A Dissertation Entitled the Androgen Receptor

Total Page:16

File Type:pdf, Size:1020Kb

A Dissertation Entitled the Androgen Receptor A Dissertation entitled The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit Submitted to the Graduate Faculty as partial fulfillment of the requirements for the PhD Degree in Biomedical science Dr. Manohar Ratnam, Committee Chair Dr. Lirim Shemshedini, Committee Member Dr. Robert Trumbly, Committee Member Dr. Edwin Sanchez, Committee Member Dr. Beata Lecka -Czernik, Committee Member Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo August 2011 Copyright 2011, Mesfin Gonit This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of The Androgen Receptor as a Transcriptional Co-activator: Implications in the Growth and Progression of Prostate Cancer By Mesfin Gonit As partial fulfillment of the requirements for the PhD Degree in Biomedical science The University of Toledo August 2011 Prostate cancer depends on the androgen receptor (AR) for growth and survival even in the absence of androgen. In the classical models of gene activation by AR, ligand activated AR signals through binding to the androgen response elements (AREs) in the target gene promoter/enhancer. In the present study the role of AREs in the androgen- independent transcriptional signaling was investigated using LP50 cells, derived from parental LNCaP cells through extended passage in vitro. LP50 cells reflected the signature gene overexpression profile of advanced clinical prostate tumors. The growth of LP50 cells was profoundly dependent on nuclear localized AR but was independent of androgen. Nevertheless, in these cells AR was unable to bind to AREs in the absence of androgen. Gene expression profiling of LP50 cells showed that AR regulates two largely distinct gene expression programs, androgen-dependent and apo-AR dependent. Furthermore, a DNA binding domain mutant of AR which is unable to bind to ARE rescued androgen depletion insensitive proliferation and gene activation in LP50 cells iii depleted of endogenous wild type AR. Furthermore, ChIP-chip promoter tiling arrays revealed enrichment for AR in chromatin sites that are functional but lack ARE. To identify candidate transcription factors that tether AR to target genes in the absence of androgen, cis-elements of transcription factors in the AR interactome data set and AR chip peaks were used. We found direct interaction between AR and Elk-1 in both the C81 and C4-2 LNCaP variants of androgen depletion insensitive experimental model systems representing clinical advanced prostate cancer. AR dependent promoter activity of an Elk-1 driven promoter reporter construct and physical association between AR and Elk-1 by coimmunoprecipitation suggested that AR acts as a co-activator of Elk-1. Elk-1 was shown to be necessary for the proliferation of C81 and C4-2 cells. Expression profile studies further showed AR-dependent activation of gene clusters enriched for cell division function by Elk-1. This AR dependent gene regulation by Elk-1 was insensitive to androgen antagonist. The present study suggests that in advanced prostate cancer AR can support the progression of the tumor through ARE independent mechanisms by acting as a transcriptional co-activator for transcription factors such as Elk-1. This mechanism of action of AR is insensitive to hormone as well as antiandrogen. Hence, therapeutic strategies selectively targeting the interactions between AR and critical tethering proteins could be a novel approach for the management of advanced prostate cancer. iv Acknowledgements First and for most I would like to express my sincere gratitude to my major advisor Dr. Manohar Ratnam for his wonderful mentorship, guidance and generous support for my study. I am very grateful to my graduate research advisory committee members: Dr. Lirim Shemshedini, Dr. Robert Trumbly, Dr. Beata Lecka-Czernik and Dr. Edwin Sanchez whose advice, suggestions and continuous help have been invaluable. Special thanks should be given to Dr. Randall Ruch who helped me in many ways. I would like to thank former and current laboratory members: Dr. Juan Zhang, Dr Aymen Shatnawi, Dr. Marcela d'Alincourt Salazar, Suneethi Sivakumaran, Theodore Manolukas, Venkatesh Chari and Mugdha Patki for their contribution for this work and creating collegial work environment. Last but not least, I would like to express my deepest gratitude for my parents who put the greatest trust and confidence in me all the time. v Table of content Abstract .............................................................................................................................. iii Acknowledgements ............................................................................................................. v Table of content ................................................................................................................. vi Chapter 1: Introduction and Literature review .................................................................. 1 Introduction ..................................................................................................................... 1 Literature review ............................................................................................................. 9 Chapter 2: Hormone Depletion-Insensitivity of Prostate Cancer Cells is Supported by the Androgen Receptor without Binding to Classical Response Elements ...................... 47 Abstract ......................................................................................................................... 48 Introduction ................................................................................................................... 49 Results ........................................................................................................................... 52 Discussion ..................................................................................................................... 61 Materials and Methods .................................................................................................. 66 References ..................................................................................................................... 76 Figure Legends and Figures .......................................................................................... 82 vi Chapter 3: Elk-1 Recruits the Androgen Receptor as a Coactivator and is Necessary for Androgen Receptor Dependent Growth of Advanced Prostate Cancer Cells ................... 97 Abstract ......................................................................................................................... 98 Introduction ................................................................................................................... 99 Materials and methods ................................................................................................ 101 Results ......................................................................................................................... 108 Discussion ................................................................................................................... 114 References ................................................................................................................... 119 Figure Legends and Figures ........................................................................................ 124 Chapter 4: Summary and Conclusion ........................................................................... 135 References ....................................................................................................................... 142 A: SUPPLEMENT 1....................................................................................................... 170 B: SUPPLEMENT 2 ....................................................................................................... 213 C: SUPPLEMENT 3....................................................................................................... 216 D: SUPPLEMENT 4....................................................................................................... 220 vii Chapter 1 Introduction and Literature review Introduction Androgens regulate a variety of physiological functions and exert their genotropic action through the androgen receptor (AR). The androgen receptor plays a pivotal role in reproduction, gender differentiation, development of muscle mass and bone strength. AR is required for development, maintenance and function of the prostate (1). In addition to its normal physiological roles, AR is also involved in the development of prostatic hyperplasia and malignancy and is expressed in most hormone refractory prostate tumors (2, 3). In the United States, prostate cancer is the second leading cause of cancer death in men. In 2010 an estimated 217, 730 new cases were reported and about 32,050 men died of prostate cancer the same year. The high incidence of prostate cancer is attributed to an increase in the aging population, early detection due to the increase in the number of men undergoing screening and improved health care service (4). 1 The remarkable sensitivity of prostatic epithelial cells to androgens has been known for a while, and tapped in the management of prostate cancer. To date, androgen ablation therapy is the mainstay for the treatment of advanced prostate cancer (2). Hormone ablation therapy initially yields
Recommended publications
  • Combined Analysis of Chip-Seq and Gene Microarray Datasets Identify the E2-Mediated Genes in Erα-Dependent Manner in Osteosarcoma
    ONCOLOGY REPORTS 38: 2335-2342, 2017 Combined analysis of ChIP-seq and gene microarray datasets identify the E2-mediated genes in ERα-dependent manner in osteosarcoma KANGSONG TIAN1, WEI QI1, QIAN YAN1, FEnG ZHanG1, DELEI SONG1, HaIyanG ZHanG2 and MING LV1 1Trauma Department of Orthopedics, 2Microscopic Department of Orthopedics, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China Received March 14, 2017; Accepted August 11, 2017 DOI: 10.3892/or.2017.5914 Abstract. Osteosarcoma is a common bone tumor which is Introduction affected by E2, the most representative estrogen. Gene regula- tion function of E2 is highly dependent on estrogen receptor. ESR1, also known as ER-alpha or ERα, is an important The purpose of this study was to explore the gene regulation estrogen receptor (ER) and involves in the gene regula- patterns of E2 through estrogen receptor α (ESR1) in osteo- tion in various diseases and biological processes, including sarcoma based on the combined analysis of ChIP-seq and breast cancer (1,2), osteosarcoma (3) and cell growth (4). gene microarray. All of the datasets were downloaded from 17β-estradiol (E2) is one of the most representative estrogens the Gene Expression Omnibus (GEO). Differential expression responsible for the development and reproductive capability genes (DEGs) in E2 treated U2OS cells expressing ESR1 of female characteristics (5). Besides, it participates in the (U2OS-ERα) compared with those treated with vehicle were progression of many diseases, for example, E2 could regulate obtained based on R programming software. ESR1-specific the proliferation of breast cancer cells through focal adhesion binding sites (peaks) in E2 treated U2OS cells were identified and chemokine signaling pathways (6); through autophagy through MACS.
    [Show full text]
  • Manual: Pathdetect Reporter Cell Lines
    PathDetect Reporter Cell Lines INSTRUCTION MANUAL Catalog #800050 (PathDetect HLR Cell Line) #800055 (HLR-Elk1 Cell Line) #800060 (HLR-CHOP Cell Line) #800065 (HLR-CREB Cell Line) Revision A BN #800050-12 For In Vitro Use Only 800050-12 LIMITED PRODUCT WARRANTY This warranty limits our liability to replacement of this product. No other warranties of any kind, express or implied, including without limitation, implied warranties of merchantability or fitness for a particular purpose, are provided by Agilent. Agilent shall have no liability for any direct, indirect, consequential, or incidental damages arising out of the use, the results of use, or the inability to use this product. ORDERING INFORMATION AND TECHNICAL SERVICES United States and Canada Agilent Technologies Stratagene Products Division 11011 North Torrey Pines Road La Jolla, CA 92037 Telephone (858) 373-6300 Order Toll Free (800) 424-5444 Technical Services (800) 894-1304 Internet [email protected] World Wide Web www.stratagene.com Europe Location Telephone Fax Technical Services Austria 0800 292 499 0800 292 496 0800 292 498 Belgium 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 15775 0800 15740 0800 15720 France 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 919 288 0800 919 287 0800 919 289 Germany 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 182 8232 0800 182 8231 0800 182 8234 Netherlands 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 023 0446 +31 (0)20 312 5700 0800 023 0448 Switzerland 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 563 080 0800 563 082 0800 563 081 United Kingdom 00800 7000 7000 00800 7001 7001 00800 7400 7400 0800 917 3282 0800 917 3283 0800 917 3281 All Other Countries Please contact your local distributor.
    [Show full text]
  • Activated Peripheral-Blood-Derived Mononuclear Cells
    Transcription factor expression in lipopolysaccharide- activated peripheral-blood-derived mononuclear cells Jared C. Roach*†, Kelly D. Smith*‡, Katie L. Strobe*, Stephanie M. Nissen*, Christian D. Haudenschild§, Daixing Zhou§, Thomas J. Vasicek¶, G. A. Heldʈ, Gustavo A. Stolovitzkyʈ, Leroy E. Hood*†, and Alan Aderem* *Institute for Systems Biology, 1441 North 34th Street, Seattle, WA 98103; ‡Department of Pathology, University of Washington, Seattle, WA 98195; §Illumina, 25861 Industrial Boulevard, Hayward, CA 94545; ¶Medtronic, 710 Medtronic Parkway, Minneapolis, MN 55432; and ʈIBM Computational Biology Center, P.O. Box 218, Yorktown Heights, NY 10598 Contributed by Leroy E. Hood, August 21, 2007 (sent for review January 7, 2007) Transcription factors play a key role in integrating and modulating system. In this model system, we activated peripheral-blood-derived biological information. In this study, we comprehensively measured mononuclear cells, which can be loosely termed ‘‘macrophages,’’ the changing abundances of mRNAs over a time course of activation with lipopolysaccharide (LPS). We focused on the precise mea- of human peripheral-blood-derived mononuclear cells (‘‘macro- surement of mRNA concentrations. There is currently no high- phages’’) with lipopolysaccharide. Global and dynamic analysis of throughput technology that can precisely and sensitively measure all transcription factors in response to a physiological stimulus has yet to mRNAs in a system, although such technologies are likely to be be achieved in a human system, and our efforts significantly available in the near future. To demonstrate the potential utility of advanced this goal. We used multiple global high-throughput tech- such technologies, and to motivate their development and encour- nologies for measuring mRNA levels, including massively parallel age their use, we produced data from a combination of two distinct signature sequencing and GeneChip microarrays.
    [Show full text]
  • Chromatin State Barriers Enforce an Irreversible Mammalian Cell Fate Decision
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.12.443709; this version posted May 14, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Chromatin state barriers… Blanco et al. 2021 Chromatin state barriers enforce an irreversible mammalian cell fate decision M. Andrés Blanco1,19,*,†,, David B. Sykes6,8,19, Lei Gu2,15,17,18,19, Mengjun Wu2,4,15, Ricardo Petroni1, Rahul Karnik7,8,9, Mathias Wawer10, Joshua Rico1, Haitao Li1, William D. Jacobus2,12,15, Ashwini Jambhekar2,15,11, Sihem Cheloufi5, Alexander Meissner7,8,9,13, Konrad Hochedlinger6,7,8,14, David T. Scadden6,8,9,*, and Yang Shi2,3,* 1 Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA 2 Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA 3 Ludwig Institute for Cancer Research, Oxford Branch, Oxford University, UK 4 Current address: The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark 5 Department of Biochemistry, Stem Cell Center, University of California, Riverside, Riverside, CA 92521, USA. 6 Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA. 7 Broad Institute of MIT and Harvard, Cambridge, MA, USA 8 Harvard Stem Cell Institute, Cambridge, Massachusetts,
    [Show full text]
  • RNA-Binding Protein Hnrnpll Regulates Mrna Splicing and Stability During B-Cell to Plasma-Cell Differentiation
    RNA-binding protein hnRNPLL regulates mRNA splicing and stability during B-cell to plasma-cell differentiation Xing Changa,b, Bin Lic, and Anjana Raoa,b,d,e,1 Divisions of aSignaling and Gene Expression and cVaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037; bSanford Consortium for Regenerative Medicine, La Jolla, CA 92037; and dDepartment of Pharmacology and eMoores Cancer Center, University of California at San Diego, La Jolla, CA 92093 Contributed by Anjana Rao, December 2, 2014 (sent for review July 20, 2014) Posttranscriptional regulation is a major mechanism to rewire the RBP-binding sites, thus validating the specificity of RBP binding transcriptomes during differentiation. Heterogeneous nuclear to coprecipitating RNAs and mapping RBP-binding sites on the RNA-binding protein LL (hnRNPLL) is specifically induced in terminally validated RNAs at close to single-nucleotide resolution (8). differentiated lymphocytes, including effector T cells and plasma Heterogeneous nuclear RNA-binding proteins (hnRNPs) is cells. To study the molecular functions of hnRNPLL at a genome- the term applied to a collection of unrelated nuclear RBPs. wide level, we identified hnRNPLL RNA targets and binding sites in hnRNPLL was identified through a targeted lentiviral shRNA plasma cells through integrated Photoactivatable-Ribonucleoside- screen for regulators of CD45RA to CD45RO switching during Enhanced Cross-Linking and Immunoprecipitation (PAR-CLIP) and memory T-cell development (9) and independently through RNA sequencing. hnRNPLL preferentially recognizes CA dinucleo- two separate screens performed by different groups for exclusion tide-containing sequences in introns and 3′ untranslated regions of CD45 exon 4 in a minigene context (10) and for altered CD44 (UTRs), promotes exon inclusion or exclusion in a context-dependent and CD45R expression on T cells in N-ethyl-N-nitrosourea manner, and stabilizes mRNA when associated with 3′ UTRs.
