Bioluminescence in Insect
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
William D. Mcelroy Papers
http://oac.cdlib.org/findaid/ark:/13030/kt6489r0v5 No online items William D. McElroy Papers Special Collections & Archives, UC San Diego Special Collections & Archives, UC San Diego Copyright 2005 9500 Gilman Drive La Jolla 92093-0175 [email protected] URL: http://libraries.ucsd.edu/collections/sca/index.html William D. McElroy Papers MSS 0483 1 Descriptive Summary Languages: English Contributing Institution: Special Collections & Archives, UC San Diego 9500 Gilman Drive La Jolla 92093-0175 Title: William D. McElroy Papers Identifier/Call Number: MSS 0483 Physical Description: 10.4 Linear feet(19 archives boxes, 11 oversize folders, 6 art bin items) Date (inclusive): 1944-1999 Abstract: Papers of William David McElroy (1917-1999), professor of biochemistry, the fourth chancellor (1972-1980) of the University of California, San Diego; and former director (1969-1971) of the National Science Foundation. Scope and Content of Collection Papers of William David McElroy (1917-1999), professor of biochemistry, the fourth chancellor (1972-1980) of the University of California, San Diego; and former director (1969-1971) of the National Science Foundation. McElroy's significant contributions to biology include isolating and crystallizing the compounds that enable firefly luminescence and for his subsequent research into bacterial bioluminescence. He also wrote, spoke, and worked on problems in areas of environment, pollution, food production, science education, and international science. The papers largely document McElroy's scientific research and include correspondence with the scientific community, various biographical materials including awards and photographs, his trip to China in 1979, writings and reprints related to biochemical and scientific investigation, research materials on bioluminescence, teaching materials, and speeches given both as chancellor and as director of the National Science Foundation. -
Safety Data Sheet
G-Biosciences, St Louis, MO, USA | 1-800-628-7730 | 1-314-991-6034 | [email protected] A Geno Technology, Inc. (USA) brand name Safety Data Sheet Cat. # RC-227 D-Luciferin Firefly, FREE ACID Size: 0.25g think proteins! think G-Biosciences! www.GBiosciences.com D-Luciferin Firefly, potassium salt Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 05/06/2013 Revision date: 05/11/2017 Version: 7.1 SECTION 1: Identification 1.1. Identification Product form : Substance Trade name : D-Luciferin Firefly, potassium salt CAS-No. : 2591-17-5 Product code : 006A Formula : C11H8N2O3S2 Synonyms : (4S)-4,5-dihydro-2-(6-hydroxy-2-benzothiazolyl)-4-thiazolecarboxylic acid / (S)-2-(6-hydroxy-2- benzothiazolyl)-2-thiazoline-4-carboxylic acid / (S)-4,5-dihydro-2-(6-hydroxybenzothiazol-2- yl)thiazole-4-carboxylic acid / 2-(6-hydroxy-2-benzothiazolyl)-2-thiazoline-4-carcoxylic acid, (S)- / 2-(6-hydroxybenzothiazol-2-yl)-2-thiazoline-4-carboxylic acid / 4,5-dihydro-2-(6-hydroxy-2- benzorhiazolyl)-4-thiazolecarboxylic acid, (4S)- / 4,5-dihydro-2-(6-hydroxy-2-benzothiazolyl)-4- thiazolecarboxylic acid / 4-Thiazolecarboxylic acid, 4,5-dihydro-2-(6-hydroxy-2-benzothiazolyl)-, (S)- / D-(-)-luciferin / D-luciferin / firefly luciferin / liciferin, D-(-)- / luciferin / luciferin, D- Other means of identification : D-Luciferin Firefly, free acid 4,5-Dihydro-2-(6-hydroxy-2-benzothiazolyl)-4-thiazolecarboxylic acid, ST50405784, Luciferin, CHEBI:17165 BIG No : 48631 1.2. Recommended use and restrictions on use Use of the substance/mixture : Luciferin is a common bioluminescent reporter used for in-vivo imaging of the expression of the luc marker gene . -
Lightning Bugs
