WO 2010/127399 Al

Total Page:16

File Type:pdf, Size:1020Kb

WO 2010/127399 Al (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 11 November 2010 (11.11.2010) WO 2010/127399 Al (51) International Patent Classification: (74) Agent: MONGER, Carmela; Walter and Eliza Hall In C12Q 1/68 (2006.01) GOlN 35/00 (2006.01) stitute of Medical Research, IG Royal Parade, Parkville, GOlN 33/48 (2006.01 ) Melbourne, Victoria 3052 (AU). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/AU20 10/000524 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (22) Date: International Filing CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, 6 May 2010 (06.05.2010) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (26) Publication Language: English ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (30) Priority Data: NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, 2009901989 6 May 2009 (06.05.2009) AU SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicant (for all designated States except US): WAL¬ TER AND ELIZA HALL INSTITUTE OF MEDICAL (84) Designated States (unless otherwise indicated, for every RESEARCH [AU/AU]; IG Royal Parade, Parkville, kind of regional protection available): ARIPO (BW, GH, Melbourne, Victoria 3052 (AU). GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (72) Inventors; and TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (75) Inventors/Applicants (for US only): LINDEMAN, Ge¬ EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, offrey [AU/AU]; WEHI, IG Royal Parade, Parkville, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, Melbourne, Victoria 3052 (AU). SMYTH, Gordon [AU/ SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, AU]; IG Royal Parade, Parkville, Melbourne, Victoria GW, ML, MR, NE, SN, TD, TG). 3052 (AU). VISVADER, Jane [AU/AU]; IG Royal Pa Published: rade, Parkville, Melbourne, Victoria 3052 (AU). WU, Di [AU/AU]; IG Royal Parade, Parkville, Melbourne, Victo — with international search report (Art. 21(3)) ria 3052 (AU). — with sequence listing part of description (Rule 5.2(a)) (54) Title: GENE EXPRESSION PROFILES AND USES THEREOF (57) Abstract: A method for stratifying cancer in a subject comprising determining gene-set expression in a sample from a sub ject. The set is preselected from genes which are: (a) selectively or differentially expressed in CD49FEpCAM + luminal epithelial progenitor cells compared to basal epithelial (MaSC enriched) or mature luminal epithelial cells; and/or (b) selectively or differen tially expressed in CD491*Ε pCAM basal epithelial progenitor cells compared to luminal progenitor and mature luminal epithelial cells; and/or (c) selectively or differentially expressed in CD49f EpCAM + mature luminal epithelial cells compared to basal epithe lial and luminal progenitor epithelial cells; and/or (d) selectively or differentially expressed in CD49f EpCAM stromal fibroblasts cells compared to basal epithelial and luminal epithelial cells. A method for diagnosis, prognosis or treatment of basal-like breast cancer and/or a BRCAl -deficiency associated form of cancer comprising (i) determining expression of a set of genes in a sample where the gene set is preselected to comprise genes which are selectively or differentially expressed in CD49f pCAM + epithelial luminal progenitor cells compared to their expression by control cells such as at least basal epithelial cells or mature luminal ep ithelial cells. Gene sets are provided in Tables 10 to 17. Preferred gene sets include KIT. Methods of treatment or prevention in clude administering agents that modulate the activity of gene set expression products, such as KIT polypeptide. Diagnostic probes and kits are included. Methods of reducing proliferation of normal or pre-neoplastic or neoplastic luminal progenitor cells in hu man mammary epithelium are provided including administering an agent that down modulates KIT activity. GENE EXPRESSION PROFILES AND USES THEREFOR FIELD The specification describes cell-specific molecular markers, targets and methods useful for the stratification and treatment of cancers including breast cancers. BACKGROUND Bibliographic details of references in the subject specification are also listed at the end of the specification. The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates. Gene and protein profiling technologies now use sophisticated algorithms to allow simultaneous characterization of multiple genes or proteins in an individual. This information, when linked to accurate prognostic algorithms promises to enhance our ability to optimise treatment options. Furthermore, information concerning changes in the expression of single or multiple genes over time within a single cell type or between cell types, when correctly interpreted, promises to provide new targets for therapeutic intervention and new diagnostic options. However, the problem still exists of selecting relevant targets and accurate markers. One field where this problem is particularly acute is the field of cancer where transformed cells of uncertain origin exist along side normal and pre-neoplastic cells of various lineages. Breast cancer remains a leading cause of death