Ecological Consequences Artificial Night Lighting

Total Page:16

File Type:pdf, Size:1020Kb

Ecological Consequences Artificial Night Lighting Rich Longcore ECOLOGY Advance praise for Ecological Consequences of Artificial Night Lighting E c Ecological Consequences “As a kid, I spent many a night under streetlamps looking for toads and bugs, or o l simply watching the bats. The two dozen experts who wrote this text still do. This o of isis aa definitive,definitive, readable,readable, comprehensivecomprehensive reviewreview ofof howhow artificialartificial nightnight lightinglighting affectsaffects g animals and plants. The reader learns about possible and definite effects of i animals and plants. The reader learns about possible and definite effects of c Artificial Night Lighting photopollution, illustrated with important examples of how to mitigate these effects a on species ranging from sea turtles to moths. Each section is introduced by a l delightful vignette that sends you rushing back to your own nighttime adventures, C be they chasing fireflies or grabbing frogs.” o n —JOHN M. MARZLUFF,, DenmanDenman ProfessorProfessor ofof SustainableSustainable ResourceResource Sciences,Sciences, s College of Forest Resources, University of Washington e q “This book is that rare phenomenon, one that provides us with a unique, relevant, and u seminal contribution to our knowledge, examining the physiological, behavioral, e n reproductive, community,community, and other ecological effectseffects of light pollution. It will c enhance our ability to mitigate this ominous envirenvironmentalonmental alteration thrthroughough mormoree e conscious and effective design of the built environment.” s TEPHEN ELLERT o —STEPHEN R. KELLERT,, TweedyTweedy OrdwayOrdway ProfessorProfessor ofof SocialSocial Ecology,Ecology, f YaleYale University, School of Forestry and Environmental Studies A r “A marmarvelous,velous, up-to-date summarsummaryy of the many negative influences of overabundant t i night lighting, or light pollution, on life of all kinds: mammals, birds, reptiles, fish, f i insects,insects, andand plants.”plants.” c i —ARRTHURTHUR UPGREN,, seniorsenior rresearchesearch scientist, YYaleale UniversityUniversity,, andand a l emeritus professorprofessor of astronomy, Wesleyan University N i g Catherine Rich holds degrees in psychology, geography, and law. Travis Longcore h isis researchresearch assistant professor of geography at the University of Southern California t and lectures regularly at University of California at Los Angeles. They co-founded L and run The Urban Wildlands Group, a Los Angeles–based conservation nonprofit. i g h Cover design by Brighid Willson t i Cover photo: “Wolf’s“Wolf’s Moon” by R. N. Cohen ISBN 1-55963-129-5 n g 90000 Edited by Washington • Covelo • London Catherine Rich • Travis Longcore www.islandpress.org All Island Press books are printed on recycled, All Island Press books are printed on recycled, 9 781559 631297 acid-freeacid-free paper.paper. About Island Press Island Press is the only nonprofit organization in the United States whose principal purpose is the publication of books on environmental issues and natural resource management. We provide solutions-oriented informa- tion to professionals, public officials, business and community leaders, and concerned citizens who are shaping responses to environmental problems. In 2006, Island Press celebrates its twenty-first anniversary as the leading provider of timely and practical books that take a multidiscipli- nary approach to critical environmental concerns. Our growing list of titles reflects our commitment to bringing the best of an expanding body of literature to the environmental community throughout North Amer- ica and the world. Support for Island Press is provided by the Agua