1 Invasive Species and Biological Control

Total Page:16

File Type:pdf, Size:1020Kb

1 Invasive Species and Biological Control Bio Control 01 - 16 made-up 14/11/01 3:16 pm Page 1 Chapter 1 1 1 Invasive Species and Biological Control D.J. Parker and B.D. Gill Introduction ballast, favouring aquatic invaders (Bright, 1999). While the rate of introductions has Invasive alien species are those organisms increased greatly over the past 100 years that, when accidentally or intentionally (Sailer, 1983), the period 1981–2000 has introduced into a new region or continent, seen political and technological changes rapidly expand their ranges and exert a that may unleash an even greater wave of noticeable impact upon the resident flora invasive species. The collapse of the for- or fauna of their new environment. From a mer Soviet Union and China’s interest in plant quarantine perspective, invasive joining world trade have opened up new species are typically pests that cause prob- markets in Asia. These vast areas, once iso- lems after entering a country undetected in lated, can now serve as source populations commercial goods or in the personal bag- for additional cold-tolerant pests, e.g. the gage of travellers. Under the International Asian longhorned beetle, Anoplophora Plant Protection Convention (IPPC), ‘pests’ glabripennis (Motschulsky), and the lesser are defined as ‘any species, strain or bio- Japanese tsugi borer, Callidiellum type of plant, animal or pathogenic agent rufipenne (Motschulsky). Examples of a injurious to plants or plant products’, few insects introduced to Canada since while ‘quarantine pests’ are ‘pests of eco- 1981 include apple ermine moth, nomic importance to the area endangered Yponomeuta malinellus Zeller, European thereby and not yet present there, or pre- pine shoot beetle, Tomicus piniperda (L.), sent but not widely distributed and being leek moth, Acrolepiopsis assectella officially controlled’ (FAO, 1999). (Zeller), cherry bark tortrix, Enarmonia formosana (Scopoli), and the yellow underwings, Noctua pronuba (L.) and Origins Noctua comes (Hübner). Canada is no longer susceptible to inva- Traditionally, most invasive pests in North sion of pests from temperate locations only. America came from Europe, reflecting trad- Cultivation under glass, currently about ing patterns of the past 500 years (Mattson 1470 ha (K. Fry, Vegreville, 2000, personal et al., 1994; Niemela and Mattson, 1996). communication), is expanding rapidly and Vast numbers of weeds, phytophagous there is growing concern about possible insects and stored products pests arrived as introductions from tropical and subtropical stowaways in cargo or on horticultural regions that may adversely affect horticul- products exported from Europe. In Canada, tural plants and greenhouse vegetable pro- 881 exotic plants have become established, duction. Recent introductions have representing 28% of the total flora included western flower thrips, (Heywood, 1989). A diversity of soil- Frankliniella occidentalis (Pergande), to dwelling insects arrived in the ballast of eastern Canada, sweetpotato whitefly, ships (Lindroth, 1957; Sadler, 1991), until Bemisia tabaci (Gennadius), and leafminers, this pathway was inadvertently curtailed Liriomyza spp. Other technological when soil ballast was replaced by water advances that facilitate the movement of Bio Control 01 - 16 made-up 12/11/01 4:03 pm Page 2 2 Chapter 1 pests are the greatly increased volume of fore regulated as quarantine pests. traffic and increased speed of transport of Biological control agents can also be con- commodities and people around the world. sidered as invasive species. In this case, Container ships cross the oceans in record the invasive species are intentionally intro- time, offloading their sealed containers duced to reduce problems caused by for- directly on to railcars that are promptly eign or native pests. delivered to the heart of the continent. Since the enactment of the Destructive Many hitch-hiking species now arrive alive Insect and Pest Act (DIP 1912), ‘an act to instead of dying in transit. Finally, estab- prevent the introduction or spreading of lishment of the World Trade Organization, insects, pests and diseases destructive to which promotes expansion of global trade, vegetation’, the Federal government has both in volume and extent, is sure to been charged with protecting Canada’s increase the problem. All of these factors plant resources from invasive plant pests. point towards invasive species or ‘biological Under the current Plant Protection Act, the pollution’ as being a major threat to the bio- Plant Health and Production Division of diversity and the economic health of North the Canadian Food Inspection Agency reg- America (Office of Technology Assessment, ulates the importation of plants. In the 1993; Wallner, 1996; Bright, 1999). past, plants were regulated on the basis of their role as carriers of diseases and pests and not in terms of their potential invasive- Costs ness or weediness. Although most of the weeds causing problems in agriculture and The costs of invasive organisms are difficult natural environments