A Cell Proliferation and Chromosomal Instability Signature in Anaplastic Thyroid Carcinoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of Key Candidate Genes for Colorectal Cancer by Bioinformatics Analysis
ONCOLOGY LETTERS 18: 6583-6593, 2019 Identification of key candidate genes for colorectal cancer by bioinformatics analysis ZHIHUA CHEN1*, YILIN LIN1*, JI GAO2*, SUYONG LIN1, YAN ZHENG1, YISU LIU1 and SHAO QIN CHEN1 1Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University; 2School of Nursing, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China Received December 27, 2018; Accepted August 16, 2019 DOI: 10.3892/ol.2019.10996 Abstract. Colorectal cancer (CRC) is one of the most Introduction common cancers of the digestive tract. Although numerous studies have been conducted to elucidate the cause of CRC, Colorectal cancer (CRC) ranks third (13.5%) and second the exact mechanism of CRC development remains to be (9.5%) among the incidence of malignancies worldwide determined. To identify candidate genes that may be involved in male and female patients, respectively, and is a serious in CRC development and progression, the microarray datasets hazard to human health (1). Previous studies have demon- GSE41657, GSE77953 and GSE113513 were downloaded from strated that the molecular pathogenesis of CRC is mostly the Gene Expression Omnibus database. Gene Ontology and caused by genetic mutations (2,3). Numerous studies over Kyoto Encyclopedia of Genes and Genomes were used for the past two decades have reported that genetic mutations functional enrichment analysis of differentially expressed are associated with the prognosis and treatment of CRC, and genes (DEGs). A protein-protein interaction network was targeted therapies have been developed (4-7). The progres- constructed, and the hub genes were subjected to module sion of CRC is usually accompanied by the activation of the analysis and identification using Search Tool for the Retrieval KRAS and BRAF genes and the inhibition of the p53 tumour of Interacting Genes/Proteins and Cytoscape. -
NEK2 Antibody (Aa287-299) Rabbit Polyclonal Antibody Catalog # ALS11259
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 NEK2 Antibody (aa287-299) Rabbit Polyclonal Antibody Catalog # ALS11259 Specification NEK2 Antibody (aa287-299) - Product Information Application IHC Primary Accession P51955 Reactivity Human Host Rabbit Clonality Polyclonal Calculated MW 52kDa KDa NEK2 Antibody (aa287-299) - Additional Information Gene ID 4751 Anti-NEK2 antibody IHC of human testis. Other Names Serine/threonine-protein kinase Nek2, 2.7.11.1, HSPK 21, Never in mitosis NEK2 Antibody (aa287-299) - Background A-related kinase 2, NimA-related protein kinase 2, NimA-like protein kinase 1, NEK2, Protein kinase which is involved in the control NEK2A, NLK1 of centrosome separation and bipolar spindle formation in mitotic cells and chromatin Target/Specificity condensation in meiotic cells. Regulates aa 287-299 of Human NEK2 protein. centrosome separation (essential for the formation of bipolar spindles and high-fidelity Reconstitution & Storage chromosome separation) by phosphorylating Store vial at -20 C prior to opening. Dilute centrosomal proteins such as CROCC, CEP250 only prior to immediate use. For extended and NINL, resulting in their displacement from storage aliquot contents and freeze at -20 C or below. Avoid cycles of freezing and the centrosomes. Regulates kinetochore thawing. microtubule attachment stability in mitosis via phosphorylation of NDC80. Involved in Precautions regulation of mitotic checkpoint protein NEK2 Antibody (aa287-299) is for research complex via phosphorylation of CDC20 and use only and not for use in diagnostic or MAD2L1. Plays an active role in chromatin therapeutic procedures. condensation during the first meiotic division through phosphorylation of HMGA2. -