Fund, The Geraldine R. Dodge Foundation, Doris Duke Charitable Foundation, The William and Flora Hewlett Foundation, Kendeda Sustainability Fund of the Tides Foundation, Forrest C. Lattner Foundation, The Henry Luce Founda- tion, The John D. and Catherine T. MacArthur Foundation, The Marisla Foundation, The Andrew W. Mellon Foundation, Gordon and Betty Moore Foundation, The Curtis and Edith Munson Foundation, Oak Foundation, The Overbrook Foundation, The David and Lucile Packard Foundation, The Winslow Foundation, and other generous donors. The opinions expressed in this book are those of the author(s) and do not necessarily reflect the views of these foundations. Ecological Consequences of Artificial Night Lighting Ecological Consequences of Artificial Night Lighting Edited by Catherine Rich • Travis Longcore / Washington • Covelo • London Copyright © 2006 Island Press All rights reserved under International and Pan-American Copyright Conventions. No part of this book may be reproduced in any form or by any means without permission in writing from the publisher: Island Press, 1718 Connecticut Avenue, N.W., Suite 300, Washington, DC 20009. ISLAND PRESS is a trademark of The Center for Resource Economics. No copyright claim is made in the work of Robert N. Fisher, an employee of the federal government. Library of Congress Cataloging-in-Publication Data Ecological consequences of artificial night lighting / edited by Catherine Rich and Travis Longcore p. cm. Includes bibliographical references. ISBN 1–55963–128–7 (cloth : alk. paper) — ISBN 1–55963–129–5 (pbk. : alk. paper) 1. Exterior lighting—Environmental aspects. I. Rich, Catherine. II. Longcore, Travis. QH545.E98E26 2005 577.27'2—dc22 2005020202 British Cataloguing-in-Publication Data available. Book design: Brighid Willson Printed on recycled, acid-free paper Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 For our parents, and in memory of Cherryl Wilson Night is certainly more novel and less profane than day. —HENRY DAVID THOREAU (1817–1862), “Night and Moonlight,” 1863 Contents Preface xiii 1. Introduction 1 Catherine Rich and Travis Longcore PART I. MAMMALS Night, Venezuela • Alexander von Humboldt 16 2. Effects of Artificial Night Lighting on Terrestrial Mammals 19 Paul Beier 3. Bats and Their Insect Prey at Streetlights 43 Jens Rydell PART II. BIRDS Night, Maine Woods • Bernd Heinrich 62 4. Effects of Artificial Night Lighting on Migrating Birds 67 Sidney A. Gauthreaux Jr. and Carroll G. Belser xi xii Contents 5. Influences of Artificial Light on Marine Birds 94 William A. Montevecchi 6. Road Lighting and Grassland Birds: Local Influence of Road Lighting on a Black-Tailed Godwit Population 114 Johannes G. de Molenaar, Maria E. Sanders, and Dick A. Jonkers PART III. REPTILES AND AMPHIBIANS Night, Tortuguero • David Ehrenfeld 138 7. Protecting Sea Turtles from Artificial Night Lighting at Florida’s Oceanic Beaches 141 Michael Salmon 8. Night Lights and Reptiles: Observed and Potential Effects 169 Gad Perry and Robert N. Fisher 9. Observed and Potential Effects of Artificial Night Lighting on Anuran Amphibians 192 Bryant W. Buchanan 10. Influence of Artificial Illumination on the Nocturnal Behavior and Physiology of Salamanders 221 Sharon E. Wise and Bryant W. Buchanan PART IV. FISHES Night, Atlantic • Carl Safina 253 11. Artificial Night Lighting and Fishes 257 Barbara Nightingale, Travis Longcore, and Charles A. Simenstad Contents xiii PART V. INVERTEBRATES Night, Tropics • Philip J. DeVries 278 12. Artificial Night Lighting and Insects: Attraction of Insects to Streetlamps in a Rural Setting in Germany 281 Gerhard Eisenbeis 13. Effects of Artificial Night Lighting on Moths 305 Kenneth D. Frank 14. Stray Light, Fireflies, and Fireflyers 345 James E. Lloyd 15. Artificial Light at Night in