fof women. Human breast tissue is organised, at least in part, as a branching network of ducts and lobules comprising two types of mature epithelial cell and their precursors. Luminal epithelial cells form th e milk producing secretory cells of the lobules which are surrounded by an outer layer of contractile basal (myoepithelial) cells. The art recognises several different cell types within the breast including luminal and basal (myoepithelial) progenitors, bipotent progenitors, stem cells and stromal cells. The different cells may be categorised by a range of morphological, genetic or proteinaceous markers. Although a number of genes and proteins associated with breast cancer have been identified, reliable prognostic tools and therapeutic treatments are highly sought after. One clinically useful example of genes associated with breast, ovarian, prostate, pancreatic, colon and various other forms of cancer are the BRCAl and BRC A2 genes. Here, certain mutations in BRCAl or BRCA2 are linked to a substantial proportion of familial forms of breast cancer, which account for approximately 5-10% of breast cancers. Reduced expression of BRCAl and BRCA2 genes are also found in sporadic (non-familial) forms of cancers. In relation to proteinaceous markers, breast tumor samples may be tested for oestrogen receptor expression and, if positive, subjects may be treated with oestrogen antagonists. In another example, breast tumor samples may be tested for human epidermal growth factor receptor 2 (ErbB2) expression and positive subjects may be treated with ErbB2 antagonists. Breast cancer appears to be essentially a group of diseases that display widely different clinical course and response to treatment. Various different and fairly imprecise breast cancer categories are described according to mainly morphologic, genetic (including surface marker, gene or protein profile), immunophenotypic and clinical features. The relationship between normal and pre-neoplastic breast cells and these tumor subtypes is poorly understood and this confounds the process of identifying markers and targets and determining effective intervention strategies. The difficulty of accurately subtyping breast cancer leads to inaccurate prognosis and much uncertainty for medical practitioners and their patients. Gene expression profiling information derived using DNA microarrays to analyse expression from multiple thousands of genes has led to the subdivision of breast cancer into at least five different subtypes based upon patterns of expression segregating into different clusters (See, for example, Sorlie et al, Proc. Nat. Acad. Sci, USA 98 (19): 10869-10874, 2001; Neilsen et al, Clinical Cancer Research 70:5367-5374, 2004; Herschkowitz et al, Genome Biol. 8 R76, 2007, Hu et al, BMC Genomics 7: 96, 2006). One subtype is the most aggressive (carries the poorest prognosis) "basal-like" tumor type thought to arise from basal epithelial cells and to have a gene expression profile similar to normal breast basal (myoepithelial or mammary stem cell (MaSC)) cells. The breast tumor subtypes, "Luminal A", "Luminal B", "Her2+/ER-", "basal-like" and "normal breast like" subtypes are recognised by Hu et al. {supra). Herschkowitz et al, 2007 {supra) further describe a "claudin-low" subgroup that is oestrogen receptor negative, progesterone receptor negative and human epidermal growth factor (HER2/neu) overexpression negative (referred to as "triple negative") and expresses Claudin 3 and E-cadherin. The "basal-like" breast cancer subtype has also been characterised as "triple negative". In addition, "basal-like" breast tumor cells are typically epidermal growth factor receptor
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
    Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491
    [Show full text]
  • Supplement 1 Microarray Studies
    EASE Categories Significantly Enriched in vs MG vs vs MGC4-2 Pt1-C vs C4-2 Pt1-C UP-Regulated Genes MG System Gene Category EASE Global MGRWV Pt1-N RWV Pt1-N Score FDR GO Molecular Extracellular matrix cellular construction 0.0008 0 110 genes up- Function Interpro EGF-like domain 0.0009 0 regulated GO Molecular Oxidoreductase activity\ acting on single dono 0.0015 0 Function GO Molecular Calcium ion binding 0.0018 0 Function Interpro Laminin-G domain 0.0025 0 GO Biological Process Cell Adhesion 0.0045 0 Interpro Collagen Triple helix repeat 0.0047 0 KEGG pathway Complement and coagulation cascades 0.0053 0 KEGG pathway Immune System – Homo sapiens 0.0053 0 Interpro Fibrillar collagen C-terminal domain 0.0062 0 Interpro Calcium-binding EGF-like domain 0.0077 0 GO Molecular Cell adhesion molecule activity 0.0105 0 Function EASE Categories Significantly Enriched in Down-Regulated Genes System Gene Category EASE Global Score FDR GO Biological Process Copper ion homeostasis 2.5E-09 0 Interpro Metallothionein 6.1E-08 0 Interpro Vertebrate metallothionein, Family 1 6.1E-08 0 GO Biological Process Transition metal ion homeostasis 8.5E-08 0 GO Biological Process Heavy metal sensitivity/resistance 1.9E-07 0 GO Biological Process Di-, tri-valent inorganic cation homeostasis 6.3E-07 0 GO Biological Process Metal ion homeostasis 6.3E-07 0 GO Biological Process Cation homeostasis 2.1E-06 0 GO Biological Process Cell ion homeostasis 2.1E-06 0 GO Biological Process Ion homeostasis 2.1E-06 0 GO Molecular Helicase activity 2.3E-06 0 Function GO Biological
    [Show full text]
  • Functional Annotations of Single-Nucleotide Polymorphism
    CLINICAL RESEARCH e-ISSN 1643-3750 © Med Sci Monit, 2020; 26: e922710 DOI: 10.12659/MSM.922710 Received: 2020.01.08 Accepted: 2020.02.20 Functional Annotations of Single-Nucleotide Available online: 2020.03.30 Published: 2020.05.25 Polymorphism (SNP)-Based and Gene-Based Genome-Wide Association Studies Show Genes Affecting Keratitis Susceptibility Authors’ Contribution: BCDEF 1 Yue Xu* 1 Department of Ophthalmology, First Affiliated Hospital of Soochow University, Study Design A BCDEF 2 Xiao-Lin Yang* Suzhou, Jiangsu, P.R. China Data Collection B 2 Center for Genetic Epidemiology and Genomics, School of Public Health, Medical Statistical Analysis C BCD 1 Xiao-Long Yang College of Soochow University, Suzhou, Jiangsu, P.R. China Data Interpretation D BC 1 Ya-Ru Ren Manuscript Preparation E BC 1 Xin-Yu Zhuang Literature Search F Funds Collection G ADE 2 Lei Zhang ADE 1 Xiao-Feng Zhang * Yue Xu and Xiao-Lin Yang contributed equally Corresponding Authors: Xiao-Feng Zhang, e-mail: [email protected], Lei Zhang, e-mail: [email protected] Source of support: Departmental sources Background: Keratitis is a complex condition in humans and is the second most common cause of legal blindness worldwide. Material/Methods: To reveal the genomic loci underlying keratitis, we performed functional annotations of SNP-based and gene- based genome-wide association studies of keratitis in the UK Biobank (UKB) cohort with 337 199 subjects of European ancestry. Results: The publicly available SNP-based association results showed a total of 34 SNPs, from 14 distinct loci, associated with keratitis in the UKB. Gene-based association analysis identified 2 significant genes:IQCF3 (p=2.0×10–6) and SOD3 (p=2.0×10–6).
    [Show full text]
  • Molecular Characterization of Acute Myeloid Leukemia by Next Generation Sequencing: Identification of Novel Biomarkers and Targets of Personalized Therapies
    Alma Mater Studiorum – Università di Bologna Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Dottorato di Ricerca in Oncologia, Ematologia e Patologia XXX Ciclo Settore Scientifico Disciplinare: MED/15 Settore Concorsuale:06/D3 Molecular characterization of acute myeloid leukemia by Next Generation Sequencing: identification of novel biomarkers and targets of personalized therapies Presentata da: Antonella Padella Coordinatore Prof. Pier-Luigi Lollini Supervisore: Prof. Giovanni Martinelli Esame finale anno 2018 Abstract Acute myeloid leukemia (AML) is a hematopoietic neoplasm that affects myeloid progenitor cells and it is one of the malignancies best studied by next generation sequencing (NGS), showing a highly heterogeneous genetic background. The aim of the study was to characterize the molecular landscape of 2 subgroups of AML patients carrying either chromosomal number alterations (i.e. aneuploidy) or rare fusion genes. We performed whole exome sequencing and we integrated the mutational data with transcriptomic and copy number analysis. We identified the cell cycle, the protein degradation, response to reactive oxygen species, energy metabolism and biosynthetic process as the pathways mostly targeted by alterations in aneuploid AML. Moreover, we identified a 3-gene expression signature including RAD50, PLK1 and CDC20 that characterize this subgroup. Taking advantage of RNA sequencing we aimed at the discovery of novel and rare gene fusions. We detected 9 rare chimeric transcripts, of which partner genes were transcription factors (ZEB2, BCL11B and MAFK) or tumor suppressors (SAV1 and PUF60) rarely translocated across cancer types. Moreover, we detected cryptic events hiding the loss of NF1 and WT1, two recurrently altered genes in AML. Finally, we explored the oncogenic potential of the ZEB2-BCL11B fusion, which revealed no transforming ability in vitro.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Induction by Lupus Immune Complexes Differentially Regulate
    Plasmacytoid Dendritic Cells and C1q Differentially Regulate Inflammatory Gene Induction by Lupus Immune Complexes This information is current as Deanna M. Santer, Alice E. Wiedeman, Thomas H. Teal, of September 23, 2021. Pradipta Ghosh and Keith B. Elkon J Immunol published online 5 December 2011 http://www.jimmunol.org/content/early/2011/12/04/jimmun ol.1102797 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2011/12/05/jimmunol.110279 Material 7.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 23, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published December 5, 2011, doi:10.4049/jimmunol.1102797 The Journal of Immunology Plasmacytoid Dendritic Cells and C1q Differentially Regulate Inflammatory Gene Induction by Lupus Immune Complexes Deanna M. Santer,* Alice E. Wiedeman,* Thomas H. Teal,† Pradipta Ghosh,† and Keith B. Elkon*,† Immune complexes (ICs) play a pivotal role in causing inflammation in systemic lupus erythematosus (SLE).