today were intro- to estimate. A report on harmful, non- duced into Canada well before the indigenous species in the USA estimated Destructive Insect and Pest Act of 1912, that losses from invasive pests between 1906 some sanctioned introductions of exotic and 1991 amounted to US$97 billion (Office (non-indigenous) agricultural, horticultural of Technology Assessment, 1993). Insects and ornamental plants have indeed become accounted for $92 billion of this amount. invasive (e.g. purple loosestrife, Lythrum Pimentel et al. (2000) have estimated that salicaria L.; European buckthorn, Rhamnus the economic and environmental losses due cathartica L.; Norway maple, Acer pla- to non-indigenous species in the USA, com- tanoides L.; and Russian olive, Elaeagnus bined with their control costs, amount to angustifolia L.). All importations of exotic US$137 billion per year. While the values of plants should undergo a risk assessment, control costs and economic losses can be both for their potential to harbour pests estimated with a fair degree of precision, the and diseases, and to determine their poten- damaging cost to the environment through tial invasiveness in natural and disturbed habitat loss or species extirpation (even habitats. extinction) due to invasive organisms cannot The same legislation that is used to be estimated in monetary terms. In the exclude exotic plant pests has also been words of Pimentel et al. (2000), ‘the true used to regulate the importation of plant challenge for the public lies not in determin- pests for biological control. The Act has ing the precise costs of the impacts of exotic been amended several times (DIP, 1954; species but in preventing further damage to Plant Quarantine Act, 1969; Plant natural and managed ecosystems caused by Protection Act, 1990) and the regulations non-indigenous species’. have been modified to reflect changes in pest and disease conditions in Canada and throughout the world. While the definition Regulations of a pest in the legislation has changed over the years, permits for the introduction Alien species may cause economic damage of foreign biological control agents have to plants or plant products and are there- been issued under the authority of the Bio Control 01 - 16 made-up 12/11/01 4:03 pm Page 3 Chapter 1 3 Plant Protection Act and its predecessors biological control agents are regulated by for about 90 years. Biological control the Pest Management Regulatory Agency organisms that attack plants are strictly (PMRA). regulated and cannot be released into the environment until they have successfully passed a pest risk assessment. This is car- Exotic Introductions and Classical ried out by Canadian Food Inspection Biological Control Agency (CFIA) entomologists, assisted by the Biological Control Review Committee As regulators, it is our responsibility to (BCRC) of Agriculture and Agri-Food review import applications and to issue per- Canada in consultation with the United mits and conditions for all insects, mites States Department of Agriculture, Animal and terrestrial molluscs entering Canada. and Plant Health Inspection Service Our legislative mandate is to prevent the (USDA-APHIS) and their review panel, the introduction and spread of exotic plant Technical Advisory Group (TAG). Most pests. We also assess petitions for the impor- releases have been of phytophagous agents tation and release of non-indigenous agents for the control of exotic weeds (classical for the classical biological control of intro- biological control). Entomophagous biolog- duced weeds and plant pests. Balancing ical control organisms are regulated with these two, often contradictory, viewpoints is regard to their potential to be indirectly difficult. Classical biological control is only injurious to plants, because plant pests are one technique of integrated pest manage- loosely defined under the Act. Recently, ment. Augmentation of numbers of existing attempts have been made to formalize the natural enemies, conservation of habitats for review of entomophagous insect petitions predators and parasites, crop rotation, diver- for biological control by developing guide- sification, as well as the more conventional lines and protocols for import and release. chemical methods may be as important to The North American Plant Protection successful farming and forestry as is classi- Organization (NAPPO) has developed cal biological control. The challenge facing information guidelines, i.e. standards for scientists and regulators alike will be to the import and release
Recommended publications
  • The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae)
