Diplomarbeit
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morinagadepsin, a Depsipeptide from the Fungus Morinagamyces Vermicularis Gen. Et Comb. Nov
microorganisms Article Morinagadepsin, a Depsipeptide from the Fungus Morinagamyces vermicularis gen. et comb. nov. Karen Harms 1,2 , Frank Surup 1,2,* , Marc Stadler 1,2 , Alberto Miguel Stchigel 3 and Yasmina Marin-Felix 1,* 1 Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; [email protected] (K.H.); [email protected] (M.S.) 2 Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany 3 Mycology Unit, Medical School and IISPV, Universitat Rovira i Virgili, C/ Sant Llorenç 21, 43201 Reus, Tarragona, Spain; [email protected] * Correspondence: [email protected] (F.S.); [email protected] (Y.M.-F.) Abstract: The new genus Morinagamyces is introduced herein to accommodate the fungus Apiosordaria vermicularis as inferred from a phylogenetic study based on sequences of the internal transcribed spacer region (ITS), the nuclear rDNA large subunit (LSU), and partial fragments of ribosomal polymerase II subunit 2 (rpb2) and β-tubulin (tub2) genes. Morinagamyces vermicularis was analyzed for the production of secondary metabolites, resulting in the isolation of a new depsipeptide named morinagadepsin (1), and the already known chaetone B (3). While the planar structure of 1 was elucidated by extensive 1D- and 2D-NMR analysis and high-resolution mass spectrometry, the absolute configuration of the building blocks Ala, Val, and Leu was determined as -L by Marfey’s method. The configuration of the 3-hydroxy-2-methyldecanyl unit was assigned as 22R,23R by Citation: Harms, K.; Surup, F.; Stadler, M.; Stchigel, A.M.; J-based configuration analysis and Mosher’s method after partial hydrolysis of the morinagadepsin Marin-Felix, Y. -
Fungal Allergy and Pathogenicity 20130415 112934.Pdf
Fungal Allergy and Pathogenicity Chemical Immunology Vol. 81 Series Editors Luciano Adorini, Milan Ken-ichi Arai, Tokyo Claudia Berek, Berlin Anne-Marie Schmitt-Verhulst, Marseille Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Fungal Allergy and Pathogenicity Volume Editors Michael Breitenbach, Salzburg Reto Crameri, Davos Samuel B. Lehrer, New Orleans, La. 48 figures, 11 in color and 22 tables, 2002 Basel · Freiburg · Paris · London · New York · New Delhi · Bangkok · Singapore · Tokyo · Sydney Chemical Immunology Formerly published as ‘Progress in Allergy’ (Founded 1939) Edited by Paul Kallos 1939–1988, Byron H. Waksman 1962–2002 Michael Breitenbach Professor, Department of Genetics and General Biology, University of Salzburg, Salzburg Reto Crameri Professor, Swiss Institute of Allergy and Asthma Research (SIAF), Davos Samuel B. Lehrer Professor, Clinical Immunology and Allergy, Tulane University School of Medicine, New Orleans, LA Bibliographic Indices. This publication is listed in bibliographic services, including Current Contents® and Index Medicus. Drug Dosage. The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any change in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means electronic or mechanical, including photocopying, recording, microcopy- ing, or by any information storage and retrieval system, without permission in writing from the publisher. -
Aboveground Deadwood Deposition Supports Development of Soil Yeasts
Diversity 2012, 4, 453-474; doi:10.3390/d4040453 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article Aboveground Deadwood Deposition Supports Development of Soil Yeasts Andrey Yurkov 1,*, Thorsten Wehde 2, Tiemo Kahl 3 and Dominik Begerow 2 1 Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany 2 Department of Evolution and Biodiversity of Plants, Faculty of Biology and Biotechnology, Ruhr- Universität Bochum, Universitätsstraße 150, 44780 Bochum, Germany; E-Mails: [email protected] (T.W.); [email protected] (D.B.) 3 Institute of Silviculture, University of Freiburg, Tennenbacherstraße 4, 79085 Freiburg, Germany; E-Mail: [email protected] (T.K.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-531-2616-239; Fax: +49-531-2616-418. Received: 16 October 2012; in revised form: 27 November 2012 / Accepted: 4 December 2012 / Published: 10 December 2012 Abstract: Unicellular saprobic fungi (yeasts) inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil- borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. -
Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two
(topsheet) Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113. Fieldiana, Botany H. Thorsten Lumbsch Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7881 fax: 312-665-7158 e-mail: [email protected] Sabine M. Huhndorf Dept. of Botany Field Museum 1400 S. Lake Shore Dr. Chicago, IL 60605 (312) 665-7855 fax: 312-665-7158 e-mail: [email protected] 1 (cover page) FIELDIANA Botany NEW SERIES NO 00 Myconet Volume 14 Part One. Outine of Ascomycota – 2009 Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 H. Thorsten Lumbsch Sabine M. Huhndorf [Date] Publication 0000 PUBLISHED BY THE FIELD MUSEUM OF NATURAL HISTORY 2 Table of Contents Abstract Part One. Outline of Ascomycota - 2009 Introduction Literature Cited Index to Ascomycota Subphylum Taphrinomycotina Class Neolectomycetes Class Pneumocystidomycetes Class Schizosaccharomycetes Class Taphrinomycetes Subphylum Saccharomycotina Class Saccharomycetes Subphylum Pezizomycotina Class Arthoniomycetes Class Dothideomycetes Subclass Dothideomycetidae Subclass Pleosporomycetidae Dothideomycetes incertae sedis: orders, families, genera Class Eurotiomycetes Subclass Chaetothyriomycetidae Subclass Eurotiomycetidae Subclass Mycocaliciomycetidae Class Geoglossomycetes Class Laboulbeniomycetes Class Lecanoromycetes Subclass Acarosporomycetidae Subclass Lecanoromycetidae Subclass Ostropomycetidae 3 Lecanoromycetes incertae sedis: orders, genera Class Leotiomycetes Leotiomycetes incertae sedis: families, genera Class Lichinomycetes Class Orbiliomycetes Class Pezizomycetes Class Sordariomycetes Subclass Hypocreomycetidae Subclass Sordariomycetidae Subclass Xylariomycetidae Sordariomycetes incertae sedis: orders, families, genera Pezizomycotina incertae sedis: orders, families Part Two. Notes on ascomycete systematics. Nos. 4751 – 5113 Introduction Literature Cited 4 Abstract Part One presents the current classification that includes all accepted genera and higher taxa above the generic level in the phylum Ascomycota. -
Towards an Integrated Phylogenetic Classification of the Tremellomycetes
http://www.diva-portal.org This is the published version of a paper published in Studies in mycology. Citation for the original published paper (version of record): Liu, X., Wang, Q., Göker, M., Groenewald, M., Kachalkin, A. et al. (2016) Towards an integrated phylogenetic classification of the Tremellomycetes. Studies in mycology, 81: 85 http://dx.doi.org/10.1016/j.simyco.2015.12.001 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-1703 available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 81: 85–147. Towards an integrated phylogenetic classification of the Tremellomycetes X.-Z. Liu1,2, Q.-M. Wang1,2, M. Göker3, M. Groenewald2, A.V. Kachalkin4, H.T. Lumbsch5, A.M. Millanes6, M. Wedin7, A.M. Yurkov3, T. Boekhout1,2,8*, and F.-Y. Bai1,2* 1State Key Laboratory for Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China; 2CBS Fungal Biodiversity Centre (CBS-KNAW), Uppsalalaan 8, Utrecht, The Netherlands; 3Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig 38124, Germany; 4Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia; 5Science & Education, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605, USA; 6Departamento de Biología y Geología, Física y Química Inorganica, Universidad Rey Juan Carlos, E-28933 Mostoles, Spain; 7Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden; 8Shanghai Key Laboratory of Molecular Medical Mycology, Changzheng Hospital, Second Military Medical University, Shanghai, PR China *Correspondence: F.-Y. -