    [Show full text]
  • Wo2017/132291
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date W O 2017/132291 A l 3 August 2017 (03.08.2017) P O P C T (51) International Patent Classification: [US/US]; 77 Massachusetts Avenue, Cambridge, MA A61K 48/00 (2006.01) C12Q 1/68 (2006.01) 02139 (US). THE GENERAL HOSPITAL CORPORA¬ A61K 39/395 (2006.01) G01N 33/574 (2006.01) TION [US/US]; 55 Fruit Street, Boston, MA 021 14 (US). C12N 15/11 (2006.01) (72) Inventors; and (21) International Application Number: (71) Applicants : REGEV, Aviv [US/US]; 415 Main Street, PCT/US2017/014995 Cambridge, MA 02142 (US). BERNSTEIN, Bradley [US/US]; 55 Fruit Street, Boston, MA 021 14 (US). (22) International Filing Date: TIROSH, Itay [US/US]; 415 Main Street, Cambridge, 25 January 20 17 (25.01 .2017) MA 02142 (US). SUVA, Mario [US/US]; 55 Fruit Street, (25) Filing Language: English Bostn, MA 02144 (US). ROZENBALTT-ROSEN, Orit [US/US]; 415 Main Street, Cambridge, MA 02142 (US). (26) Publication Language: English (74) Agent: NIX, F., Brent; Johnson, Marcou & Isaacs, LLC, (30) Priority Data: 317A East Liberty St., Savannah, GA 31401 (US). 62/286,850 25 January 2016 (25.01.2016) US 62/437,558 2 1 December 201 6 (21. 12.2016) US (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, (71) Applicants: THE BROAD INSTITUTE, INC. [US/US]; AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 415 Main Street, Cambridge, MA 02142 (US).
    [Show full text]
  • Visualization and Exploration of Transcriptomics Data Nils Gehlenborg
    Visualization and Exploration of Transcriptomics Data 05 The identifier 800 year identifier Nils Gehlenborg Sidney Sussex College To celebrate our 800 year history an adaptation of the core identifier has been commissioned. This should be used on communications in the time period up to and including 2009. The 800 year identifier consists of three elements: the shield, the University of Cambridge logotype and the 800 years wording. It should not be redrawn, digitally manipulated or altered. The elements should not be A dissertation submitted to the University of Cambridge used independently and their relationship should for the degree of Doctor of Philosophy remain consistent. The 800 year identifier must always be reproduced from a digital master reference. This is available in eps, jpeg and gif format. Please ensure the appropriate artwork format is used. File formats European Molecular Biology Laboratory, eps: all professionally printed applications European Bioinformatics Institute, jpeg: Microsoft programmes Wellcome Trust Genome Campus, gif: online usage Hinxton, Cambridge, CB10 1SD, Colour United Kingdom. The 800 year identifier only appears in the five colour variants shown on this page. Email: [email protected] Black, Red Pantone 032, Yellow Pantone 109 and white October 12, 2010 shield with black (or white name). Single colour black or white. Please try to avoid any other colour combinations. Pantone 032 R237 G41 B57 Pantone 109 R254 G209 B0 To Maureen. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and acknowledgements. This dissertation is not substantially the same as any I have submit- ted for a degree, diploma or other qualification at any other university, and no part has already been, or is currently being submitted for any degree, diploma or other qualification.
    [Show full text]
  • King's Research Portal
    King’s Research Portal DOI: 10.1136/annrheumdis-2017-211214 Document Version Peer reviewed version Link to publication record in King's Research Portal Citation for published version (APA): Hollander, W. D., Boer, C. G., Hart, D. J., Yau, M. S., Ramos, Y. F. M., Metrustry, S., Broer, L., Deelen, J., Cupples, L. A., Rivadeneira, F., Kloppenburg, M., Peters, M., Spector, T. D., Hofman, A., Slagboom, P. E., Nelissen, R. G. H. H., Uitterlinden, A. G., Felson, D. T., Valdes, A. M., ... van Meurs, J. J. B. (2017). Genome- wide association and functional studies identify a role for matrix Gla protein in osteoarthritis of the hand. Annals of the rheumatic diseases, 76(12), 2046-2053. https://doi.org/10.1136/annrheumdis-2017-211214 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]