    The Green Lacewings of the Genus Chrysopa in Maryland ( Neuroptera: Chrysopidae) Ralph A. Bram and William E. Bickley Department of Entomology INTRODUCTION Tlw green lacewings which are members of the genus Chrysopa are extreme- ly lwndicia1 insects. The larvae are commonly called aphislions and are well known as predators of aphids and other injurious insects. They play an important part in the regulation of populations of pests under natural conditions, and in California they have been cultured in mass and released for the control of mealy- bugs ( Finney, 1948 and 1950) . The positive identification of members of the genus is desirable for the use of biological-control workers and entomologists in general. Descriptions of most of the Nearctic species of Chrysopidae have relied heavily on body pigmentation and to a lesser extent on wing shape, venational patterns and coloration. Specimens fade when preserved in alcohol or on pins, and natural variation in color patterns occurs in many species ( Smith 1922, Bickley 1952). It is partly for these reasons that some of the most common and relatively abundant representatives of the family are not easily recognized. The chrysopid fauna of North America was treated comprehensively by Banks ( 1903). Smith ( 1922) contributed valuable information about the biology of the green lacewings and about the morphology and taxonomy of the larvae. He also pro- vided k<'ys and other help for the identification of species from Kansas ( 1925, 1934) and Canada ( 1932). Froeschner ( 194 7) similarly dealt with Missouri species. Bickley and MacLeod ( 1956) presented a review of the family as known to occur in the N earctic region north of Mexico.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Identification Key for Mosquito Species
    ‘Reverse’ identification key for mosquito species More and more people are getting involved in the surveillance of invasive mosquito species Species name used Synonyms Common name in the EU/EEA, not just professionals with formal training in entomology. There are many in the key taxonomic keys available for identifying mosquitoes of medical and veterinary importance, but they are almost all designed for professionally trained entomologists. Aedes aegypti Stegomyia aegypti Yellow fever mosquito The current identification key aims to provide non-specialists with a simple mosquito recog- Aedes albopictus Stegomyia albopicta Tiger mosquito nition tool for distinguishing between invasive mosquito species and native ones. On the Hulecoeteomyia japonica Asian bush or rock pool Aedes japonicus japonicus ‘female’ illustration page (p. 4) you can select the species that best resembles the specimen. On japonica mosquito the species-specific pages you will find additional information on those species that can easily be confused with that selected, so you can check these additional pages as well. Aedes koreicus Hulecoeteomyia koreica American Eastern tree hole Aedes triseriatus Ochlerotatus triseriatus This key provides the non-specialist with reference material to help recognise an invasive mosquito mosquito species and gives details on the morphology (in the species-specific pages) to help with verification and the compiling of a final list of candidates. The key displays six invasive Aedes atropalpus Georgecraigius atropalpus American rock pool mosquito mosquito species that are present in the EU/EEA or have been intercepted in the past. It also contains nine native species. The native species have been selected based on their morpho- Aedes cretinus Stegomyia cretina logical similarity with the invasive species, the likelihood of encountering them, whether they Aedes geniculatus Dahliana geniculata bite humans and how common they are.
    [Show full text]
  • European Format of Cv
    EUROPEAN FORMAT OF CV PERSONAL INFORMATION Name Kolarov Janko Angelov Address 236 Bulgaria Boul., 4000 Plovdiv, Bulgaria Tel. +359 32 261721 Fax +359 32 964 689 E-mail [email protected] Nationality Bulgarian Date of birth 20.06.1947 Length of service • Date (from-to) 2009-2014 Professor in Faculty of Pedagogy, University of Plovdiv 2000-2009 Associated professor in Faculty of Pedagogy, University of Plovdiv 1990-2000 Associated professor in Biological faculty, University of Sofia 1983-1990 A research worker of entomology in Institute of introduction and plant resources, Sadovo 1981-1983 Senior teacher of biology in Medical university, Plovdiv 1972-1981 Teacher Education and teaching 1996 Doctor of science 1980 PHD 1973 Magister of biology Mother tongue Bulgarian Other languages [RUSSIAN} [ENGLISH} [GERMAN} • reading excellent good middle • writing excellent good middle • conversation excellent good middle Participation in projects 2010-2012 Kuzeydoğu Anadolu Bölgesi’nin Cryptinae (Hymenoptera: Position Ichneumonidae) Altfamilyası üzerinde sistematik, sayısal taksonomi ve moleküler filogeni çalışmaları (Turkey) – member of team 2009-2011 Project Nr. 5362 entitled “State of Entomofauna Along the Pipeline Baku-Tbilisi-Jeyhan (Azerbaijan Territory)”, with leader I. A. Nuriyeva - – member of team 2006-2007 Investigation of the Ichneumonidae (Hymenoptera, Insecta) Fauna of Bulgaria – member of team 2004 A study of Ichneumonidae fauna of Isparta province, Turkey – member of team 2003 Fauna Еуропеа – member of team 1993 National strategy of protection of biological in Bulgaria – member of team Proffesional area Zoology Entomology Ecology Biogeography L I S T of the scientific works of Prof. DSc Janko Angelov Kolarov 1. Kolarov, J., 1977. Tryphoninae (Hymenoptera, Ichneumonidae) Genera and Species unknown in Bulgarian Fauna up to now.