Freshwater Habitats and Its Potential Ecological Effects 365 Marianne V. Moore, Susan J. Kohler, and Melani S. Cheers PART VI. PLANTS Night, Massachusetts • Henry David Thoreau 386 16. Physiology of Plant Responses to Artificial Lighting 389 Winslow R. Briggs 17. Synthesis 413 Travis Longcore and Catherine Rich About the Contributors 431 Index 435 Preface For people who care about the natural world, the unrelentingly destruc- tive activities of humanity are all too familiar. Most of these are painfully obvious to anyone watching the transformation of long-appreciated land- scapes. We know death by bulldozer when we see it. Seeing may be the key. We are for the most part diurnal, and visual, and as we consider the transformation of the planet, mostly we envision changes that we are able to see by day. It is an inherent bias in our collec- tive thinking. But as we light up the night, with ever more powerful lights, is it not obvious, giving the matter some thought, that we are wreaking havoc on creatures with physiologies far more delicate than ours, inter- fering with the lifeways of suites of organisms that have evolved over the millennia with a dependable pattern of light and dark? All this happens at times when most of us are sleeping. As the night is ever more brightly lit, at least we can close the shutters. But what of the animals and plants? I imagine myself in the position of other creatures, unable to control or escape their environments, which we have controlled for them—whales subject to sonar far beyond any sound their ears were meant to accommo- date, birds migrating thousands of miles, thrown off course by lights with no limits. We are ultimately deprived of their beauty as they die off by the millions, from our careless expansion into all realms of the Earth. My own love for night started simply as an aesthetic appreciation, and over the last twenty-five years or so I have been every year more pro- foundly saddened by the glare foisted on us by brighter and brighter lights. Long ago, as an undergraduate student, I loved to walk the neighborhoods
Recommended publications
  • Fauna Lepidopterologica Volgo-Uralensis" 150 Years Later: Changes and Additions
    ©Ges. zur Förderung d. Erforschung von Insektenwanderungen e.V. München, download unter www.zobodat.at Atalanta (August 2000) 31 (1/2):327-367< Würzburg, ISSN 0171-0079 "Fauna lepidopterologica Volgo-Uralensis" 150 years later: changes and additions. Part 5. Noctuidae (Insecto, Lepidoptera) by Vasily V. A n ik in , Sergey A. Sachkov , Va d im V. Z o lo t u h in & A n drey V. Sv ir id o v received 24.II.2000 Summary: 630 species of the Noctuidae are listed for the modern Volgo-Ural fauna. 2 species [Mesapamea hedeni Graeser and Amphidrina amurensis Staudinger ) are noted from Europe for the first time and one more— Nycteola siculana Fuchs —from Russia. 3 species ( Catocala optata Godart , Helicoverpa obsoleta Fabricius , Pseudohadena minuta Pungeler ) are deleted from the list. Supposedly they were either erroneously determinated or incorrect noted from the region under consideration since Eversmann 's work. 289 species are recorded from the re­ gion in addition to Eversmann 's list. This paper is the fifth in a series of publications1 dealing with the composition of the pres­ ent-day fauna of noctuid-moths in the Middle Volga and the south-western Cisurals. This re­ gion comprises the administrative divisions of the Astrakhan, Volgograd, Saratov, Samara, Uljanovsk, Orenburg, Uralsk and Atyraus (= Gurjev) Districts, together with Tataria and Bash­ kiria. As was accepted in the first part of this series, only material reliably labelled, and cover­ ing the last 20 years was used for this study. The main collections are those of the authors: V. A n i k i n (Saratov and Volgograd Districts), S.