    [Show full text]
  • Expression of Aromatase, Estrogen Receptor and , Androgen
    0031-3998/06/6006-0740 PEDIATRIC RESEARCH Vol. 60, No. 6, 2006 Copyright © 2006 International Pediatric Research Foundation, Inc. Printed in U.S.A. Expression of Aromatase, Estrogen Receptor ␣ and ␤, Androgen Receptor, and Cytochrome P-450scc in the Human Early Prepubertal Testis ESPERANZA B. BERENSZTEIN, MARI´A SONIA BAQUEDANO, CANDELA R. GONZALEZ, NORA I. SARACO, JORGE RODRIGUEZ, ROBERTO PONZIO, MARCO A. RIVAROLA, AND ALICIA BELGOROSKY Research Laboratory [E.B.B., M.S.B., C.R.G., N.I.S., J.R., M.A.R., A.B.], Hospital de Pediatria Garrahan, Buenos Aires C124 5AAM, Argentina; Centro de Investigaciones en Reproduccion [R.P.], Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C112 1ABG, Argentina ABSTRACT: The expression of aromatase, estrogen receptor ␣ might affect adult testicular cell mass, as well as testicular (ER␣) and ␤ (ER␤), androgen receptor (AR), and cytochrome P-450 function (8). side chain cleavage enzyme (cP450scc) was studied in prepubertal In humans (9), there are three growth phases of LCs testis. Samples were divided in three age groups (GRs): GR1, during testicular development. Fetal LCs produce testoster- ϭ newborns (1- to 21-d-old neonates, n 5); GR2, postnatal activation one required for fetal masculinization and Insl-3, necessary ϭ stage (1- to 7-mo-old infants, n 6); GR3, childhood (12- to for testicular descent (10). They regress during the third ϭ ␣ 60-mo-old boys, n 4). Absent or very poor detection of ER by trimester of pregnancy. A second wave of infantile LCs has immunohistochemistry in all cells and by mRNA expression was been described during the postnatal surge of luteinizing observed.
    [Show full text]
  • Expression of Oncogenes ELK1 and ELK3 in Cancer
    Review Article Annals of Colorectal Cancer Research Published: 11 Nov, 2019 Expression of Oncogenes ELK1 and ELK3 in Cancer Akhlaq Ahmad and Asif Hayat* College of Chemistry, Fuzhou University, China Abstract Cancer is the uncontrolled growth of abnormal cells anywhere in a body, ELK1 and ELK3 is a member of the Ets-domain transcription factor family and the TCF (Ternary Complex Factor) subfamily. Proteins in this subfamily regulate transcription when recruited by SRF (Serum Response Factor) to bind to serum response elements. ELK1 and ELK3 transcription factors are known as oncogenes. Both transcription factors are proliferated in a different of type of cancer. Herein, we summarized the expression of transcription factor ELK1 and ELK3 in cancer cells. Keywords: ETS; ELK1; ELK3; Transcription factor; Cancer Introduction The ETS, a transcription factor of E twenty-six family based on a dominant ETS amino acids that integrated with a ~10-basepair element arrange in highly mid core sequence 5′-GGA(A/T)-3′ [1-2]. The secular family alter enormous 28/29 members which has been assigned in human and mouse and similarly the family description are further sub-divided into nine sub-families according to their homology and domain factor [3]. More importantly, one of the subfamily members such as ELK (ETS-like) adequate an N-terminal ETS DNA-binding domain along with a B-box domain that transmit the response of serum factor upon the formation of ternary complex and therefore manifested as ternary complex factors [4]. Further the ELK sub-divided into Elk1, Elk3 (Net, Erp or Sap2) and Elk4 (Sap1) proteins [3,4], which simulated varied proportional of potential protein- protein interactions [4,5].
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Prospective Isolation of NKX2-1–Expressing Human Lung Progenitors Derived from Pluripotent Stem Cells
    The Journal of Clinical Investigation RESEARCH ARTICLE Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells Finn Hawkins,1,2 Philipp Kramer,3 Anjali Jacob,1,2 Ian Driver,4 Dylan C. Thomas,1 Katherine B. McCauley,1,2 Nicholas Skvir,1 Ana M. Crane,3 Anita A. Kurmann,1,5 Anthony N. Hollenberg,5 Sinead Nguyen,1 Brandon G. Wong,6 Ahmad S. Khalil,6,7 Sarah X.L. Huang,3,8 Susan Guttentag,9 Jason R. Rock,4 John M. Shannon,10 Brian R. Davis,3 and Darrell N. Kotton1,2 2 1Center for Regenerative Medicine, and The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA. 3Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA. 4Department of Anatomy, UCSF, San Francisco, California, USA. 5Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. 6Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA. 7Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 8Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA. 9Department of Pediatrics, Monroe Carell Jr. Children’s Hospital, Vanderbilt University, Nashville, Tennessee, USA. 10Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA. It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1–expressing (NKX2-1+) precursor cells.
