Leaf-Inhabiting Fungal Endophytes of F. Benjamina, F. Elastica, F. Religiosa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Diverse Ecological Roles Within Fungal Communities in Decomposing Logs
FEMS Microbiology Ecology, 91, 2015, fiv012 doi: 10.1093/femsec/fiv012 Advance Access Publication Date: 6 February 2015 Research Article RESEARCH ARTICLE Diverse ecological roles within fungal communities Downloaded from https://academic.oup.com/femsec/article-abstract/91/3/fiv012/436629 by guest on 06 August 2020 in decomposing logs of Picea abies Elisabet Ottosson1, Ariana Kubartova´ 1, Mattias Edman2,MariJonsson¨ 3, Anders Lindhe4, Jan Stenlid1 and Anders Dahlberg1,∗ 1Department of Forest Mycology and Plant Pathology, BioCenter, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden, 2Department of Natural Sciences, Mid Sweden University, SE-851 70 Sundsvall, Sweden, 3Swedish Species Information Centre, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden and 4Armfeltsgatan 16, SE-115 34 Stockholm, Sweden ∗ Corresponding author: Department of Forest Mycology and Plant Pathology, BioCenter, Swedish University of Agricultural Sciences, Uppsala SE-750 07, Sweden. Tel: +46-70-3502745; E-mail: [email protected] One sentence summary: A Swedish DNA-barcoding study revealed 1910 fungal species in 38 logs of Norway spruce and not only wood decayers but also many mycorrhizal, parasitic other saprotrophic species. Editor: Ian C Anderson ABSTRACT Fungal communities in Norway spruce (Picea abies) logs in two forests in Sweden were investigated by 454-sequence analyses and by examining the ecological roles of the detected taxa. We also investigated the relationship between fruit bodies and mycelia in wood and whether community assembly was affected by how the dead wood was formed. Fungal communities were highly variable in terms of phylogenetic composition and ecological roles: 1910 fungal operational taxonomic units (OTUs) were detected; 21% were identified to species level. -
Phylogenetic Investigations of Sordariaceae Based on Multiple Gene Sequences and Morphology
mycological research 110 (2006) 137– 150 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres Phylogenetic investigations of Sordariaceae based on multiple gene sequences and morphology Lei CAI*, Rajesh JEEWON, Kevin D. HYDE Centre for Research in Fungal Diversity, Department of Ecology & Biodiversity, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China article info abstract Article history: The family Sordariaceae incorporates a number of fungi that are excellent model organisms Received 10 May 2005 for various biological, biochemical, ecological, genetic and evolutionary studies. To deter- Received in revised form mine the evolutionary relationships within this group and their respective phylogenetic 19 August 2005 placements, multiple-gene sequences (partial nuclear 28S ribosomal DNA, nuclear ITS ribo- Accepted 29 September 2005 somal DNA and partial nuclear b-tubulin) were analysed using maximum parsimony and Corresponding Editor: H. Thorsten Bayesian analyses. Analyses of different gene datasets were performed individually and Lumbsch then combined to generate phylogenies. We report that Sordariaceae, with the exclusion Apodus and Diplogelasinospora, is a monophyletic group. Apodus and Diplogelasinospora are Keywords: related to Lasiosphaeriaceae. Multiple gene analyses suggest that the spore sheath is not Ascomycota a phylogenetically significant character to segregate Asordaria from Sordaria. Smooth- Gelasinospora spored Sordaria species (including so-called Asordaria species) constitute a natural group. Neurospora Asordaria is therefore congeneric with Sordaria. Anixiella species nested among Gelasinospora Sordaria species, providing further evidence that non-ostiolate ascomata have evolved from ostio- late ascomata on several independent occasions. This study agrees with previous studies that show heterothallic Neurospora species to be monophyletic, but that homothallic ones may have a multiple origins. -
Molecular Mechanisms of Sexual Reproduction in the Order Cystofilobasidiales