12 Tremellomycetes and Related Groups
12 Tremellomycetes and Related Groups 1 1 2 1 MICHAEL WEIß ,ROBERT BAUER ,JOSE´ PAULO SAMPAIO ,FRANZ OBERWINKLER CONTENTS I. Introduction I. Introduction ................................ 00 A. Historical Concepts. ................. 00 Tremellomycetes is a fungal group full of con- B. Modern View . ........................... 00 II. Morphology and Anatomy ................. 00 trasts. It includes jelly fungi with conspicuous A. Basidiocarps . ........................... 00 macroscopic basidiomes, such as some species B. Micromorphology . ................. 00 of Tremella, as well as macroscopically invisible C. Ultrastructure. ........................... 00 inhabitants of other fungal fruiting bodies and III. Life Cycles................................... 00 a plethora of species known so far only as A. Dimorphism . ........................... 00 B. Deviance from Dimorphism . ....... 00 asexual yeasts. Tremellomycetes may be benefi- IV. Ecology ...................................... 00 cial to humans, as exemplified by the produc- A. Mycoparasitism. ................. 00 tion of edible Tremella fruiting bodies whose B. Tremellomycetous Yeasts . ....... 00 production increased in China alone from 100 C. Animal and Human Pathogens . ....... 00 MT in 1998 to more than 250,000 MT in 2007 V. Biotechnological Applications ............. 00 VI. Phylogenetic Relationships ................ 00 (Chang and Wasser 2012), or extremely harm- VII. Taxonomy................................... 00 ful, such as the systemic human pathogen Cryp- A. Taxonomy in Flow -
AR TICLE Are Alkalitolerant Fungi of the Emericellopsis Lineage
IMA FUNGUS · VOLUME 4 · NO 2: 213–228 I#JKK$'LNJ#*JPJNJ Are alkalitolerant fungi of the Emericellopsis lineage (Bionectriaceae) of ARTICLE marine origin? ;6;`?`G14+`2, Alfons J.M. Debets1, and Elena N. Bilanenko3 1+ ` ~ " ` _ # J'~x @ |> ?I6G 2`|;;4"##$JN#4 3<x+4"_#?#N+`##$N*P4 Abstract: Surveying the fungi of alkaline soils in Siberia, Trans-Baikal regions (Russia), the Aral lake (Kazakhstan), Key words: and Eastern Mongolia, we report an abundance of alkalitolerant species representing the Emericellopsis-clade Acremonium within the Acremonium cluster of fungi (order Hypocreales). On an alkaline medium (pH ca. 10), 34 acremonium-like Emericellopsis 6 alkaline soils of the genus Emericellopsis, described here as E. alkalina sp. nov. Previous studies showed two distinct ecological molecular phylogeny clades within Emericellopsis, one consisting of terrestrial isolates and one predominantly marine. Remarkably, all pH tolerance 6+"_""_|;~xN soda soils @<#?!?@"@ ?[ in the Emericellopsis lineage. We tested the capacities of all newly isolated strains, and the few available reference 6?@ showed differences in growth rate as well as in pH preference. Whereas every newly isolated strain from soda soils 6PM##N reference marine-borne and terrestrial strains showed moderate and no alkalitolerance, respectively. The growth pattern of the alkalitolerant Emericellopsis6 unrelated alkaliphilic Sodiomyces alkalinus, obtained from the same type of soils but which showed a narrower preference towards high pH. Article info:"IN¤NJ#*>;IN*NJ#*>~IK|NJ#* INTRODUCTION such as high osmotic pressures, low water potentials, and, Æ$ @ Alkaline soils (or soda soils) and soda lakes represent a unique so-called alkaliphiles, with a growth optimum at pH above environmental niche. -
Panelli Fungalecology 2017
Fungal Ecology 30 (2017) 1e9 Contents lists available at ScienceDirect Fungal Ecology journal homepage: www.elsevier.com/locate/funeco A metagenomic-based, cross-seasonal picture of fungal consortia associated with Italian soils subjected to different agricultural managements * Simona Panelli a, b, Enrica Capelli a, c, , Francesco Comandatore b, Angela Landinez-Torres a, d, Mirko Umberto Granata a, Solveig Tosi a, Anna Maria Picco a a Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata 7, 27100, Pavia, Italy b Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, University of Milan, Via G.B. Grassi 74, 20157, Milan, Italy c Centre for Health Technologies (C.H.T.), University of Pavia, Via Ferrata 1, 27100, Pavia, Italy d Fundacion Universitaria Juan de Castellanos, Carrera 11 No.11-40, Tunja, Boyaca, Colombia article info abstract Article history: This work pictures the biodiversity of fungal consortia inhabiting real agroecosystems, sampled in one Received 14 March 2017 production farm in two seasons (spring, autumn), coinciding with climate gradients and key moments of Received in revised form the agricultural cycle. Soil was sampled from three plots differently managed in terms of fertilization, 16 June 2017 pesticide and tillage application: conventional, organic, no-tillage. Metagenomic analyses on ITS1 Accepted 28 July 2017 amplicons depicted the highest indexes of richness for organic. No-tillage resulted in inhabitation by the most divergent communities, with their own composition, prevalence and seasonal trends. Ascomycota Corresponding Editor: Gareth W. Griffith. always predominated, with the exception of conventional, that had high abundance of a single basid- iomycete species. Our results showed evidence that agricultural soils under organic and no-tillage sys- Keywords: tems harbour distinct mycobiota, even in neighbouring fields. -
Leaf-Inhabiting Fungal Endophytes of F. Benjamina, F. Elastica, F. Religiosa
Leaf-inhabiting fungal endophytes of F. benjamina, F. elastica, F. religiosa from Philippine tropical forests and German botanical greenhouses - Assessment of diversity, community composition and bioprospecting perspective I n a u g u r a l d i s s e r t a t i o n zur Erlangung des akademischen Grades Doktors der Naturwissenschaften (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Michael Jay L. Solis geboren am 30.09.1976 in Bacolod City, Philippines Dekan: Prof. Dr. Werner Weitschies Gutachter:.........................................................PD. Dr. Martin Unterseher Gutachter:.........................................................Prof. Dr. Marc Stadler Tag der Promotion:................................08.04.2016 ......... PREFACE This cumulative dissertation is the culmination of many years of mycological interests conceived from both personal and professional experiences dating back from my youthful hobbies of fungal observations and now, a humble aspiration to begin a mycological journey to usher Philippine fungal endophyte ecology forward into present literature. This endeavour begun as a budding mycological idea, and together with the encouraging and insightful contributions from Dr. Martin Unterseher and Dr. Thomas dela Cruz, this has developed into what has become a successful 3-year PhD research work. The years of work efforts included interesting scientific consultations with botanical experts -
Ifeloju Dayo-Owoyemi Taxonomic Assessement and Biotechnological Potential of Yeasts Hold at the Unesp
PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (ÁREA: MICROBIOLOGIA APLICADA) IFELOJU DAYO-OWOYEMI TAXONOMIC ASSESSEMENT AND BIOTECHNOLOGICAL POTENTIAL OF YEASTS HOLD AT THE UNESP - CENTRAL FOR MICROBIAL RESOURCES Rio Claro 2012 TAXONOMIC ASSESSEMENT AND BIOTECHNOLOGICAL POTENTIAL OF YEASTS HOLD AT THE UNESP –CENTRAL FOR MICROBIAL RESOURCES IFELOJU DAYO-OWOYEMI Thesis presented to the Institute of Biosciences, Universidade Estadual Paulista ´´Julio de Mesquita Filho``- Rio Claro, in fulfilment of requirements for the award of Doctor of Philosophy in Biological Sciences (Applied Microbiology) Supervisor: Prof. Dr. Fernando Carlos Pagnocca Co-supervisor: Prof. Dr. André Rodrigues Rio Claro 2012 DEDICATION To the memory of my loving father, Victor Adedayo Owoyemi ´If I have seen further it is by standing on the shoulders of giants`` Sir Isaac Newton Acknowledgement Completing my PhD was a long and challenging task. Many people supported and encouraged me in so many different ways during the process; it is therefore my pleasure to thank those who helped to see my dream come true. First, I thank the Almighty God, the true source of wisdom and knowledge, for his immense love and infinite mercy towards me. ´´A man has gotten nothing except he be given from above``; I appreciate the rare door of opportunity He opened for me and also for the strength and inspiration given to me for the successful completion of this work. I thank my supervisor Prof. Dr. Fernando Carlos Pagnocca for the wonderful opportunity he gave me in his laboratory. I am grateful to him for believing in me. I appreciate the fatherly role he also played during my stay and studies. -
Chapter IV Results
38 Chapter IV Results 4.1 Torpedospora and Swampomyces Introduction The genus Torpedospora was first described on wood panels from marine habitats by Meyers in 1957. This genus is characterized by dark-colored, immersed or superficial ascomata, persistent or deliquescing paraphyses, thin-walled, clavate to ellipsoidal asci which deliquesce early, hyaline, and cylindrical or clavate ascospores, with several radiating appendages at one or both ends (Kohlmeyer and Kohlmeyer, 1979). The type species, Torpedospora radiata Meyers, has cylindrical or clavate, triseptate ascospores, with 3-5 radiating appendages at one end (Figure 3c, d). The other species, Torpedospora ambispinosa Kohlm., has cylindrical to elongate- ellipsoidal ascospores, that are triseptate and with 4-7 radiating subterminal appendages at both ends (Figure 3e-g). Torpedospora radiata is a cosmopolitan species, whereas T. ambispinosa has been reported in Denmark, Friday Harbor (USA) and Chile (Kohlmeyer, 1960; Kohlmeyer and Kohlmeyer, 1979; Jones, 1985; Shearer and Burgos, 1987; Koch and Peterson, 1996). 39 The taxonomic position of Torpedospora is unclear, and was not included in the Halosphaeriaceae by Kohlmeyer (1972) and Kohlmeyer and Kohlmeyer (1979) but rather referred to the Sphaeriales incertae sedis for the following morphological reasons: Torpedospora does not possess a central pseudoparenchymatous tissue within the centrum, paraphyses grow irregularly inside the ascoma venter and between the asci, and asci originating from a hymenial layer at the base of the centrum (Figure 3a, b). No paraphyses have been observed in the Halosphaeriales (Pang, 2002), and asci originally formed at the base of the ascomata (Kohlmeyer and Kohlmeyer, 1979). Although Torpedospora possesses unique appendaged ascospores, their ontogeny does not fall into any one of the ten types identified by Jones (1995). -
Classification of Aspergillus, Penicillium, Talaromyces and Related Genera (Eurotiales): an Overview of Families, Genera, Subgenera, Sections, Series and Species
Downloaded from orbit.dtu.dk on: Oct 09, 2021 Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species Houbraken, J.; Kocsubé, S.; Visagie, C. M.; Yilmaz, N.; Wang, X.-C.; Meijer, M.; Kraak, B.; Hubka, V.; Samson, R. A.; Frisvad, J. C. Published in: Studies in Mycology Link to article, DOI: 10.1016/j.simyco.2020.05.002 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Houbraken, J., Kocsubé, S., Visagie, C. M., Yilmaz, N., Wang, X-C., Meijer, M., Kraak, B., Hubka, V., Samson, R. A., & Frisvad, J. C. (2020). Classification of Aspergillus, Penicillium, Talaromyces and related genera (Eurotiales): An overview of families, genera, subgenera, sections, series and species. Studies in Mycology, 95, 5-169. https://doi.org/10.1016/j.simyco.2020.05.002 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.