GENERAL I ARTICLE Lightning Bugs B Gajendra Babu and M Kannan Bioluminescence is the phenomenon of light emission by B Gajendra Babu and living organisms. This is well exhibited in many insects, M Kannan are PhD Scholars in the Depart and best understood in fireflies. Bioluminescence is the ment of Agricultural result of chemical reactions primarily involving luciferin, Entomology, Tamil Nadu luciferase and oxygen. Luciferin is a heat-resistant sub Agricultural University, strate and the source of light; luciferase, an enzyme, is the Coimbatore. trigger, and oxygen is the fuel. Luminescing insects utilize light as a mating signal, to attract their prey, or to defend themselves from enemies. This biological phenomenon has been exploited in space and medical research, insect pest management, and is also a useful tool in biotechnology. Bioluminescence is the ability of certain animals to produce light, a phenomenon primarily seen in marine organisms. It is the predominant source of light in deep oceans. The light production is the result of chemical reactions and hence it is also called 'chemiluminescence'. Bioluminescence is exhibited by bacteria, fungi, jellyfish, insects, algae, fish, clams, snails, crus taceans, etc. Bioluminescent bacteria have been found in ma rine; coastal and terrestrial environments. Some fungi can also emit light. Luminescent fungi such as Armillaria mellea and Mycena spp. produce a continuous (non-pulsing) light in their fruiting bodies and mycelium. It is believed that biolumines cent fungi use their light to attract insects that will spread the fungal spores, thus enhancing their reproduction. Some nema todes are luminescent due to the presence of symbiotic bacteria associated with them. -
Waikato CMS Volume I
CMS CONSERVATioN MANAGEMENT STRATEGY Waikato 2014–2024, Volume I Operative 29 September 2014 CONSERVATION MANAGEMENT STRATEGY WAIKATO 2014–2024, Volume I Operative 29 September 2014 Cover image: Rider on the Timber Trail, Pureora Forest Park. Photo: DOC September 2014, New Zealand Department of Conservation ISBN 978-0-478-15021-6 (print) ISBN 978-0-478-15023-0 (online) This document is protected by copyright owned by the Department of Conservation on behalf of the Crown. Unless indicated otherwise for specific items or collections of content, this copyright material is licensed for re- use under the Creative Commons Attribution 3.0 New Zealand licence. In essence, you are free to copy, distribute and adapt the material, as long as you attribute it to the Department of Conservation and abide by the other licence terms. To view a copy of this licence, visit http://creativecommons.org/licenses/by/3.0/nz/ This publication is produced using paper sourced from well-managed, renewable and legally logged forests. Contents Foreword 7 Introduction 8 Purpose of conservation management strategies 8 CMS structure 10 CMS term 10 Relationship with other Department of Conservation strategic documents and tools 10 Relationship with other planning processes 11 Legislative tools 12 Exemption from land use consents 12 Closure of areas 12 Bylaws and regulations 12 Conservation management plans 12 International obligations 13 Part One 14 1 The Department of Conservation in Waikato 14 2 Vision for Waikato—2064 14 2.1 Long-term vision for Waikato—2064 15 3 Distinctive -
Bioluminescence Is Produced by a Firefly-Like Luciferase but an Entirely
www.nature.com/scientificreports OPEN New Zealand glowworm (Arachnocampa luminosa) bioluminescence is produced by a Received: 8 November 2017 Accepted: 1 February 2018 frefy-like luciferase but an entirely Published: xx xx xxxx new luciferin Oliver C. Watkins1,2, Miriam L. Sharpe 1, Nigel B. Perry 2 & Kurt L. Krause 1 The New Zealand glowworm, Arachnocampa luminosa, is well-known for displays of blue-green bioluminescence, but details of its bioluminescent chemistry have been elusive. The glowworm is evolutionarily distant from other bioluminescent creatures studied in detail, including the frefy. We have isolated and characterised the molecular components of the glowworm luciferase-luciferin system using chromatography, mass spectrometry and 1H NMR spectroscopy. The purifed luciferase enzyme is in the same protein family as frefy luciferase (31% sequence identity). However, the luciferin substrate of this enzyme is produced from xanthurenic acid and tyrosine, and is entirely diferent to that of the frefy and known luciferins of other glowing creatures. A candidate luciferin structure is proposed, which needs to be confrmed by chemical synthesis and bioluminescence assays. These fndings show that luciferases can evolve independently from the same family of enzymes to produce light using structurally diferent luciferins. Glowworms are found in New Zealand and Australia, and are a major tourist attraction at sites located across both countries. In contrast to luminescent beetles such as the frefy (Coleoptera), whose bioluminescence has been well characterised (reviewed by ref.1), the molecular details of glowworm bioluminescence have remained elusive. Tese glowworms are the larvae of fungus gnats of the genus Arachnocampa, with eight species endemic to Australia and a single species found only in New Zealand2. -
