Insect Enemies of Dendroctonus Pseudotsugae Hopk
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Biodiversity of Flying Coleoptera Associated With
THE BIODIVERSITY OF FLYING COLEOPTERA ASSOCIATED WITH INTEGRATED PEST MANAGEMENT OF THE DOUGLAS-FIR BEETLE (Dendroctonus pseudotsugae Hopkins) IN INTERIOR DOUGLAS-FIR (Pseudotsuga menziesii Franco). By Susanna Lynn Carson B. Sc., The University of Victoria, 1994 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming To t(p^-feguired standard THE UNIVERSITY OF BRITISH COLUMBIA 2002 © Susanna Lynn Carson, 2002 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. 1 further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) Abstract Increasing forest management resulting from bark beetle attack in British Columbia's forests has created a need to assess the impact of single species management on local insect biodiversity. In the Fort St James Forest District, in central British Columbia, Douglas-fir (Pseudotsuga menziesii Franco) (Fd) grows at the northern limit of its North American range. At the district level the species is rare (representing 1% of timber stands), and in the early 1990's growing populations of the Douglas-fir beetle (Dendroctonus pseudotsuage Hopkins) threatened the loss of all mature Douglas-fir habitat in the district. -
Bark Beetles Integrated Pest Management for Home Gardeners and Landscape Professionals
BARK BEETLES Integrated Pest Management for Home Gardeners and Landscape Professionals Bark beetles, family Scolytidae, are California now has 20 invasive spe- common pests of conifers (such as cies of bark beetles, of which 10 spe- pines) and some attack broadleaf trees. cies have been discovered since 2002. Over 600 species occur in the United The biology of these new invaders is States and Canada with approximately poorly understood. For more informa- 200 in California alone. The most com- tion on these new species, including mon species infesting pines in urban illustrations to help you identify them, (actual size) landscapes and at the wildland-urban see the USDA Forest Service pamphlet, interface in California are the engraver Invasive Bark Beetles, in References. beetles, the red turpentine beetle, and the western pine beetle (See Table 1 Other common wood-boring pests in Figure 1. Adult western pine beetle. for scientific names). In high elevation landscape trees and shrubs include landscapes, such as the Tahoe Basin clearwing moths, roundheaded area or the San Bernardino Mountains, borers, and flatheaded borers. Cer- the Jeffrey pine beetle and mountain tain wood borers survive the milling Identifying Bark Beetles by their Damage pine beetle are also frequent pests process and may emerge from wood and Signs. The species of tree attacked of pines. Two recently invasive spe- in structures or furniture including and the location of damage on the tree cies, the Mediterranean pine engraver some roundheaded and flatheaded help in identifying the bark beetle spe- and the redhaired pine bark beetle, borers and woodwasps. Others colo- cies present (Table 1). -
Intégration De La Caractérisation De La Sévérité Du Feu Dans Les Outils D’Aménagement Écosystémique En Forêt Boréale
Intégration de la caractérisation de la sévérité du feu dans les outils d’aménagement écosystémique en forêt boréale Thèse Jonathan Boucher Doctorat en Sciences forestières Philosophiae Doctor (Ph.D.) Québec, Canada © Jonathan Boucher, 2016 Intégration de la caractérisation de la sévérité du feu dans les outils d’aménagement écosystémique en forêt boréale Thèse Jonathan Boucher Sous la direction de : Éric Bauce, directeur de recherche Christian Hébert, codirecteur de recherche Résumé Chaque année en forêt boréale, les feux génèrent de grandes quantités d’arbres morts au Québec. Considérés comme une perte de revenu potentiel pour l'économie, le gouvernement demande qu'une partie de ces arbres soit récupérée. C'est d'ailleurs une pratique connaissant une tendance à la hausse au niveau mondial. Par contre, la récupération de ce bois est régie par diverses contraintes, dont la rentabilité des opérations et le respect des normes d'aménagement forestier écosystémique (AFE) visant la conservation de la biodiversité associée aux forêts brûlées. La mise en application de l'AFE nécessite de connaître l'impact du feu sur la forêt et ce de façon spatialement explicite. Dans cette optique, nous avons d’abord évalué la sévérité du feu sur le terrain dans 60 sites d’études répartis à travers cinq brûlis. Nous avons ensuite évalué le potentiel du « differenced Normalized Burn Ratio » (dNBR), une méthode de télédétection développée par des chercheurs américains pour estimer la sévérité du feu, à offrir une représentation fidèle des conditions de terrain. Les résultats positifs de cette étape nous ont permis de considérer le dNBR pour bonifier les outils d’aménagement utilisés en forêts brûlées. -
Attraction of Ips Pini
CHEMICAL ECOLOGY Attraction of Ips pini (Coleoptera: Scolytinae) and Its Predators to Natural Attractants and Synthetic Semiochemicals in Northern California: Implications for Population Monitoring 1, 2 3 2 2 2 4 D. L. DAHLSTEN, D. L. SIX, D. L. ROWNEY, A. B. LAWSON, N. ERBILGIN, AND K. F. RAFFA Environ. Entomol. 33(6): 1554Ð1561 (2004) ABSTRACT Effective management of bark beetles (Coleoptera: Curculionidae, Scolytinae) relies on accurate assessments of pest and predator populations. Semiochemicals provide a powerful tool for attracting bark beetles and associated predators, but the extent to which trap catches reßect actual population densities are poorly understood. We conducted Þeld experiments in California during 2 consecutive yr to determine how attraction of Ips pini (Say) and its major predators to synthetic pheromones vary from each other and from attraction to natural volatiles emitted from colonized hosts. Synthetic lures consisted of different ratios of the (ϩ) and (Ð) enantiomers of ipsdienol, the primary pheromone component of I. pini, with or without lanierone, an additional component that synergizes attraction in some populations. I. pini was consistently attracted to either 3(ϩ)/97(Ϫ) ipsdienol or infested host plant material. Lanierone had no effect on the attraction of I. pini. Coleopteran predators showed a range of responses, more of which coincided with I. pini. Temnochila chlorodia (Mannerheim) (Trogositidae) was attracted to infested host materials and all synthetic lures. Enoclerus lecontei (Wolcott) (Cleridae) preferentially responded to higher ratios of (ϩ)-ipsdienol, and its attraction was strongly enhanced by lanierone. Enoclerus sphegeus F. was most attracted to infested hosts and exhibited a preference for (Ϫ)- over (ϩ)-ipsdienol. -
Part III. the Genera Parvochaetus, N. Gen., Amboakis, N
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida September 2006 Classification, natural history, and evolution of the Epiphloeinae (Coleoptera: Cleridae). Part III. The genera Parvochaetus, n. gen., Amboakis, n. gen., and Ellipotoma Spinola Weston Opitz Kansas Wesleyan University, Salina, Kansas Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Opitz, Weston, "Classification, natural history, and evolution of the Epiphloeinae (Coleoptera: Cleridae). Part III. The genera Parvochaetus, n. gen., Amboakis, n. gen., and Ellipotoma Spinola" (2006). Insecta Mundi. 106. https://digitalcommons.unl.edu/insectamundi/106 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 97 Classification, natural history, and evolution of the Epiphloeinae (Coleoptera: Cleridae). Part III. The genera Parvochaetus, n. gen., Amboakis, n. gen., and Ellipotoma Spinola. Weston Opitz Kansas Wesleyan University, Department of Biology, 100 East Claflin Avenue, Salina, Kansas 67401-6196 [email protected] Abstract. The checkered beetle genera Parvochaetus, n. gen. and Amboakis, n. gen. are described and the genus Ellipotoma Spinola is reviewed. Four new species plus P.linearis (Gorham), which represents a new combination, comprise Parvochaetus: P. albicornis, P. froeschneri, P. fucolatus, and P. sandaracus. Amboakis, a replacement name for the junior homonym Teutonia Opitz, involves four previously described species and 20 new species. -
Logging to Control Insects: the Science and Myths Behind Managing Forest Insect “Pests”
LOGGING TO CONTROL INSECTS: THE SCIENCE AND MYTHS BEHIND MANAGING FOREST INSECT “PESTS” A SYNTHESIS OF INDEPENDENTLY REVIEWED RESEARCH Scott Hoffman Black The Xerces Society for Invertebrate Conservation, Portland, Oregon About the Author Scott Hoffman Black, executive director of the Xerces Society, has degrees in ecology, horticultural plant science, and entomology from Colorado State University. As a researcher, conservationist, and teacher, he has worked with both small issues groups and large coalitions advocating science-based conservation and has extensive experience in addressing timber issues in the West. Scott has written many scientific and popular publications and co-authored several reports on forest management, including Ensuring the Ecological Integrity of the National Forests in the Sierra Nevada and Restoring the Tahoe Basin Forest Ecosystem. His work has also been featured in newspaper, magazines, and books, and on radio and television. About the Xerces Society for Invertebrate Conservation The Xerces Society is a nonprofit organization dedicated to protecting the diversity of life through the conservation of invertebrates. Though they are indisputably the most important creatures on earth, invertebrates are an overlooked segment of our ecosystems. Many people can identify an endangered Bengal tiger, but few can identify an endangered Salt Creek Tiger beetle. The Society works to change that. For three decades, Xerces has been at the forefront of invertebrate conservation, harnessing the knowledge of highly regarded scientists and the enthusiasm of citizens to implement conservation and education programs across the globe. Xerces’ programs focus on the conservation of pollinator insects, the protection of endangered invertebrates, aquatic invertebrate monitoring, and the conservation of invertebrates on public lands. -
I México. Diciembre De 2015
México. Diciembre de 2015 i CODIRECTOR: ii AGRADECIMIENTOS Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por financiar mi educación y brindarme la oportunidad de crecer académicamente. A la Universidad Autónoma Chapingo por brindarme enseñanzas y educación. Al. Dr. David Cibrián Tovar, por sus enseñanzas, apoyo, comprensión y aportes profesionales que contribuyeron a la construcción de este trabajo. Al Dr. Gabriel A. Rodríguez Yam por el apoyo académico, correcciones y revisiones que enriquecieron el presente trabajo. Al M. C. Rodolfo Campos Bolaños, por los comentarios, correcciones y revisiones que ayudaron al enriquecimiento de este documento. Al M. C Rolando Hernández Ruíz y a los Ing. Jesús Morales Bautista, Ing. Sergio Arturo Quiñonez Favila, Biol. Alcestis Llanderal Arango e Ing. Uriel M. Barrera Ruiz por su apoyo en la colecta y en la fase de laboratorio. Al Ph. D. Alan Burke por su ayuda como especialista en la identificación de las especies de cléridos. Al proyecto “Diagnóstico y propuesta de manejo integral para el control de insectos descortezadores en los bosques templados de la Reserva de la Biósfera Sierra Gorda (RBSG)” a cargo de la Universidad Autónoma Chapingo, en coordinación con la Agencia Alemana de Cooperación Técnica (GIZ por sus siglas en Alemán), la Comisión Nacional de Áreas Naturales Protegidas (CONANP), la Comisión Nacional Forestal (CONAFOR), Núcleos agrarios y poseedores de recursos forestales. A todas aquellas personas que contribuyeron, directa o indirectamente, en la realización de esta meta personal. iii DEDICATORIA A mis padres: Mario ( ) y Margarita A mis hermanos: Rafael, Juana, Maricela, José Alberto A mis sobrinos: Eneida, Luis, Nancy, Fabiola A mis amores del cielo: Mario ( ) y Fer ( ) A lo más hermoso de mi vida: Miguel A Abbá por pensarme iv DATOS BIOGRÁFICOS Aminta María Curiel Granados nació el 20 de abril de 1980 en el municipio de Pilcaya, Guerrero. -
Biological Control of Southern Pine Beetle Fred M
Biological Control of Southern Pine Beetle Fred M. Stephen1 and C. Wayne Berisford2 1Professor, Department of Entomology, University of Arkansas, Fayetteville, AR 72701 28 2Emeritus Professor, Department of Entomology, University of Georgia, Athens, GA 30602 Abstract Exotic invasive forest insects are frequently managed through classical biological control, which involves searching for, introducing, and establishing their exotic natural enemies. Biological control of native bark beetles, including the southern pine beetle (SPB), has been primarily attempted by conserving and manipulating their natural enemies. Knowledge of the role and biology of SPB natural enemies is increasing but is still limited, and is rarely well connected to coincident estimates of SPB host density. A rich complex of SPB native natural enemies exists, and these are discussed in greater detail in other chapters in this book. The cryptic nature of Dendroctonus species within phloem and bark, combined with the properties of many natural enemies (small size, highly aggregated distribution, lower density than their prey, and often acting late in the beetle’s life cycle), results in challenging sampling problems that are difficult to overcome. Attempts to assess impact of natural enemies have often been presented as percent Keywords of mortality, but rarely do these assessments show variation in mortality. The manner in which mortality varies with host density is important in population bark beetles regulation. Predators, parasitoids, and competitors of the SPB respond in varying parasitoid competitors degrees to SPB pheromones and tree volatiles during host selection. Variables population dynamics such as bark thickness and SPB density influence parasitoid success. In making predators oviposition choices, parasitoids tend to select the host beetle and tree species Scolytidae from which they emerged. -
Check List of the Cleridae (Coleoptera) of Oceania
OCCASIONAL PAPERS OF BERNICE P. BISHOP MUSEUM HONOLULU, HAWAII Volume XIII 1937 Number 3 Check List of the Cleridae (Coleoptera) of Oceania By J. B. CORPORAAL ZoiiLOGISCH MUSEUM, AMSTERDAM (14th Communication on Cleridae) No more than 33 species of Cleridae, belonging to 19 genera, are known to occur in Oceania (about 2,700 species have been described). Seven of these species are not endemic, since they have a very wide distribution outside Oceania, or are even cosmopolitan, spread by commerce or by transports of plant material. Of the remaining 27 species only one belongs to an endemic (monotypic) genus, Tarso stenosis, which is closely allied to the Australian genus Tarsostenodes. Apparently no endemic species occur in Hawaii or in Samoa. All the other species belong to genera which occur in large numbers of species in the neighboring continents (or large islands as New Guinea and New Zealand). It is probable that, although the Cleridae are generally regarded as being of old descent, there are no centers of develop ment in Oceania; this is in sharp contrast to Madagascar where there are many endemic genera, with very many species, strictly confined to that island. In this list I have followed the arrangement of the Catalogue of Junk-Schenkling. I did not think it necessary to sum up all the liter ature references of the widespread species; therefore I have given only such as are necessary to recognize the species or have bearing on its variation; the biological references, however, are, as far as I could ascertain, complete up to the present. -
Observations on the Biology of the South African Checkered Beetle Aphelochroa Sanguinalis (Westwood) (Coleoptera: Cleridae)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 1-2010 Observations on the biology of the South African checkered beetle Aphelochroa sanguinalis (Westwood) (Coleoptera: Cleridae) Jonathan R. Mawdsley Smithsonian Institution, [email protected] Hendrik Sithole Kruger National Park, South Africa, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Mawdsley, Jonathan R. and Sithole, Hendrik, "Observations on the biology of the South African checkered beetle Aphelochroa sanguinalis (Westwood) (Coleoptera: Cleridae)" (2010). Insecta Mundi. 635. https://digitalcommons.unl.edu/insectamundi/635 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0111 Observations on the biology of the South African checkered beetle Aphelochroa sanguinalis (Westwood) (Coleoptera: Cleridae) Jonathan R. Mawdsley Research Associate Department of Entomology, MRC 187 National Museum of Natural History Smithsonian Institution P. O. Box 37012 Washington, DC 20013-7012 USA Hendrik Sithole Research Manager: Invertebrates Kruger National Park Private Bag X402 Skukuza 1350 SOUTH AFRICA Date of Issue: January 22, 2010 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Jonathan R. Mawdsley and Hendrik Sithole Observations on the biology of the South African checkered beetle Aphelochroa sanguinalis (Westwood) (Coleoptera: Cleridae) Insecta Mundi 0111: 1-6 Published in 2010 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 U. -
Observations on the Biology of Dryocoetes Betulae (Coleoptera: Curculionidae) in Paper Birch in Northern Idaho
POPULATION ECOLOGY Observations on the Biology of Dryocoetes betulae (Coleoptera: Curculionidae) in Paper Birch in Northern Idaho 1 2 MALCOLM M. FURNISS AND SANDRA J. KEGLEY Environ. Entomol. 35(4): 907Ð911 (2006) ABSTRACT We describe the biology and life stages of the birch bark beetle, Dryocoetes betulae Hopkins, and report its second known occurrence in Idaho. One annual generation was observed with broods overwintering as larvae and sexually immature adults. The species is polygamous with a ratio of 1.8 females per male. Two females (rarely three) joined a male after he entered the bark, and each female created a 3- to 4-cm-long egg gallery with short lateral spurs. Eggs were laid in niches along each side of the main gallery. Larvae have three instars. No hymenopterous parasitoid was found; however, two apparent predators, Rhizophagus dimidiatus Mannerheim, and a clerid, Thanasimus undatulus (Say), were present in galleries. Two mites, Histiostoma sp. and Proctolaelaps n. sp., also occurred in galleries, and a nematode of the Order Rhabditida occurred in the midgut of larvae and adult D. betulae. An ambrosia beetle, Trypodendron betulae Swaine, also infested the basal stems apart from D. betulae. Stems of infested trees were infected with a root rot fungus, Armillaria ostoyae (Romagnesi) Herink. Several generations of beetles infested the basal portion of stems of either decadent or recently dead paper birch. This behavior preserves a scarce host resource and is enhanced by a relatively low fecundity and ability to establish new galleries without ßight dispersal. KEY WORDS Scolytinae, Dryocoetes, paper birch The genus Dryocoetes Eichhoff is represented in North (Ratzburg) (as D. -
1 Invasive Species and Biological Control
Bio Control 01 - 16 made-up 14/11/01 3:16 pm Page 1 Chapter 1 1 1 Invasive Species and Biological Control D.J. Parker and B.D. Gill Introduction ballast, favouring aquatic invaders (Bright, 1999). While the rate of introductions has Invasive alien species are those organisms increased greatly over the past 100 years that, when accidentally or intentionally (Sailer, 1983), the period 1981–2000 has introduced into a new region or continent, seen political and technological changes rapidly expand their ranges and exert a that may unleash an even greater wave of noticeable impact upon the resident flora invasive species. The collapse of the for- or fauna of their new environment. From a mer Soviet Union and China’s interest in plant quarantine perspective, invasive joining world trade have opened up new species are typically pests that cause prob- markets in Asia. These vast areas, once iso- lems after entering a country undetected in lated, can now serve as source populations commercial goods or in the personal bag- for additional cold-tolerant pests, e.g. the gage of travellers. Under the International Asian longhorned beetle, Anoplophora Plant Protection Convention (IPPC), ‘pests’ glabripennis (Motschulsky), and the lesser are defined as ‘any species, strain or bio- Japanese tsugi borer, Callidiellum type of plant, animal or pathogenic agent rufipenne (Motschulsky). Examples of a injurious to plants or plant products’, few insects introduced to Canada since while ‘quarantine pests’ are ‘pests of eco- 1981 include apple ermine moth, nomic importance to the area endangered Yponomeuta malinellus Zeller, European thereby and not yet present there, or pre- pine shoot beetle, Tomicus piniperda (L.), sent but not widely distributed and being leek moth, Acrolepiopsis assectella officially controlled’ (FAO, 1999).