    [Show full text]
  • Revision of the Genus Apophua Morley, 1913, from Japan (Hymenoptera, Ichneumonidae, Banchinae)
    Zootaxa 3784 (5): 501–527 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3784.5.1 http://zoobank.org/urn:lsid:zoobank.org:pub:6640D1B6-E304-4C6B-8E36-71F8FB2C347F Revision of the genus Apophua Morley, 1913, from Japan (Hymenoptera, Ichneumonidae, Banchinae) KYOHEI WATANABE1 & KAORU MAETO2 1Kanagawa Prefectural Museum of Natural History, Iriuda 499, Odawara, Kanagawa 250–0031, Japan. E-mail: [email protected] 2Laboratory of Insect Biodiversity and Ecosystem Science, Graduate School of Agricultural Science, Kobe University, 1–1 Rokkodai- cho, Nada-ku, Kobe, 657–8501 Japan. E-mail: [email protected] Abstract Japanese species of the genus Apophua Morley, 1913, are revised. Eleven species are found from Japan and two of them, A. elegans sp. nov. and A. yamato sp. nov., are newly described. Distribution data and an updated key to Japanese species are provided. Key words: Far East Asia, Glyptini, new species, parasitoid, taxonomy Introduction The genus Apophua Morley, 1913, is a medium-sized taxon of ichneumonid wasps of the tribe Glyptini, subfamily Banchinae, which contains 36 described species from the Afrotropical (13 spp.), Eastern Palaearctic (10), Oriental (10), Western Palaearctic (5), Nearctic (2), and Australasian (2) regions (Yu et al., 2012). The species in this genus are known as koinobiont endoparasitoids of lepidopteran larvae, particularly of leaf rollers (e.g. Tortricidae), and include some important natural enemies of forest pests (Kamijo, 1973; Momoi et al., 1975). We have studied the Japanese species of Apophua as part of a review of the Japanese Glyptini and have recognized 11 species.
    [Show full text]
  • Dipterists Forum
    BULLETIN OF THE Dipterists Forum Bulletin No. 76 Autumn 2013 Affiliated to the British Entomological and Natural History Society Bulletin No. 76 Autumn 2013 ISSN 1358-5029 Editorial panel Bulletin Editor Darwyn Sumner Assistant Editor Judy Webb Dipterists Forum Officers Chairman Martin Drake Vice Chairman Stuart Ball Secretary John Kramer Meetings Treasurer Howard Bentley Please use the Booking Form included in this Bulletin or downloaded from our Membership Sec. John Showers website Field Meetings Sec. Roger Morris Field Meetings Indoor Meetings Sec. Duncan Sivell Roger Morris 7 Vine Street, Stamford, Lincolnshire PE9 1QE Publicity Officer Erica McAlister [email protected] Conservation Officer Rob Wolton Workshops & Indoor Meetings Organiser Duncan Sivell Ordinary Members Natural History Museum, Cromwell Road, London, SW7 5BD [email protected] Chris Spilling, Malcolm Smart, Mick Parker Nathan Medd, John Ismay, vacancy Bulletin contributions Unelected Members Please refer to guide notes in this Bulletin for details of how to contribute and send your material to both of the following: Dipterists Digest Editor Peter Chandler Dipterists Bulletin Editor Darwyn Sumner Secretary 122, Link Road, Anstey, Charnwood, Leicestershire LE7 7BX. John Kramer Tel. 0116 212 5075 31 Ash Tree Road, Oadby, Leicester, Leicestershire, LE2 5TE. [email protected] [email protected] Assistant Editor Treasurer Judy Webb Howard Bentley 2 Dorchester Court, Blenheim Road, Kidlington, Oxon. OX5 2JT. 37, Biddenden Close, Bearsted, Maidstone, Kent. ME15 8JP Tel. 01865 377487 Tel. 01622 739452 [email protected] [email protected] Conservation Dipterists Digest contributions Robert Wolton Locks Park Farm, Hatherleigh, Oakhampton, Devon EX20 3LZ Dipterists Digest Editor Tel.