Alexandra Sofia Rodrigues Cabrita Licenciada em Biologia Celular e Molecular Molecular Mechanisms of Sexual Reproduction in the Order Cystofilobasidiales Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina Orientadora: Professora Doutora Paula Gonçalves, Universidade Nova de Lisboa Co-orientador: Doutor Marco Coelho, Universidade Nova de Lisboa Júri: Presidente: Professora Doutora Margarida Casal Ribeiro Castro Caldas Braga Arguente: Doutora Maria Teresa Proença Mendes Maia Vogal: Professora Doutora Paula Maria Theriaga Mendes Bernardo Gonçalves Novembro, 2018 Alexandra Sofia Rodrigues Cabrita Licenciada em Biologia Celular e Molecular Molecular Mechanisms of Sexual Reproduction in the Order Cystofilobasidiales Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina Orientadora: Professora Doutora Paula Gonçalves, Universidade Nova de Lisboa Co-orientador: Doutor Marco Coelho, Universidade Nova de Lisboa Júri: Presidente: Professora Doutora Margarida Casal Ribeiro Castro Caldas Braga Arguente: Doutora Maria Teresa Proença Mendes Maia Vogal: Professora Doutora Paula Maria Theriaga Mendes Bernardo Gonçalves Novembro, 2018 Molecular Mechanisms of Sexual Reproduction in the Order Cystofilobasidiales Copyright Alexandra Sofia Rodrigues Cabrita, FCT/UNL, UNL A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. ii Acknowledgments First, I would like to thank my supervisor, Professor Paula Gonçalves, for having hosted me in the Yeast Genomics lab and for all the help and support throughout this year. -
A New Species of Antrodia (Basidiomycota, Polypores) from China
Mycosphere 8(7): 878–885 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/7/4 Copyright © Guizhou Academy of Agricultural Sciences A new species of Antrodia (Basidiomycota, Polypores) from China Chen YY, Wu F* Institute of Microbiology, Beijing Forestry University, Beijing 100083, China Chen YY, Wu F 2017 –A new species of Antrodia (Basidiomycota, Polypores) from China. Mycosphere 8(7), 878–885, Doi 10.5943/mycosphere/8/7/4 Abstract A new species, Antrodia monomitica sp. nov., is described and illustrated from China based on morphological characters and molecular evidence. It is characterized by producing annual, fragile and nodulose basidiomata, a monomitic hyphal system with clamp connections on generative hyphae, hyaline, thin-walled and fusiform to mango-shaped basidiospores (6–7.5 × 2.3– 3 µm), and causing a typical brown rot. In phylogenetic analysis inferred from ITS and nLSU rDNA sequences, the new species forms a distinct lineage in the Antrodia s. l., and has a close relationship with A. oleracea. Key words – Fomitopsidaceae – phylogenetic analysis – taxonomy – wood-decaying fungi Introduction Antrodia P. Karst., typified with Polyporus serpens Fr. (=Antrodia albida (Fr.) Donk (Donk 1960, Ryvarden 1991), is characterized by a resupinate to effused-reflexed growth habit, white or pale colour of the context, a dimitic hyphal system with clamp connections on generative hyphae, hyaline, thin-walled, cylindrical to very narrow ellipsoid basidiospores which are negative in Melzer’s reagent and Cotton Blue, and causing a brown rot (Ryvarden & Melo 2014). Antrodia is a highly heterogeneous genus which is closely related to Fomitopsis P. -
A Phylogenetic Overview of the Antrodia Clade (Basidiomycota, Polyporales)
Mycologia, 105(6), 2013, pp. 1391–1411. DOI: 10.3852/13-051 # 2013 by The Mycological Society of America, Lawrence, KS 66044-8897 A phylogenetic overview of the antrodia clade (Basidiomycota, Polyporales) Beatriz Ortiz-Santana1 phylogenetic studies also have recognized the genera Daniel L. Lindner Amylocystis, Dacryobolus, Melanoporia, Pycnoporellus, US Forest Service, Northern Research Station, Center for Sarcoporia and Wolfiporia as part of the antrodia clade Forest Mycology Research, One Gifford Pinchot Drive, (SY Kim and Jung 2000, 2001; Binder and Hibbett Madison, Wisconsin 53726 2002; Hibbett and Binder 2002; SY Kim et al. 2003; Otto Miettinen Binder et al. 2005), while the genera Antrodia, Botanical Museum, University of Helsinki, PO Box 7, Daedalea, Fomitopsis, Laetiporus and Sparassis