The Colors of Firefly Bioluminescence: Enzyme Configuration and Species Specificity by H
THE COLORS OF FIREFLY BIOLUMINESCENCE: ENZYME CONFIGURATION AND SPECIES SPECIFICITY BY H. H. SELIGER AND W. D. MCELROY MCCOLLUM-PRATT INSTITUTE, JOHNS HOPKINS UNIVERSITY Communicated May 25, 1964 We have previously reported on an unusual stereospecificity of firefly luciferase for a D(-) isomer of firefly luciferin.' While both the D(-) and the L(+) form will react with ATP to liberate pyrophosphate in the reaction E + LH2 + ATP =- E. LH2AMP + PP, (1) only D(-) LH2AMP will react further, in the presence of oxygen, to produce bio- luminescence and an oxidized product. There is also a strong pH dependence of the color of the emitted light;2 in acidic buffer solutions, pH < 6.5, the intensity of the normal yellow-green emission, peaking at 562 ml,, decreases markedly and a low intensity red emission is observed, peaking at 616 miu. This is evidence that enzyme configuration is important in determining the resonance energy levels of the excited state responsible for light emission. Further Evidence for Configurational Changes.-Except for the partial denatura- tion of the enzyme in acidic buffer, the pH effect on the emission spectrum shift is completely reversible. We have been able to observe these same reversible red shifts in emission spectra by increasing the temperature of the reaction, by carrying out the reaction in 0.2 M urea and at normal pH values (7.6) in glycyl glycine buffer, by adding small concentrations of Zn++, Cd++, and Hg++ cations, as chlorides. The normalized emission spectra of the in vitro bioluminescence of purified Photinus pyralis luciferase for various Zn++ concentrations are shown in Figure 1. -
Hidden Diversity in the Brazilian Atlantic Rainforest
www.nature.com/scientificreports Corrected: Author Correction OPEN Hidden diversity in the Brazilian Atlantic rainforest: the discovery of Jurasaidae, a new beetle family (Coleoptera, Elateroidea) with neotenic females Simone Policena Rosa1, Cleide Costa2, Katja Kramp3 & Robin Kundrata4* Beetles are the most species-rich animal radiation and are among the historically most intensively studied insect groups. Consequently, the vast majority of their higher-level taxa had already been described about a century ago. In the 21st century, thus far, only three beetle families have been described de novo based on newly collected material. Here, we report the discovery of a completely new lineage of soft-bodied neotenic beetles from the Brazilian Atlantic rainforest, which is one of the most diverse and also most endangered biomes on the planet. We identifed three species in two genera, which difer in morphology of all life stages and exhibit diferent degrees of neoteny in females. We provide a formal description of this lineage for which we propose the new family Jurasaidae. Molecular phylogeny recovered Jurasaidae within the basal grade in Elateroidea, sister to the well-sclerotized rare click beetles, Cerophytidae. This placement is supported by several larval characters including the modifed mouthparts. The discovery of a new beetle family, which is due to the limited dispersal capability and cryptic lifestyle of its wingless females bound to long-term stable habitats, highlights the importance of the Brazilian Atlantic rainforest as a top priority area for nature conservation. Coleoptera (beetles) is by far the largest insect order by number of described species. Approximately 400,000 species have been described, and many new ones are still frequently being discovered even in regions with histor- ically high collecting activity1. -
Brazilian Bioluminescent Beetles: Reflections on Catching Glimpses of Light in the Atlantic Forest and Cerrado
Anais da Academia Brasileira de Ciências (2018) 90(1 Suppl. 1): 663-679 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201820170504 www.scielo.br/aabc | www.fb.com/aabcjournal Brazilian Bioluminescent Beetles: Reflections on Catching Glimpses of Light in the Atlantic Forest and Cerrado ETELVINO J.H. BECHARA and CASSIUS V. STEVANI Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, 05508-000 São Paulo, SP, Brazil Manuscript received on July 4, 2017; accepted for publication on August 11, 2017 ABSTRACT Bioluminescence - visible and cold light emission by living organisms - is a worldwide phenomenon, reported in terrestrial and marine environments since ancient times. Light emission from microorganisms, fungi, plants and animals may have arisen as an evolutionary response against oxygen toxicity and was appropriated for sexual attraction, predation, aposematism, and camouflage. Light emission results from the oxidation of a substrate, luciferin, by molecular oxygen, catalyzed by a luciferase, producing oxyluciferin in the excited singlet state, which decays to the ground state by fluorescence emission. Brazilian Atlantic forests and Cerrados are rich in luminescent beetles, which produce the same luciferin but slightly mutated luciferases, which result in distinct color emissions from green to red depending on the species. This review focuses on chemical and biological aspects of Brazilian luminescent beetles (Coleoptera) belonging to the Lampyridae (fireflies), Elateridae (click-beetles), and Phengodidae (railroad-worms) families. The ATP- dependent mechanism of bioluminescence, the role of luciferase tuning the color of light emission, the “luminous termite mounds” in Central Brazil, the cooperative roles of luciferase and superoxide dismutase against oxygen toxicity, and the hypothesis on the evolutionary origin of luciferases are highlighted. -
Ecological Consequences Artificial Night Lighting
Rich Longcore ECOLOGY Advance praise for Ecological Consequences of Artificial Night Lighting E c Ecological Consequences “As a kid, I spent many a night under streetlamps looking for toads and bugs, or o l simply watching the bats. The two dozen experts who wrote this text still do. This o of isis aa definitive,definitive, readable,readable, comprehensivecomprehensive reviewreview ofof howhow artificialartificial nightnight lightinglighting affectsaffects g animals and plants. The reader learns about possible and definite effects of i animals and plants. The reader learns about possible and definite effects of c Artificial Night Lighting photopollution, illustrated with important examples of how to mitigate these effects a on species ranging from sea turtles to moths. Each section is introduced by a l delightful vignette that sends you rushing back to your own nighttime adventures, C be they chasing fireflies or grabbing frogs.” o n —JOHN M. MARZLUFF,, DenmanDenman ProfessorProfessor ofof SustainableSustainable ResourceResource Sciences,Sciences, s College of Forest Resources, University of Washington e q “This book is that rare phenomenon, one that provides us with a unique, relevant, and u seminal contribution to our knowledge, examining the physiological, behavioral, e n reproductive, community,community, and other ecological effectseffects of light pollution. It will c enhance our ability to mitigate this ominous envirenvironmentalonmental alteration thrthroughough mormoree e conscious and effective design of the built environment.” -
Coleoptera: Lampyridae)
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2020-03-23 Advances in the Systematics and Evolutionary Understanding of Fireflies (Coleoptera: Lampyridae) Gavin Jon Martin Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Martin, Gavin Jon, "Advances in the Systematics and Evolutionary Understanding of Fireflies (Coleoptera: Lampyridae)" (2020). Theses and Dissertations. 8895. https://scholarsarchive.byu.edu/etd/8895 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected]. Advances in the Systematics and Evolutionary Understanding of Fireflies (Coleoptera: Lampyridae) Gavin Jon Martin A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Seth M. Bybee, Chair Marc A. Branham Jamie L. Jensen Kathrin F. Stanger-Hall Michael F. Whiting Department of Biology Brigham Young University Copyright © 2020 Gavin Jon Martin All Rights Reserved ABSTRACT Advances in the Systematics and Evolutionary Understanding of Fireflies (Coleoptera: Lampyridae) Gavin Jon Martin Department of Biology, BYU Doctor of Philosophy Fireflies are a cosmopolitan group of bioluminescent beetles classified in the family Lampyridae. The first catalogue of Lampyridae was published in 1907 and since that time, the classification and systematics of fireflies have been in flux. Several more recent catalogues and classification schemes have been published, but rarely have they taken phylogenetic history into account. Here I infer the first large scale anchored hybrid enrichment phylogeny for the fireflies and use this phylogeny as a backbone to inform classification. -
The Gloworm Volume XXII No. 3, May-June 2015
The Gloworm If you want to live and thrive, let the spider run alive. - American Quaker saying Volume XXII No. 3 May–June 2015 An Extension Newsletter of the Dept. of Biochemistry, Molecular Biology, Entomology, & Plant Pathology Ada Fulgham’s Gift of 23 Hercules Beetles Will Delight Arthropod Zoo Visitors by Dr. John Guyton We do not see a Hercules beetle every summer. In fact, we sometimes go for 3 or 4 years without a camper collecting one, and we collect in habitats where you would expect to find them. So imagine our surprise when Ada Fulgham, whose older sister Lilli has attended Bug & Plant Camp and Beekeeping Camp with their father, nonchalantly walked in with a critter keeper full of beetles and a bucketful of host material. We saw a couple adults and a couple larvae on the top of the substrate, but after Ada left, we emptied out the material in the critter keeper and counted 12 adults and 11 larvae. Wow! She was not kidding when she told us she had found a lot of beetles. Our small arthropod zoo features a collection of exciting exotic species as well as common local species that are currently active. We almost always have something interesting showing up, so the zoo is continually evolving. We have already reviewed our guidelines to raising insects and made a quick trip around the internet as we discussed our plans for all of these beetles. Watch for updates as we learn to care for Hercules beetles. Clockwise from left: Ada Fulgham, her gift of 12 adult beetles, and 11 grubs. -
Kjaerandsen Sciaroidea WIP.Pdf
Species recognition trade-off between structural wing colours and terminalia in fungus gnats ? J. Kjaerandsen Museum of Zoology Lund University Sweden Structural colours in flies Reflective scales in Diptera – Mosquitoes: Toxorhynchites manicatus (Japan) Reflective body scales in fungus gnats – only in the genus Allactoneura ? Hymenoptera: Eulophidae PhD student Ekaterina Shevtsova Wings imbedded in a medium or studied on a white background will not display their structural colours Slide with wings embedded in Canada balsam Dry specimens studied on a pure white background Mycetophilidae: Rymosia fasciata Keroplatidae: Proceroplatus scalprifera WIPs — Wing Interference Patterns i for interference Bolitophila occlusa Hybotidae: Ocydromia glabricula Cordyla sp. (California) Exechia nugatoria Photo: “Klaas” at Diptera.info, 2008 (= nigroscutellata) (California) Photos: Peter Kerr, 2008 My photo of the same species’ WIP Photos of structural wing colours on internet WIPs — Wing Interference Patterns i for interference • — Genetics of pigment patterns • — Thin Film Interference • — Newton Scale Metering • — Exechiini • — Lygistorrhinidae • — Keroplatidae • — The trade-off Pigmentation in brown, yellow and black: Spatiotemporally regulated by yellow and ebony MELANINS Leia Proceroplatus (Japan) (New Caledonia) Scientists unlock mystery of animal colour patterns Genetic April 22 control of pigment 2010 patterns T. Werner, S. Koshikawa, T. M. Williams, S. B. Carroll, Nature 464, 1143 (2010) Pigments are only a part of the ”mystery of wing colour