Supplement 1 Microarray Studies
EASE Categories Significantly Enriched in vs MG vs vs MGC4-2 Pt1-C vs C4-2 Pt1-C UP-Regulated Genes MG System Gene Category EASE Global MGRWV Pt1-N RWV Pt1-N Score FDR GO Molecular Extracellular matrix cellular construction 0.0008 0 110 genes up- Function Interpro EGF-like domain 0.0009 0 regulated GO Molecular Oxidoreductase activity\ acting on single dono 0.0015 0 Function GO Molecular Calcium ion binding 0.0018 0 Function Interpro Laminin-G domain 0.0025 0 GO Biological Process Cell Adhesion 0.0045 0 Interpro Collagen Triple helix repeat 0.0047 0 KEGG pathway Complement and coagulation cascades 0.0053 0 KEGG pathway Immune System – Homo sapiens 0.0053 0 Interpro Fibrillar collagen C-terminal domain 0.0062 0 Interpro Calcium-binding EGF-like domain 0.0077 0 GO Molecular Cell adhesion molecule activity 0.0105 0 Function EASE Categories Significantly Enriched in Down-Regulated Genes System Gene Category EASE Global Score FDR GO Biological Process Copper ion homeostasis 2.5E-09 0 Interpro Metallothionein 6.1E-08 0 Interpro Vertebrate metallothionein, Family 1 6.1E-08 0 GO Biological Process Transition metal ion homeostasis 8.5E-08 0 GO Biological Process Heavy metal sensitivity/resistance 1.9E-07 0 GO Biological Process Di-, tri-valent inorganic cation homeostasis 6.3E-07 0 GO Biological Process Metal ion homeostasis 6.3E-07 0 GO Biological Process Cation homeostasis 2.1E-06 0 GO Biological Process Cell ion homeostasis 2.1E-06 0 GO Biological Process Ion homeostasis 2.1E-06 0 GO Molecular Helicase activity 2.3E-06 0 Function GO Biological -
Goat Anti-RCBTB2 Antibody Size: 100Μg Specific Antibody in 200Μl
EB09067 - Goat Anti-RCBTB2 Antibody Size: 100µg specific antibody in 200µl Target Protein Principal Names: RCBTB2, regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing protein 2, CHC1L, OTTHUMP00000018399, RCC1-like G UK Office exchanging factor RLG, chromosome condensation 1-like, regulator of chromosome condensation and BTB domain containing protein 2 Everest Biotech Ltd Official Symbol: RCBTB2 Cherwell Innovation Centre Accession Number(s): NP_001259.1 77 Heyford Park Human GeneID(s): 1102 Upper Heyford Non-Human GeneID(s): 105670 (mouse), 290363 (rat) Oxfordshire Important Comments: This antibody is not expected to cross-react with RCBTB1. OX25 5HD UK Immunogen Peptide with sequence CEHFRSSLEDNEDD, from the internal region of the protein Enquiries: sequence according to NP_001259.1. [email protected] Sales: Please note the peptide is available for sale. [email protected] Tech support: Purification and Storage [email protected] Purified from goat serum by ammonium sulphate precipitation followed by antigen affinity chromatography using the immunizing peptide. Tel: +44 (0)1869 238326 Supplied at 0.5 mg/ml in Tris saline, 0.02% sodium azide, pH7.3 with 0.5% bovine serum Fax: +44 (0)1869 238327 albumin. Aliquot and store at -20°C. Minimize freezing and thawing. US Office Everest Biotech c/o Abcore Applications Tested 405 Maple Street, Suite A106 Peptide ELISA: antibody detection limit dilution 1:2000. Ramona, Western blot: Preliminary experiments gave an approx. 30kDa band in Human Liver, CA 92065 Lung and Tonsil lysates after 1µg/ml antibody staining. Please note that currently we USA cannot find an explanation in the literature for the band we observe given the calculated size of 60.3kDa according to NP_001259.1. -
Rangap1 Induces Gtpase Activity of Nuclear Ras-Related Ran (Gtpase-Activating Protein/Rccl/TC4/G2 Checkpoint) F