    [Show full text]
  • Deleterious Effects of Low Temperature Exposure on Learning Expression in a Parasitoid
    International Journal of Comparative Psychology, 2006, 19 , 368-385. Copyright 2006 by the International Society for Comparative Psychology Deleterious Effects of Low Temperature Exposure on Learning Expression in a Parasitoid Joan van Baaren Université de Rennes I, France Guy Boivin Centre de Recherche et de Développement en Horticulture Agriculture et Agroalimentaire, Canada Yannick Outreman UMR INRA/Agrocampus Rennes BiO3P, France In this paper, we review the learning capacities of insect parasitoids. We present data on the learning capacity of the parasitoid wasp, Anaphes victus (Hymenoptera: Mymaridae), in the host (egg) dis- crimination process. In addition, we examine the effect of low temperature exposure on the wasp’s learning. Our results showed that A. victus females learned rapidly to recognize their own chemical cues that they left on the host eggs, and retained this learning from patch to patch. Conspecific chemical cues left on the eggs took more time to be learned, but two learning trials induced a pro- longed memory for the cues. Our results also showed that the use of learned, conspecific chemical cues was more affected by cold exposure than was the use of learned personal cues. Learning in Parasitoids Insect parasitoids develop on or in a single host and kill it (Eggleton & Gaston, 1990). More than 100,000 species of insect parasitoids are known and while 75% of these species are Hymenoptera, the parasitoid lifestyle has evolved also in Diptera (flies), Coleoptera (beetles), Neuroptera (lacewings), Lepidoptera (butterflies) and Trichoptera (caddisflies). Learning in parasitoids was demon- strated as early as 1937 by Thorpe and Jones, but research on the topic did not flourish until the end of the 1980s.
    [Show full text]
  • The Mosquitoes of Alaska
    LIBRAR Y ■JRD FEBE- Î961 THE U. s. DtPÁ¡<,,>^iMl OF AGidCÜLl-yí MOSQUITOES OF ALASKA Agriculture Handbook No. 182 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE U < The purpose of this handbook is to present information on the biology, distribu- tion, identification, and control of the species of mosquitoes known to occur in Alaska. Much of this information has been published in short papers in various journals and is not readily available to those who need a comprehensive treatise on this subject ; some of the material has not been published before. The information l)r()UKlit together here will serve as a guide for individuals and communities that have an interest and responsibility in mosquito problems in Alaska. In addition, the military services will have considerable use for this publication at their various installations in Alaska. CuUseta alaskaensis, one of the large "snow mosquitoes" that overwinter as adults and emerge from hiber- nation while much of the winter snow is on the ground. In some localities this species is suJBBciently abundant to cause serious annoy- ance. THE MOSQUITOES OF ALASKA By C. M. GJULLIN, R. I. SAILER, ALAN STONE, and B. V. TRAVIS Agriculture Handbook No. 182 Agricultural Research Service UNITED STATES DEPARTMENT OF AGRICULTURE Washington, D.C. Issued January 1961 For «ale by the Superintendent of Document«. U.S. Government Printing Office Washington 25, D.C. - Price 45 cent» Contents Page Page History of mosquito abundance Biology—Continued and control 1 Oviposition 25 Mosquito literature 3 Hibernation 25 Economic losses 4 Surveys of the mosquito problem. 25 Mosquito-control organizations 5 Mosquito surveys 25 Life history 5 Engineering surveys 29 Eggs_".