    [Show full text]
  • The Title of the Dissertation
    UNIVERSITY OF CALIFORNIA SAN DIEGO Novel network-based integrated analyses of multi-omics data reveal new insights into CD8+ T cell differentiation and mouse embryogenesis A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Kai Zhang Committee in charge: Professor Wei Wang, Chair Professor Pavel Arkadjevich Pevzner, Co-Chair Professor Vineet Bafna Professor Cornelis Murre Professor Bing Ren 2018 Copyright Kai Zhang, 2018 All rights reserved. The dissertation of Kai Zhang is approved, and it is accept- able in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California San Diego 2018 iii EPIGRAPH The only true wisdom is in knowing you know nothing. —Socrates iv TABLE OF CONTENTS Signature Page ....................................... iii Epigraph ........................................... iv Table of Contents ...................................... v List of Figures ........................................ viii List of Tables ........................................ ix Acknowledgements ..................................... x Vita ............................................. xi Abstract of the Dissertation ................................. xii Chapter 1 General introduction ............................ 1 1.1 The applications of graph theory in bioinformatics ......... 1 1.2 Leveraging graphs to conduct integrated analyses .......... 4 1.3 References .............................. 6 Chapter 2 Systematic
    [Show full text]
  • The Mutational Landscape of Myeloid Leukaemia in Down Syndrome
    cancers Review The Mutational Landscape of Myeloid Leukaemia in Down Syndrome Carini Picardi Morais de Castro 1, Maria Cadefau 1,2 and Sergi Cuartero 1,2,* 1 Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; [email protected] (C.P.M.d.C); [email protected] (M.C.) 2 Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain * Correspondence: [email protected] Simple Summary: Leukaemia occurs when specific mutations promote aberrant transcriptional and proliferation programs, which drive uncontrolled cell division and inhibit the cell’s capacity to differentiate. In this review, we summarize the most frequent genetic lesions found in myeloid leukaemia of Down syndrome, a rare paediatric leukaemia specific to individuals with trisomy 21. The evolution of this disease follows a well-defined sequence of events and represents a unique model to understand how the ordered acquisition of mutations drives malignancy. Abstract: Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators—such as cohesin, CTCF or EZH2—and Citation: de Castro, C.P.M.; Cadefau, in signalling mediators of the JAK/STAT and RAS pathways.
    [Show full text]
  • Influence of Androgen Receptor on the Prognosis of Breast Cancer
    Journal of Clinical Medicine Article Influence of Androgen Receptor on the Prognosis of Breast Cancer 1, , 2, 1 2 3 Ki-Tae Hwang * y , Young A Kim y , Jongjin Kim , Jeong Hwan Park , In Sil Choi , Kyu Ri Hwang 4 , Young Jun Chai 1 and Jin Hyun Park 3 1 Department of Surgery, Seoul Metropolitan Government Seoul National University Boramae Medical Center, 39, Boramae-Gil, Dongjak-gu, Seoul 156-707, Korea; [email protected] (J.K.); [email protected] (Y.J.C.) 2 Department of Pathology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 156-707, Korea; [email protected] (Y.A.K.); [email protected] (J.H.P.) 3 Department of Internal Medicine, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 156-707, Korea; [email protected] (I.S.C.); [email protected] (J.H.P.) 4 Department of Obstetrics & Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 156-707, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-2-870-2275; Fax: +82-2-831-2826 These authors contributed equally to this work. y Received: 28 February 2020; Accepted: 8 April 2020; Published: 10 April 2020 Abstract: We investigated the prognostic influence of androgen receptor (AR) on breast cancer. AR status was assessed using immunohistochemistry with tissue microarrays from 395 operable primary breast cancer patients who received curative surgery. The Kaplan–Meier estimator was used to analyze the survival rates and a log-rank test was used to determine the significance of the differences in survival. The Cox proportional hazards model was used to calculate the hazard ratio (HR) and the 95% confidence interval (CI) of survival.
    [Show full text]