have 00014, Helsinki, Finland received attention in regard to species delimitation (SY Kim et al. 2001, 2003; KM Kim et al. 2005, 2007; Alfredo Justo Desjardin et al. 2004; Wang et al. 2004; Wu et al. 2004; David S. Hibbett Dai et al. 2006; Blanco-Dios et al. 2006; Chiu 2007; Clark University, Biology Department, 950 Main Street, Worcester, Massachusetts 01610 Lindner and Banik 2008; Yu et al. 2010; Banik et al. 2010, 2012; Garcia-Sandoval et al. 2011; Lindner et al. 2011; Rajchenberg et al. 2011; Zhou and Wei 2012; Abstract: Phylogenetic relationships among mem- Bernicchia et al. 2012; Spirin et al. 2012, 2013). These bers of the antrodia clade were investigated with studies also established that some of the genera are molecular data from two nuclear ribosomal DNA not monophyletic and several modifications have regions, LSU and ITS. A total of 123 species been proposed: the segregation of Antrodia s.l. -
Multi-Gene Phylogeny of Jattaea Bruguierae, a Novel Asexual Morph from Bruguiera Cylindrica
Studies in Fungi 2 (1): 235–245 (2017) www.studiesinfungi.org ISSN 2465-4973 Article Doi 10.5943/sif/ 2/1/27 Copyright © Mushroom Research Foundation Multi-gene phylogeny of Jattaea bruguierae, a novel asexual morph from Bruguiera cylindrica Dayarathne MC1,2, Abeywickrama P1,2,3, Jones EBG4, Bhat DJ5,6, Chomnunti P1,2 and Hyde KD2,3,4 1 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand. 2 School of Science, Mae Fah Luang University, Chiang Rai57100, Thailand. 3 Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences. 4 Department of Botany and Microbiology, King Saudi University, Riyadh, Saudi Arabia. 5 No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha 403108, India. 6 Formerly, Department of Botany, Goa University, Goa 403 206, India. Dayarathne MC, Abeywickrama P, Jones EBG, Bhat DJ, Chomnunti P, Hyde KD 2017 – Multi- gene phylogeny of Jattaea bruguierae, a novel asexual morph from Bruguiera cylindrica. Studies in Fungi 2(1), 235–245, Doi 10.5943/sif/2/1/27 Abstract During our survey on marine-based ascomycetes of southern Thailand, fallen mangrove twigs were collected from the intertidal zones. Those specimens yielded a novel asexual morph of Jattaea (Calosphaeriaceae, Calosphaeriales), Jattaea bruguierae, which is confirmed as a new species by morphological characteristics such as nature and measurements of conidia and conidiophores, as well as a multigene analysis based on combined LSU, SSU, ITS and β-tubulin sequence data. Jattaea species are abundantly found from wood in terrestrial environments, while the asexual morphs are mostly reported from axenic cultures. -
Epiphytic Seed Microbiomes of Wheat, Canola, and Lentil
EPIPHYTIC SEED MICROBIOMES OF WHEAT, CANOLA, AND LENTIL A Thesis Submitted to the College of Graduate and Postdoctoral Studies In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Food and Bioproduct Sciences University of Saskatchewan Saskatoon By Zayda Piedad Morales Moreira © Copyright Zayda Piedad Morales Moreira, June, 2021. All rights reserved. Unless otherwise noted, copyright of the material in this thesis belongs to the author PERMISSION TO USE In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying, publication, or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Food and Bioproduct Sciences University of Saskatchewan 51 Campus Drive University of Saskatchewan Saskatoon, Saskatchewan, S7N 5A8 Canada OR Dean of the College of Graduate and Postdoctoral Studies University of Saskatchewan 107 Administration Place Saskatoon, Saskatchewan S7N 5A2 Canada i ABSTRACT Microorganisms are found colonizing all plant organs including seeds. -
Redalyc.Assessment of Non-Cultured Aquatic Fungal Diversity from Differenthabitats in Mexico
Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México Valderrama, Brenda; Paredes-Valdez, Guadalupe; Rodríguez, Rocío; Romero-Guido, Cynthia; Martínez, Fernando; Martínez-Romero, Julio; Guerrero-Galván, Saúl; Mendoza- Herrera, Alberto; Folch-Mallol, Jorge Luis Assessment of non-cultured aquatic fungal diversity from differenthabitats in Mexico Revista Mexicana de Biodiversidad, vol. 87, núm. 1, marzo, 2016, pp. 18-28 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42546734003 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Available online at www.sciencedirect.com Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 87 (2016) 18–28 www.ib.unam.mx/revista/ Taxonomy and systematics Assessment of non-cultured aquatic fungal diversity from different habitats in Mexico Estimación de la diversidad de hongos acuáticos no-cultivables de diferentes hábitats en México a a b b Brenda Valderrama , Guadalupe Paredes-Valdez , Rocío Rodríguez , Cynthia Romero-Guido , b c d Fernando Martínez , Julio Martínez-Romero , Saúl Guerrero-Galván , e b,∗ Alberto Mendoza-Herrera , Jorge Luis Folch-Mallol a Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos, Mexico b Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Col. Chamilpa, 62209 Cuernavaca, Morelos, Mexico c Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Avenida Universidad s/n, Col. -
Udeniomyces Kanasensis Sp. Nov., a Ballistoconidium-Forming Yeast Species in the Cystofilobasidiales
Antonie van Leeuwenhoek (2012) 102:45–51 DOI 10.1007/s10482-012-9711-5 ORIGINAL PAPER Udeniomyces kanasensis sp. nov., a ballistoconidium-forming yeast species in the Cystofilobasidiales Pei-Jie Han • Jun-Zhi Qiu • Qi-Ming Wang • Feng-Yan Bai Received: 10 November 2011 / Accepted: 4 February 2012 / Published online: 22 February 2012 Ó Springer Science+Business Media B.V. 2012 Abstract In a survey of ballistoconidium-forming Abbreviation yeast diversity in the phyllosphere, five strains from ITS Internal transcribed spacer wilting plant leaves collected from Kanas Nature Reserve in Xinjiang province, China were selected based on morphological comparison. These strains Introduction formed pinkish-white colonies and large bilaterally symmetrical ballistoconidia. Molecular phylogenetic The genus Udeniomyces was proposed for threes analyses based on the 26S rRNA D1/D2 domain and species, Udeniomyces megalosporus, Udeniomyces pu- ITS region sequences showed that these strains niceus and Udeniomyces pyricola (Nakase and Tak- belonged to the Udeniomyces clade in the Cystofi- ematsu 1992), which were classified previously in the lobasidiales. They differ from the described Udeni- ‘pyricola group’ of the genus Bullera (Nakase 1987)and omyces species significantly in the rRNA sequences as characterized by forming large bilaterally symmetrical well as physiological criteria. Therefore, a new species ballistoconidia and pinkish-white to pale pink colonies Udeniomyces kanasensis sp. nov. (type strain XJ (Nakase 1989). Niwata et al. (2002)describedUdeni- 6E2T=CGMCC 2.02627 T=CBS 12488 T) is proposed omyces pannonicus on the basis of its morphological to accommodate these strains. The MycoBank number and chemotaxonomic characteristics. However, this of the new species is MB 563659. -
Relationships Between Wood-Inhabiting Fungal Species
Silva Fennica 45(5) research articles SILVA FENNICA www.metla.fi/silvafennica · ISSN 0037-5330 The Finnish Society of Forest Science · The Finnish Forest Research Institute Relationships between Wood-Inhabiting Fungal Species Richness and Habitat Variables in Old-Growth Forest Stands in the Pallas-Yllästunturi National Park, Northern Boreal Finland Inari Ylläsjärvi, Håkan Berglund and Timo Kuuluvainen Ylläsjärvi, I., Berglund, H. & Kuuluvainen, T. 2011. Relationships between wood-inhabiting fungal species richness and habitat variables in old-growth forest stands in the Pallas-Yllästunturi National Park, northern boreal Finland. Silva Fennica 45(5): 995–1013. Indicators for biodiversity are needed for efficient prioritization of forests selected for conservation. We analyzed the relationships between 86 wood-inhabiting fungal (polypore) species richness and 35 habitat variables in 81 northern boreal old-growth forest stands in Finland. Species richness and the number of red-listed species were analyzed separately using generalized linear models. Most species were infrequent in the studied landscape and no species was encountered in all stands. The species richness increased with 1) the volume of coarse woody debris (CWD), 2) the mean DBH of CWD and 3) the basal area of living trees. The number of red-listed species increased along the same gradients, but the effect of basal area was not significant. Polypore species richness was significantly lower on western slopes than on flat topography. On average, species richness was higher on northern and eastern slopes than on western and southern slopes. The results suggest that a combination of habitat variables used as indicators may be useful in selecting forest stands to be set aside for polypore species conservation. -
Phylogenetic Reconstruction of the Calosphaeriales and Togniniales Using Five Genes and Predicted RNA Secondary Structures of ITS, and Flabellascus Tenuirostris Gen
RESEARCH ARTICLE Phylogenetic Reconstruction of the Calosphaeriales and Togniniales Using Five Genes and Predicted RNA Secondary Structures of ITS, and Flabellascus tenuirostris gen. et sp. nov. Martina Réblová1*, Walter M. Jaklitsch2,3, Kamila Réblová4,5, Václav Štěpánek6 1 Department of Taxonomy, Institute of Botany of the Academy of Sciences of the Czech Republic, Průhonice, Czech Republic, 2 Department of Forest and Soil Sciences, Forest Pathology and Forest Protection, Institute of Forest Entomology, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria, 3 Department of Botany and Biodiversity Research, Division of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria, 4 Faculty of Medicine, Masaryk University, Brno, Czech Republic, 5 Central European Institute of Technology, Masaryk University, Brno, Czech Republic, 6 Laboratory of Enzyme Technology, Institute of Microbiology of the Academy of Sciences of the Czech OPEN ACCESS Republic, Prague, Czech Republic Citation: Réblová M, Jaklitsch WM, Réblová K, * [email protected] Štěpánek V (2015) Phylogenetic Reconstruction of the Calosphaeriales and Togniniales Using Five Genes and Predicted RNA Secondary Structures of ITS, and Flabellascus tenuirostris gen. et sp. nov. Abstract PLoS ONE 10(12): e0144616. doi:10.1371/journal. pone.0144616 The Calosphaeriales is revisited with new collection data, living cultures, morphological studies of ascoma centrum, secondary structures of the internal transcribed spacer (ITS) Editor: Tamás Papp, University of Szeged, HUNGARY rDNA and phylogeny based on novel DNA sequences of five nuclear ribosomal and protein- coding loci. Morphological features, molecular evidence and information from predicted Received: September 9, 2015 RNA secondary structures of ITS converged upon robust phylogenies of the Calosphaer- Accepted: November 20, 2015 iales and Togniniales. -
Department of Plant Pathology
DEPARTMENT OF PLANT PATHOLOGY UNIVERSITY OF STELLENBOSCH RESEARCH OUTPUT PUBLICATIONS In scientific journals 1. Van Der Bijl, P.A. 1921. Additional host-plants of Loranthaceae occurring around Durban. South African Journal of Science 17: 185-186. 2. Van Der Bijl, P.A. 1921. Note on the I-Kowe or Natal kafir mushroom, Schulzeria Umkowaan. South African Journal of Science 17: 286-287. 3. Van Der Bijl, P.A. 1921. A paw-paw leaf spot caused by a Phyllosticta sp. South African Journal of Science 17: 288-290. 4. Van Der Bijl, P.A. 1921. South African Xylarias occurring around Durban, Natal. Transactions of the Royal Society of South Africa 9: 181-183, 1921. 5. Van Der Bijl, P.A. 1921. The genus Tulostoma in South Africa. Transactions of the Royal Society of South Africa 9: 185-186. 6. Van Der Bijl, P.A. 1921. On a fungus - Ovulariopsis Papayae, n. sp. - which causes powdery mildew on the leaves of the pawpaw plant (Carica papaya, Linn.). Transactions of the Royal Society of South Africa 9: 187-189. 7. Van Der Bijl, P.A. 1921. Note on Lysurus Woodii (MacOwan), Lloyd. Transactions of the Royal Society of South Africa 9: 191-193. 8. Van Der Bijl, P.A. 1921. Aantekenings op enige suikerriet-aangeleenthede. Journal of the Department of Agriculture, Union of South Africa 2: 122-128. 9. Van Der Bijl, P.A. 1922. On some fungi from the air of sugar mills and their economic importance to the sugar industry. South African Journal of Science 18: 232-233. 10. Van Der Bijl, P.A.