    [Show full text]
  • Species List
    1 of 16 Claypits 20/09/2021 species list Group Taxon Common Name Earliest Latest Records acarine Aceria macrorhyncha 2012 2012 1 acarine Aceria nalepai 2018 2018 1 amphibian Bufo bufo Common Toad 2001 2018 6 amphibian Lissotriton helveticus Palmate Newt 2001 2018 5 amphibian Lissotriton vulgaris Smooth Newt 2001 2001 1 annelid Hirudinea Leech 2011 2011 1 bird Acanthis cabaret Lesser Redpoll 2013 2013 1 bird Acrocephalus schoenobaenus Sedge Warbler 2001 2011 2 bird Aegithalos caudatus Long-tailed Tit 2011 2014 2 bird Alcedo atthis Kingfisher 2020 2020 1 bird Anas platyrhynchos Mallard 2013 2018 4 bird Anser Goose 2011 2011 1 bird Ardea cinerea Grey Heron 2013 2013 1 bird Aythya fuligula Tufted Duck 2013 2014 1 bird Buteo buteo Buzzard 2013 2014 2 bird Carduelis carduelis Goldfinch 2011 2014 5 bird Chloris chloris Greenfinch 2011 2014 6 bird Chroicocephalus ridibundus Black-headed Gull 2014 2014 1 bird Coloeus monedula Jackdaw 2011 2013 2 bird Columba livia Feral Pigeon 2014 2014 1 bird Columba palumbus Woodpigeon 2011 2018 8 bird Corvus corax Raven 2020 2020 1 bird Corvus corone Carrion Crow 2011 2014 5 bird Curruca communis Whitethroat 2011 2014 4 bird Cyanistes caeruleus Blue Tit 2011 2014 6 bird Cygnus olor Mute Swan 2013 2014 4 bird Delichon urbicum House Martin 2011 2011 1 bird Emberiza schoeniclus Reed Bunting 2013 2014 2 bird Erithacus rubecula Robin 2011 2014 7 bird Falco peregrinus Peregrine 2013 2013 1 bird Falco tinnunculus Kestrel 2010 2020 3 bird Fringilla coelebs Chaffinch 2011 2014 7 bird Gallinula chloropus Moorhen 2013
    [Show full text]
  • List of UK BAP Priority Terrestrial Invertebrate Species (2007)
    UK Biodiversity Action Plan List of UK BAP Priority Terrestrial Invertebrate Species (2007) For more information about the UK Biodiversity Action Plan (UK BAP) visit https://jncc.gov.uk/our-work/uk-bap/ List of UK BAP Priority Terrestrial Invertebrate Species (2007) A list of the UK BAP priority terrestrial invertebrate species, divided by taxonomic group into: Insects, Arachnids, Molluscs and Other invertebrates (Crustaceans, Worms, Cnidaria, Bryozoans, Millipedes, Centipedes), is provided in the tables below. The list was created between 1995 and 1999, and subsequently updated in response to the Species and Habitats Review Report published in 2007. The table also provides details of the species' occurrences in the four UK countries, and describes whether the species was an 'original' species (on the original list created between 1995 and 1999), or was added following the 2007 review. All original species were provided with Species Action Plans (SAPs), species statements, or are included within grouped plans or statements, whereas there are no published plans for the species added in 2007. Scientific names and commonly used synonyms derive from the Nameserver facility of the UK Species Dictionary, which is managed by the Natural History Museum. Insects Scientific name Common Taxon England Scotland Wales Northern Original UK name Ireland BAP species? Acosmetia caliginosa Reddish Buff moth Y N Yes – SAP Acronicta psi Grey Dagger moth Y Y Y Y Acronicta rumicis Knot Grass moth Y Y N Y Adscita statices The Forester moth Y Y Y Y Aeshna isosceles
    [Show full text]
  • Download List of Notable Species in Edinburgh
    Group Scientific name Common name International / UK status Scottish status Lothian status marine mammal Balaenoptera acutorostrata Minke Whale HSD PS W5 SBL SO1 marine mammal Delphinus delphis Common Dolphin Bo HSD PS W5 SBL SO1 marine mammal Halichoerus grypus Grey Seal Bo HSD marine mammal Lagenorhynchus albirostris White-beaked Dolphin Bo HSD PS W5 SBL SO1 marine mammal Phocoena phocoena Common Porpoise Bo GVU HSD PS W5 SBL SO1 marine mammal Tursiops truncatus Bottle-Nosed Dolphin Bo HSD PS W5 SBL SO1 terrestrial mammal Arvicola terrestris European Water Vole PS W5 SBL Sc5 terrestrial mammal Erinaceus europaeus West European Hedgehog PS terrestrial mammal Lepus europaeus Brown Hare PS SBL Sc5 terrestrial mammal Lepus timidus Mountain Hare HSD PS SBL Sc5 terrestrial mammal Lutra lutra European Otter HSD PS W5 SBL SO1 terrestrial mammal Meles meles Eurasian Badger BA SBL SO1 terrestrial mammal Micromys minutus Harvest Mouse PS E? terrestrial mammal Myotis daubentonii Daubenton's Bat Bo HSD W5 SBL terrestrial mammal Myotis nattereri Natterer's Bat Bo HSD W5 SBL terrestrial mammal Pipistrellus pipistrellus Pipistrellus pipistrellus Bo HSD W5 terrestrial mammal Pipistrellus pygmaeus Soprano Pipistrelle PS SBL terrestrial mammal Plecotus auritus Brown Long-eared Bat Bo HSD PS W5 SBL terrestrial mammal Sciurus vulgaris Eurasian Red Squirrel PS W5 SBL SO1 bird Accipiter nisus Eurasian Sparrowhawk Bo bird Actitis hypoleucos Common Sandpiper Bo bird Alauda arvensis Sky Lark BCR BD SBL bird Alcedo atthis Common Kingfisher BCA W1 SBL bird Anas
    [Show full text]
  • Poecilia Wingei
    MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV BOTANIKY A ZOOLOGIE AKADEMIE VĚD ČR ÚSTAV BIOLOGIE OBRATLOVCŮ, V.V.I. Personality, reprodukční strategie a pohlavní výběr u vybraných taxonů ryb Disertační práce Radomil Řežucha ŠKOLITEL: doc. RNDr. MARTIN REICHARD, Ph.D. BRNO 2014 Bibliografický záznam Autor: Mgr. Radomil Řežucha Přírodovědecká fakulta, Masarykova univerzita Ústav botaniky a zoologie Název práce: Personality, reprodukční strategie a pohlavní výběr u vybraných taxonů ryb Studijní program: Biologie Studijní obor: Zoologie Školitel: doc. RNDr. Martin Reichard, Ph.D. Akademie věd ČR Ústav biologie obratlovců, v.v.i. Akademický rok: 2013/2014 Počet stran: 139 Klíčová slova: Pohlavní výběr, alternativní rozmnožovací takti- ky, osobnostní znaky, sociální prostředí, zkuše- nost, Rhodeus amarus, Poecilia wingei Bibliographic Entry Author: Mgr. Radomil Řežucha Faculty of Science, Masaryk University Department of Botany and Zoology Title of Dissertation: Personalities, reproductive tactics and sexual selection in fishes Degree Programme: Biology Field of Study: Zoology Supervisor doc. RNDr. Martin Reichard, Ph.D. Academy of Sciences of the Czech Republic Institute of Vertebrate Biology, v.v.i. Academic Year: 2013/2014 Number of pages: 139 Keywords: Sexual selection, alternative mating tactics, per- sonality traits, social environment, experience, Rhodeus amarus, Poecilia wingei Abstrakt Vliv osobnostních znaků na alternativní reprodukční taktiky (charakteris- tické typy reprodukčního chování) patří mezi zanedbávané oblasti studia po- hlavního výběru. Současně bývá opomíjen i vliv sociálního prostředí a zkuše- nosti na tyto taktiky, a studium schopnosti jedinců v průběhu námluv mas- kovat své morfologické nedostatky. Jako studovaný systém alternativních rozmnožovacích taktik byl zvolen v přírodě nejběžnější komplex – sneaker × guarder (courter) komplex, popisující teritoriální a neteritoriální role samců.
    [Show full text]
  • Preliminary Checklist of Extant Endemic Species and Subspecies of the Windward Dutch Caribbean (St
    Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos, P.A.J. Bakker, R.J.H.G. Henkens, J. A. de Freitas, A.O. Debrot Wageningen University & Research rapport C067/18 Preliminary checklist of extant endemic species and subspecies of the windward Dutch Caribbean (St. Martin, St. Eustatius, Saba and the Saba Bank) Authors: O.G. Bos1, P.A.J. Bakker2, R.J.H.G. Henkens3, J. A. de Freitas4, A.O. Debrot1 1. Wageningen Marine Research 2. Naturalis Biodiversity Center 3. Wageningen Environmental Research 4. Carmabi Publication date: 18 October 2018 This research project was carried out by Wageningen Marine Research at the request of and with funding from the Ministry of Agriculture, Nature and Food Quality for the purposes of Policy Support Research Theme ‘Caribbean Netherlands' (project no. BO-43-021.04-012). Wageningen Marine Research Den Helder, October 2018 CONFIDENTIAL no Wageningen Marine Research report C067/18 Bos OG, Bakker PAJ, Henkens RJHG, De Freitas JA, Debrot AO (2018). Preliminary checklist of extant endemic species of St. Martin, St. Eustatius, Saba and Saba Bank. Wageningen, Wageningen Marine Research (University & Research centre), Wageningen Marine Research report C067/18 Keywords: endemic species, Caribbean, Saba, Saint Eustatius, Saint Marten, Saba Bank Cover photo: endemic Anolis schwartzi in de Quill crater, St Eustatius (photo: A.O. Debrot) Date: 18 th of October 2018 Client: Ministry of LNV Attn.: H. Haanstra PO Box 20401 2500 EK The Hague The Netherlands BAS code BO-43-021.04-012 (KD-2018-055) This report can be downloaded for free from https://doi.org/10.18174/460388 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified.
    [Show full text]
  • The Queen's 90Th Birthday Beacons
    The Queen’s 90th Birthday Beacons 21st April 2016 YOUR GUIDE TO TAKING PART Introduction There is a long and unbroken tradition in our country of beacon of the kind lit for The Queen’s Diamond Jubilee in celebrating Royal jubilees, weddings, coronations and 2012 and VE Day in May 2015. The choice is yours. special birthdays with the lighting of beacons - on top of mountains, churches and castle battlements, on town and However, if you wish to purchase one of the gas-fuelled village greens, farms, country parks and estates, and beacons being specially manufactured for this unique occasion, along the beaches surrounding our shores. The last major please go to page 4. You can order your bottled gas from beacon celebration was on Her Majesty The Queen’s Flogas Britain Ltd, whose details are provided on this page. Diamond Jubilee on 4th June 2012, which many of those receiving this guide successfully took part in. For the first time in history, members of the Army Cadet Force, We all wish representing the youth of our nation, will be taking gas-fuelled There will be a further opportunity to celebrate on Thursday beacons to the top of the four highest peaks in the United 21st April 2016, when beacons will be lit throughout the Kingdom - Ben Nevis, Scotland; Mount Snowdon, Wales; United Kingdom, Channel Islands, Isle of Man and UK Scafell Pike, England, and Slieve Donard, Northern Ireland. Happy Overseas Territories in celebration of Her Majesty The Queen’s 90th Birthday that day. To date, 255 local communities, You may use your beacon lighting and associated events as a including town and parish councils, local authorities, youth way of raising funds for local or national charities.
    [Show full text]
  • Can Mammalian Vision Be Restored Following Optic Nerve Degeneration?
    Journal name: Journal of Neurorestoratology Article Designation: REVIEW Year: 2016 Volume: 4 Journal of Neurorestoratology Dovepress Running head verso: Kuffler Running head recto: Restoring vision following an optic nerve injury open access to scientific and medical research DOI: http://dx.doi.org/10.2147/JN.S109523 Open Access Full Text Article REVIEW Can mammalian vision be restored following optic nerve degeneration? Damien P Kuffler Abstract: For most adult vertebrates, glaucoma, trauma, and tumors close to retinal ganglion cells (RGCs) result in their neuron death and no possibility of vision reestablishment. For more Institute of Neurobiology, School of Medicine, University of Puerto Rico, distant traumas, RGCs survive, but their axons do not regenerate into the distal nerve stump San Juan, Puerto Rico due to regeneration-inhibiting factors and absence of regeneration-promoting factors. The annual clinical incidence of blindness in the United States is 1:28 (4%) for persons >40 years, with the total number of blind people approaching 1.6 million. Thus, failure of optic nerves to regenerate is a significant problem. However, following transection of the optic nerve of adult amphibians and fish, the RGCs survive and their axons regenerate through the distal optic nerve stump and reestablish appropriate functional retinotopic connections and fully functional For personal use only. vision. This is because they lack factors that inhibit axon regeneration and possess factors that promote regeneration. The axon regeneration in lower vertebrates has led to extensive studies by using them as models in studies that attempt to understand the mechanisms by which axon regeneration is promoted, so that these mechanisms might be applied to higher vertebrates for restoring vision.
    [Show full text]
  • Research Techniques in Animal Ecology
    Research Techniques in Animal Ecology Methods and Cases in Conservation Science Mary C. Pearl, Editor Methods and Cases in Conservation Science Tropical Deforestation: Small Farmers and Land Clearing in the Ecuadorian Amazon Thomas K. Rudel and Bruce Horowitz Bison: Mating and Conservation in Small Populations Joel Berger and Carol Cunningham, Population Management for Survival and Recovery: Analytical Methods and Strategies in Small Population Conservation Jonathan D. Ballou, Michael Gilpin, and Thomas J. Foose, Conserving Wildlife: International Education and Communication Approaches Susan K. Jacobson Remote Sensing Imagery for Natural Resources Management: A First Time User’s Guide David S. Wilkie and John T. Finn At the End of the Rainbow? Gold, Land, and People in the Brazilian Amazon Gordon MacMillan Perspectives in Biological Diversity Series Conserving Natural Value Holmes Rolston III Series Editor, Mary C. Pearl Series Advisers, Christine Padoch and Douglas Daly Research Techniques in Animal Ecology Controversies and Consequences Luigi Boitani and Todd K. Fuller Editors C COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 2000 by Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data Research techniques in animal ecology : controversies and consequences / Luigi Boitani and Todd K. Fuller, editors. p. cm. — (Methods and cases in conservation science) Includes bibliographical references (p. ). ISBN 0–231–11340–4 (cloth : alk. paper)—ISBN 0–231–11341–2 (paper : alk. paper) 1. Animal ecology—Research—Methodology. I. Boitani, Luigi. II. Fuller, T. K. III. Series. QH541.2.R47 2000 591.7′07′2—dc21 99–052230 ϱ Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper.
    [Show full text]
  • Zoogeography of the Holarctic Species of the Noctuidae (Lepidoptera): Importance of the Bering Ian Refuge
    © Entomologica Fennica. 8.XI.l991 Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Bering ian refuge Kauri Mikkola, J, D. Lafontaine & V. S. Kononenko Mikkola, K., Lafontaine, J.D. & Kononenko, V. S. 1991 : Zoogeography of the Holarctic species of the Noctuidae (Lepidoptera): importance of the Beringian refuge. - En to mol. Fennica 2: 157- 173. As a result of published and unpublished revisionary work, literature compi­ lation and expeditions to the Beringian area, 98 species of the Noctuidae are listed as Holarctic and grouped according to their taxonomic and distributional history. Of the 44 species considered to be "naturall y" Holarctic before this study, 27 (61 %) are confirmed as Holarctic; 16 species are added on account of range extensions and 29 because of changes in their taxonomic status; 17 taxa are deleted from the Holarctic list. This brings the total of the group to 72 species. Thirteen species are considered to be introduced by man from Europe, a further eight to have been transported by man in the subtropical areas, and five migrant species, three of them of Neotropical origin, may have been assisted by man. The m~jority of the "naturally" Holarctic species are associated with tundra habitats. The species of dry tundra are frequently endemic to Beringia. In the taiga zone, most Holarctic connections consist of Palaearctic/ Nearctic species pairs. The proportion ofHolarctic species decreases from 100 % in the High Arctic to between 40 and 75 % in Beringia and the northern taiga zone, and from between 10 and 20 % in Newfoundland and Finland to between 2 and 4 % in southern Ontario, Central Europe, Spain and Primorye.
    [Show full text]
  • TRPV1 and Endocannabinoids: Emerging Molecular Signals That Modulate Mammalian Vision
    Cells 2014, 3, 914-938; doi:10.3390/cells3030914 OPEN ACCESS cells ISSN 2073-4409 www.mdpi.com/journal/cells Review TRPV1 and Endocannabinoids: Emerging Molecular Signals that Modulate Mammalian Vision 1,2,†, 1,2,† 1,† 1,2,3,4, Daniel A. Ryskamp *, Sarah Redmon , Andrew O. Jo and David Križaj * 1 Department of Ophthalmology & Visual Sciences, Moran Eye Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; E-Mails: [email protected] (S.R.); [email protected] (A.O.J.) 2 Interdepartmental Program in Neuroscience, University of Utah School of Medicine, Salt Lake City, UT 84132, USA 3 Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA 4 Center for Translational Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA † Those authors contributed equally to this work. * Authors to whom correspondence should be addressed; E-Mails: [email protected] (D.A.R.); [email protected] (D.K.); Tel.: +1-801-213-2777 (D.K.); Fax: +1-801-587-8314 (D.K.). Received: 1 July 2014; in revised form: 27 August 2014 / Accepted: 5 September 2014 / Published: 12 September 2014 Abstract: Transient Receptor Potential Vanilloid 1 (TRPV1) subunits form a polymodal cation channel responsive to capsaicin, heat, acidity and endogenous metabolites of polyunsaturated fatty acids. While originally reported to serve as a pain and heat detector in the peripheral nervous system, TRPV1 has been implicated in the modulation of blood flow and osmoregulation but also neurotransmission, postsynaptic neuronal excitability and synaptic plasticity within the central nervous system.
    [Show full text]
  • Rapid Pest Risk Analysis (PRA) for Lambdina Fiscellaria
    Rapid Pest Risk Analysis (PRA) for Lambdina fiscellaria July 2018 Larva of the eastern hemlock looper, Lambdina fiscellaria fiscellaria . Image courtesy Connecticut Agricultural Experiment Station, Bugwood.org PRA for Lambdina fiscellaria © M G Tuffen Rapid Pest Risk Analysis (PRA) for Lambdina fiscellaria 4th November 2018 Author: M G Tuffen Address: Teagasc, Ashtown Research Centre, Dublin 15, D15 KN3K, Ireland [email protected] This document was produced as part of the Department of Agriculture, Food and the Marine (DAFM) funded Forestry Management Research (FORM) project as a collaboration between Teagasc and DAFM. Please treat this document and its associated appendices as confidential and as a working document that may be subject to change in response to new information. Teagasc Contact Dr Helen Grogan Address: Teagasc, Ashtown Research Centre, Dublin 15, D15 KN3K, Ireland [email protected] DAFM Contact Dr Sheila Nolan Address: DAFM Laboratories, Backweston, Celbridge, Co. Kildare, W23 VW2C, Ireland [email protected] 2 PRA for Lambdina fiscellaria © M G Tuffen Executive Summary The hemlock looper, Lambdina fiscellaria, is a North American forest pest of coniferous and broadleaved trees. The pest has a complicated taxonomy. It is widely reported as having three subspecies on the basis of differences in feeding preferences of the larval stages, but there are no morphological differences and some authors argue the pest should be treated as a single species. All three subspecies are considered in this PRA, which examines the risk of this pest to the island of Ireland (the PRA area), consisting of Ireland and Northern Ireland. Lambdina fiscellaria fiscellaria, also known as the eastern hemlock looper, is distributed in eastern North America and larvae show a preference for Abies balsamea (balsam fir) but will also feed on Picea glauca (white spruce), Tsuga canadensis (eastern hemlock) and a number of broadleaved trees.
    [Show full text]