT organization charts. Peer Institution Research 1 Table of Contents Peer Institution Enrollment ................................................................................. 3 Technology Fees ................................................................................................. 3 Student Computing ............................................................................................. 6 Software ............................................................................................................. 8 Help Desk Services .............................................................................................. 9 Classroom Technology ...................................................................................... 11 Equipment Checkout and Loan Programs ......................................................... -
Insight MFR By
Manufacturers, Publishers and Suppliers by Product Category 11/6/2017 10/100 Hubs & Switches ASCEND COMMUNICATIONS CIS SECURE COMPUTING INC DIGIUM GEAR HEAD 1 TRIPPLITE ASUS Cisco Press D‐LINK SYSTEMS GEFEN 1VISION SOFTWARE ATEN TECHNOLOGY CISCO SYSTEMS DUALCOMM TECHNOLOGY, INC. GEIST 3COM ATLAS SOUND CLEAR CUBE DYCONN GEOVISION INC. 4XEM CORP. ATLONA CLEARSOUNDS DYNEX PRODUCTS GIGAFAST 8E6 TECHNOLOGIES ATTO TECHNOLOGY CNET TECHNOLOGY EATON GIGAMON SYSTEMS LLC AAXEON TECHNOLOGIES LLC. AUDIOCODES, INC. CODE GREEN NETWORKS E‐CORPORATEGIFTS.COM, INC. GLOBAL MARKETING ACCELL AUDIOVOX CODI INC EDGECORE GOLDENRAM ACCELLION AVAYA COMMAND COMMUNICATIONS EDITSHARE LLC GREAT BAY SOFTWARE INC. ACER AMERICA AVENVIEW CORP COMMUNICATION DEVICES INC. EMC GRIFFIN TECHNOLOGY ACTI CORPORATION AVOCENT COMNET ENDACE USA H3C Technology ADAPTEC AVOCENT‐EMERSON COMPELLENT ENGENIUS HALL RESEARCH ADC KENTROX AVTECH CORPORATION COMPREHENSIVE CABLE ENTERASYS NETWORKS HAVIS SHIELD ADC TELECOMMUNICATIONS AXIOM MEMORY COMPU‐CALL, INC EPIPHAN SYSTEMS HAWKING TECHNOLOGY ADDERTECHNOLOGY AXIS COMMUNICATIONS COMPUTER LAB EQUINOX SYSTEMS HERITAGE TRAVELWARE ADD‐ON COMPUTER PERIPHERALS AZIO CORPORATION COMPUTERLINKS ETHERNET DIRECT HEWLETT PACKARD ENTERPRISE ADDON STORE B & B ELECTRONICS COMTROL ETHERWAN HIKVISION DIGITAL TECHNOLOGY CO. LT ADESSO BELDEN CONNECTGEAR EVANS CONSOLES HITACHI ADTRAN BELKIN COMPONENTS CONNECTPRO EVGA.COM HITACHI DATA SYSTEMS ADVANTECH AUTOMATION CORP. BIDUL & CO CONSTANT TECHNOLOGIES INC Exablaze HOO TOO INC AEROHIVE NETWORKS BLACK BOX COOL GEAR EXACQ TECHNOLOGIES INC HP AJA VIDEO SYSTEMS BLACKMAGIC DESIGN USA CP TECHNOLOGIES EXFO INC HP INC ALCATEL BLADE NETWORK TECHNOLOGIES CPS EXTREME NETWORKS HUAWEI ALCATEL LUCENT BLONDER TONGUE LABORATORIES CREATIVE LABS EXTRON HUAWEI SYMANTEC TECHNOLOGIES ALLIED TELESIS BLUE COAT SYSTEMS CRESTRON ELECTRONICS F5 NETWORKS IBM ALLOY COMPUTER PRODUCTS LLC BOSCH SECURITY CTC UNION TECHNOLOGIES CO FELLOWES ICOMTECH INC ALTINEX, INC. -
Ntroduction to Structural Equation Modeling Using the CALIS Procedure in SAS/STAT® Software
Introduction to Structural Equation Modeling Using the CALIS Procedure in SAS/STAT® Software Yiu-Fai Yung Senior Research Statistician SAS Institute Inc. Cary, NC 27513 USA Computer technology workshop (CE_25T) presented at the JSM 2010 on August 4, 2010, Vancouver, Canada. Email: [email protected] SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are registered trademarks or trademarks of their respective companies. Copyright © 2010 SAS Institute Inc. All rights reserved. Abstract The CALIS procedure in SAS/STAT is a general structural equation modeling (SEM) tool. This workshop introduces the general methodology of SEM and the applications of the CALIS procedure. Historical topics such as casual models, path diagram, confirmatory factor‐analysis, measurement error model, and linear structural relations (LISREL) are reviewed. Applications of the CALIS procedure to SEM are demonstrated with examples in social, educational, behavioral, and marketing research. Specifically, the following how‐to techniques of the CALIS procedure (SAS/STAT 9.22) are covered: (1) Specifying structural equation models with latent variables by using the PATH modeling language; (2) Interpreting the model fit statistics and estimation results; (3) Testing models with multiple groups and multiple models; (4) Analyzing direct and indirect effects; (5) Modifying structural equation models. This workshop is designed for statisticians and data analysts who want to overview the applications of the SEM by the CALIS procedure. Attendees should have a basic understanding of regression analysis and experience using the SAS language. -
Statistical Softwares: Introduction Team Maarten Jansen 1
Statistical softwares: introduction Team Maarten Jansen 1. Maarten Jansen and Toufik Zahaf 2. Teaching assistant: Bastien Marquis http://homepages.ulb.ac.be/˜majansen/teaching/STAT-F-413/ c Maarten Jansen STAT-F-413 — Statistical softwares: introduction p.1 Objectives Forbidden data • Retrieve and analyse your own real data Not allowed: • Use at least two different software systems and two different types of analyses (typ- • Time series: time dependence of your data is allowed (longitudinal), but ically ANOVA and regression, but others are equally welcome: principle component analysis etc.) time must not be the dominant explanatory variable • Find your data • Birth weights of babies 1. at a company, hospital, banks, insurance company: this option is by far the best. If you get data, then also try to get to know what sort of business questions the company/organization is trying to answer: use the data to respond to the questions. 2. Otherwise (but less preferable) on the internet, e.g.: government data (such as statbel.gov.be) This option has the drawback that it is harder to be original and harder to focus on specific business questions. The data should be original, in the sense that they must not be popular in scien- tific papers or textbooks as illustration of a method. – Number of births per communality – Macro-economical data; per country, european, regional, provinces etc. – Socio-economical data c Maarten Jansen STAT-F-413 — Statistical softwares: introduction p.2 c Maarten Jansen STAT-F-413 — Statistical softwares: introduction p.3 Why not time-series Note on the data size: large enough..