Proc. Nati. Acad. Sci. USA Vol. 91, pp. 2587-2591, March 1994 Biochemistry RanGAP1 induces GTPase activity of nuclear Ras-related Ran (GTPase-activating protein/RCCl/TC4/G2 checkpoint) F. RALF BISCHOFF*t, CHRISTIAN KLEBEt, JURGEN KRETSCHMER*, ALFRED WITrINGHOFERt, AND HERWIG PONSTINGL* *Division for Molecular Biology of Mitosis, German Cancer Research Center, D-69120 Heidelberg, Federal Republic of Germany; and *Abteilung Strukturelle Biologie, Max-Planck-Institut ffr Molekulare Physiologie, D-44139 Dortmund, Federal Republic of Germany Communicated by Hans Neurath, December 3, 1993 ABSTRACT The nuclear Ras-related protein Ran binds DMAE-650/M (Merck; Superformance, 26 x 115 mm) in 20 guanine nucleotide and is involved in cell cycle regulation. mM Bis-Tris-propane HCl, pH 7.0/1 mM DTT with a linear Models of the signal pathway predict Ran to be active as gradient of NaCl from 0.05 M to 1 M at a flow rate of 5 Ran GTP at the initiation of S phase upon activation by the ml/min. Fractions containing RanGAP were pooled and nucleotide exchange factor RCC1 and to be inactivated for the immediately applied to a hydroxylapatite column (Merck; onset of mitosis by hydrolysis of bound GTP. Here a nuclear Superformance, 10 x 150 mm) in 20 mM potassium phos- homodimeric 65-kDa protein, RanGAPl, is described, which phate, pH 7.0/1 mM DTT, with a linear gradient from 20 mM we believe to be the immediate antagonist of RCC1. It was to 1 M phosphate at a flow rate of 2 ml/min. To fractions purified from HeLa cell lysates and induces GTPase activity of containing RanGAP, ammonium sulfate in 20 mM Bis-Tris- Ran, but not Ras, by more than 3 orders of magnitude. -
Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002) -
Whole Genome Sequencing in Patients with Retinitis Pigmentosa Reveals Pathogenic DNA Structural Changes and NEK2 As a New Disease Gene
Whole genome sequencing in patients with retinitis pigmentosa reveals pathogenic DNA structural changes and NEK2 as a new disease gene Koji M. Nishiguchia,b, Richard G. Tearlec, Yangfan P. Liud, Edwin C. Ohd,e, Noriko Miyakef, Paola Benaglioa, Shyana Harperg, Hanna Koskiniemi-Kuendiga, Giulia Venturinia, Dror Sharonh, Robert K. Koenekoopi, Makoto Nakamurab, Mineo Kondob, Shinji Uenob, Tetsuhiro R. Yasumab, Jacques S. Beckmanna,j,k, Shiro Ikegawal, Naomichi Matsumotof, Hiroko Terasakib, Eliot L. Bersong, Nicholas Katsanisd, and Carlo Rivoltaa,1 aDepartment of Medical Genetics, University of Lausanne, 1005 Lausanne, Switzerland; bDepartment of Ophthalmology, Nagoya University School of Medicine, Nagoya 466-8550, Japan; cComplete Genomics, Inc., Mountain View, CA 94043; dCenter for Human Disease Modeling and eDepartment of Neurology, Duke University, Durham, NC 27710; fDepartment of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; gBerman-Gund Laboratory for the Study of Retinal Degenerations, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114; hDepartment of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; iMcGill Ocular Genetics Laboratory, McGill University Health Centre, Montreal, QC, Canada H3H 1P3; jService of Medical Genetics, Lausanne University Hospital, 1011 Lausanne, Switzerland; kSwiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; and lLaboratory for Bone and Joint Diseases, Center for Genomic Medicine, RIKEN, -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Genomic Discovery of an Evolutionarily Programmed Modality for Small-Molecule Targeting of an Intractable Protein Surface