    [Show full text]
  • Geospatial Risk Analysis of Mosquito-Borne Disease Vectors in the Netherlands
    Geospatial risk analysis of mosquito-borne disease vectors in the Netherlands Adolfo Ibáñez-Justicia Thesis committee Promotor Prof. Dr W. Takken Personal chair at the Laboratory of Entomology Wageningen University & Research Co-promotors Dr C.J.M. Koenraadt Associate professor, Laboratory of Entomology Wageningen University & Research Dr R.J.A. van Lammeren Associate professor, Laboratory of Geo-information Science and Remote Sensing Wageningen University & Research Other members Prof. Dr G.M.J. Mohren, Wageningen University & Research Prof. Dr N. Becker, Heidelberg University, Germany Prof. Dr J.A. Kortekaas, Wageningen University & Research Dr C.B.E.M. Reusken, National Institute for Public Health and the Environment, Bilthoven, The Netherlands This research was conducted under the auspices of the C.T. de Wit Graduate School for Production Ecology & Resource Conservation Geospatial risk analysis of mosquito-borne disease vectors in the Netherlands Adolfo Ibáñez-Justicia Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 1 February 2019 at 4 p.m. in the Aula. Adolfo Ibáñez-Justicia Geospatial risk analysis of mosquito-borne disease vectors in the Netherlands, 254 pages. PhD thesis, Wageningen University, Wageningen, the Netherlands (2019) With references, with summary in English ISBN 978-94-6343-831-5 DOI https://doi.org/10.18174/465838
    [Show full text]
  • A DNA Barcode Library for Ground Beetles (Insecta, Coleoptera, Carabidae) of Germany: the Genus Bembidion Latreille, 1802 and Allied Taxa
    A peer-reviewed open-access journal ZooKeys A592: DNA 121–141 barcode (2016) library for ground beetles (Insecta, Coleoptera, Carabidae) of Germany... 121 doi: 10.3897/zookeys.592.8316 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A DNA barcode library for ground beetles (Insecta, Coleoptera, Carabidae) of Germany: The genus Bembidion Latreille, 1802 and allied taxa Michael J. Raupach1, Karsten Hannig2, Jérome Morinière3, Lars Hendrich4 1 Molecular Taxonomy of Marine Organisms, German Centre of Marine Biodiversity Research (DZMB), Senckenberg am Meer, Südstrand 44, 26382 Wilhelmshaven, Germany 2 Bismarckstraße 5, 45731 Waltrop, Germany 3 Taxonomic coordinator – Barcoding Fauna Bavarica, Bavarian State Collection of Zoology (SNSB – ZSM), Münchhausenstraße 21, 81247 München, Germany 4 Sektion Insecta varia, Bavarian State Collec- tion of Zoology (SNSB – ZSM), Münchhausenstraße 21, 81247 München, Germany Corresponding author: Michael J. Raupach ([email protected]) Academic editor: B. Guéorguiev | Received 1 March 2016 | Accepted 23 April 2016 | Published 25 May 2016 http://zoobank.org/767B2671-3C2A-42B9-9E37-D3B4CF309C94 Citation: Raupach MJ, Hannig K, Morinière J, Hendrich L (2016) A DNA barcode library for ground beetles (Insecta, Coleoptera, Carabidae) of Germany: The genusBembidion Latreille, 1802 and allied taxa. ZooKeys 592: 121–141. doi: 10.3897/zookeys.592.8316 Abstract As molecular identification method, DNA barcoding based on partial cytochromec oxidase subunit 1 (COI) sequences has been proven to be a useful tool for species determination in many insect taxa includ- ing ground beetles. In this study we tested the effectiveness of DNA barcodes to discriminate species of the ground beetle genus Bembidion and some closely related taxa of Germany.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Bark Beetles Integrated Pest Management for Home Gardeners and Landscape Professionals
    BARK BEETLES Integrated Pest Management for Home Gardeners and Landscape Professionals Bark beetles, family Scolytidae, are California now has 20 invasive spe- common pests of conifers (such as cies of bark beetles, of which 10 spe- pines) and some attack broadleaf trees. cies have been discovered since 2002. Over 600 species occur in the United The biology of these new invaders is States and Canada with approximately poorly understood. For more informa- 200 in California alone. The most com- tion on these new species, including mon species infesting pines in urban illustrations to help you identify them, (actual size) landscapes and at the wildland-urban see the USDA Forest Service pamphlet, interface in California are the engraver Invasive Bark Beetles, in References. beetles, the red turpentine beetle, and the western pine beetle (See Table 1 Other common wood-boring pests in Figure 1. Adult western pine beetle. for scientific names). In high elevation landscape trees and shrubs include landscapes, such as the Tahoe Basin clearwing moths, roundheaded area or the San Bernardino Mountains, borers, and flatheaded borers. Cer- the Jeffrey pine beetle and mountain tain wood borers survive the milling Identifying Bark Beetles by their Damage pine beetle are also frequent pests process and may emerge from wood and Signs. The species of tree attacked of pines. Two recently invasive spe- in structures or furniture including and the location of damage on the tree cies, the Mediterranean pine engraver some roundheaded and flatheaded help in identifying the bark beetle spe- and the redhaired pine bark beetle, borers and woodwasps. Others colo- cies present (Table 1).
    [Show full text]