Genomic discovery of an evolutionarily programmed modality for small-molecule targeting of an intractable protein surface Uddhav K. Shigdela,1,2, Seung-Joo Leea,1,3, Mathew E. Sowaa,1,4, Brian R. Bowmana,1,5, Keith Robisona,6, Minyun Zhoua,7, Khian Hong Puaa,8, Dylan T. Stilesa,6, Joshua A. V. Blodgetta,9, Daniel W. Udwarya,10, Andrew T. Rajczewskia,11, Alan S. Manna,12, Siavash Mostafavia,13, Tara Hardyb, Sukrat Aryab,14, Zhigang Wenga,15, Michelle Stewarta,16, Kyle Kenyona,6, Jay P. Morgensterna,6, Ende Pana,17, Daniel C. Graya,6, Roy M. Pollocka,4, Andrew M. Fryb, Richard D. Klausnerc,18, Sharon A. Townsona,19, and Gregory L. Verdinea,d,e,f,2,18,20 Contributed by Richard D. Klausner, April 21, 2020 (sent for review April 8, 2020; reviewed by Chuan He and Ben Shen) The vast majority of intracellular protein targets are refractory toward small-molecule therapeutic engagement, and additional Author contributions: U.K.S., S.-J.L., M.E.S., B.R.B., K.R., Z.W., M.S., D.C.G., R.M.P., A.M.F., R.D.K., S.A.T., and G.L.V. designed research; U.K.S., S.-J.L., M.E.S., K.R., M.Z., K.H.P., D.T.S., therapeutic modalities are needed to overcome this deficiency. J.A.V.B., D.W.U., A.T.R., A.S.M., S.M., T.H., S.A., K.K., J.P.M., E.P., R.D.K., and G.L.V. performed Here, the identification and characterization of a natural product, research; M.E.S., D.T.S., and A.M.F. -
Induction by Lupus Immune Complexes Differentially Regulate
Plasmacytoid Dendritic Cells and C1q Differentially Regulate Inflammatory Gene Induction by Lupus Immune Complexes This information is current as Deanna M. Santer, Alice E. Wiedeman, Thomas H. Teal, of September 23, 2021. Pradipta Ghosh and Keith B. Elkon J Immunol published online 5 December 2011 http://www.jimmunol.org/content/early/2011/12/04/jimmun ol.1102797 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2011/12/05/jimmunol.110279 Material 7.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published December 5, 2011, doi:10.4049/jimmunol.1102797 The Journal of Immunology Plasmacytoid Dendritic Cells and C1q Differentially Regulate Inflammatory Gene Induction by Lupus Immune Complexes Deanna M. Santer,* Alice E. Wiedeman,* Thomas H. Teal,† Pradipta Ghosh,† and Keith B. Elkon*,† Immune complexes (ICs) play a pivotal role in causing inflammation in systemic lupus erythematosus (SLE). -
Biocuration 2016 - Posters
Biocuration 2016 - Posters Source: http://www.sib.swiss/events/biocuration2016/posters 1 RAM: A standards-based database for extracting and analyzing disease-specified concepts from the multitude of biomedical resources Jinmeng Jia and Tieliu Shi Each year, millions of people around world suffer from the consequence of the misdiagnosis and ineffective treatment of various disease, especially those intractable diseases and rare diseases. Integration of various data related to human diseases help us not only for identifying drug targets, connecting genetic variations of phenotypes and understanding molecular pathways relevant to novel treatment, but also for coupling clinical care and biomedical researches. To this end, we built the Rare disease Annotation & Medicine (RAM) standards-based database which can provide reference to map and extract disease-specified information from multitude of biomedical resources such as free text articles in MEDLINE and Electronic Medical Records (EMRs). RAM integrates disease-specified concepts from ICD-9, ICD-10, SNOMED-CT and MeSH (http://www.nlm.nih.gov/mesh/MBrowser.html) extracted from the Unified Medical Language System (UMLS) based on the UMLS Concept Unique Identifiers for each Disease Term. We also integrated phenotypes from OMIM for each disease term, which link underlying mechanisms and clinical observation. Moreover, we used disease-manifestation (D-M) pairs from existing biomedical ontologies as prior knowledge to automatically recognize D-M-specific syntactic patterns from full text articles in MEDLINE. Considering that most of the record-based disease information in public databases are textual format, we extracted disease terms and their related biomedical descriptive phrases from Online Mendelian Inheritance in Man (OMIM), National Organization for Rare Disorders (NORD) and Orphanet using UMLS Thesaurus. -
A Dissertation Entitled the Androgen Receptor
A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen.