Module “Basics of Electronics” Special-Purpose
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extremely High-Gain Source-Gated Transistors
Extremely high-gain source-gated transistors Jiawei Zhanga,1, Joshua Wilsona,1, Gregory Autonb, Yiming Wangc, Mingsheng Xuc, Qian Xinc, and Aimin Songa,c,1,2 aSchool of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, United Kingdom; bNational Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; and cState Key Laboratory of Crystal Materials, Centre of Nanoelectronics and School of Microelectronics, Shandong University, Jinan 250100, People’s Republic of China Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved January 29, 2019 (received for review December 6, 2018) Despite being a fundamental electronic component for over 70 turn-on voltage (19, 20). This susceptibility to negative bias illu- years, it is still possible to develop different transistor designs, mination temperature stress (NBITS) is one of the main factors including the addition of a diode-like Schottky source electrode delaying the wide-scale adoption of IGZO in the display industry. to thin-film transistors. The discovery of a dependence of the Another major problem is that TFTs require precise lithography source barrier height on the semiconductor thickness and deriva- to enable large-area uniformity, and difficulties with registration tion of an analytical theory allow us to propose a design rule to between different TFT layers are likely to be compounded by the achieve extremely high voltage gain, one of the most important use of flexible substrates. One major advantage of the SGT is that figures of merit for a transistor. Using an oxide semiconductor, an it does not require such precise registration, because the current intrinsic gain of 29,000 was obtained, which is orders of magni- is controlled by the dimensions of the source contact rather than tude higher than a conventional Si transistor. -
Schottky Diodes Selection Guide
SCHOTTKY DIODES ( HOT - CARRIER ) pag A 1 Schottky diodes selection guide For HIGH SENSITIVITY , ZERO-BIAS or LOW BARRIER applications --- for lab detectors as RF detector with sweep generator --- RF fields detector, electromagnetic pollution, TAG , etc… --- passive or active mobile phones and bugs detector diode TSS Glass SMD Ceramic or special (tangential sensitivity) case case case HSMS 2850 - 2851 -59 dBm @ 2 GHz SMS 7630 -55 dBm @ 10 GHz these are the much sensitive diodes at usable up to 18 GHz ZERO BIAS -53 dBm @ 2 GHz ND 4991 - 1SS276 DDC2353 -55 dBm @ 6 GHz LOW BARRIER up to 20 GHz from -54 dBm to -52 dBm all BAT 15… types are LOW BARRIER up to 24 GHz depending on type high sensitivity vatious types available -56 dBm @ 2 GHz with bias HP 5082-2824 HSMS.282…series low barrier, up to millimeter freq. beam lead version version with leads of the famous 1N821 point-contact 1N21 - 23 silicon , up to 5 GHz NOTE : high sensitivity silicon or germanium diodes for detectors are available too, see VARIOUS DIODES for : RECEIVING MIXERS - RF DETECTORS - SAMPLING freq. config. glass case SMD or plastic case ceramic case up to 500 MHz BAT 42 - 43 - 46 - 48 - 85 - 86 BAS 40-…- BAT 64-.... 5082.2800 - BAT 45 - 82 - 83 single HSMS 28.... , BAT 68 up to HSCH 1001 2 GHz pair 5082.2804 BAS 70... , HSMS 28... quad 5082.2836 ND 487C1-3R 5082.2810, 2811, 2817 2824, up to HSMS 2810 , 2820 single 2835, 2900, MA4853 ND4991 BAT 17 , BAT 68 3 - 5 1SS154 ,BA 481, QSCH 5374 pair 5082.2826, 2912 HSMS 28…. -
Special Diodes 2113
CHAPTER54 Learning Objectives ➣ Zener Diode SPECIAL ➣ Voltage Regulation ➣ Zener Diode as Peak Clipper DIODES ➣ Meter Protection ➣ Zener Diode as a Reference Element ➣ Tunneling Effect ➣ Tunnel Diode ➣ Tunnel Diode Oscillator ➣ Varactor Diode ➣ PIN Diode ➣ Schottky Diode ➣ Step Recovery Diode ➣ Gunn Diode ➣ IMPATT Diode Ç A major application for zener diodes is voltage regulation in dc power supplies. Zener diode maintains a nearly constant dc voltage under the proper operating conditions. 2112 Electrical Technology 54.1. Zener Diode It is a reverse-biased heavily-doped silicon (or germanium) P-N junction diode which is oper- ated in the breakdown region where current is limited by both external resistance and power dissipa- tion of the diode. Silicon is perferred to Ge because of its higher temperature and current capability. As seen from Art. 52.3, when a diode breaks down, both Zener and avalanche effects are present although usually one or the other predominates depending on the value of reverse voltage. At reverse voltages less than 6 V, Zener effect predominates whereas above 6 V, avalanche effect is predomi- nant. Strictly speaking, the first one should be called Zener diode and the second one as avalanche diode but the general practice is to call both types as Zener diodes. Zener breakdown occurs due to breaking of covalent bonds by the strong electric field set up in the depletion region by the reverse voltage. It produces an extremely large number of electrons and holes which constitute the reverse saturation current (now called Zener current, Iz) whose value is limited only by the external resistance in the circuit. -
Lecture 3: Diodes and Transistors
2.996/6.971 Biomedical Devices Design Laboratory Lecture 3: Diodes and Transistors Instructor: Hong Ma Sept. 17, 2007 Diode Behavior • Forward bias – Exponential behavior • Reverse bias I – Breakdown – Controlled breakdown Æ Zeners VZ = Zener knee voltage Compressed -VZ scale 0V 0.7 V V ⎛⎞V Breakdown V IV()= I et − 1 S ⎜⎟ ⎝⎠ kT V = t Q Types of Diode • Silicon diode (0.7V turn-on) • Schottky diode (0.3V turn-on) • LED (Light-Emitting Diode) (0.7-5V) • Photodiode • Zener • Transient Voltage Suppressor Silicon Diode • 0.7V turn-on • Important specs: – Maximum forward current – Reverse leakage current – Reverse breakdown voltage • Typical parts: Part # IF, max IR VR, max Cost 1N914 200mA 25nA at 20V 100 ~$0.007 1N4001 1A 5µA at 50V 50V ~$0.02 Schottky Diode • Metal-semiconductor junction • ~0.3V turn-on • Often used in power applications • Fast switching – no reverse recovery time • Limitation: reverse leakage current is higher – New SiC Schottky diodes have lower reverse leakage Reverse Recovery Time Test Jig Reverse Recovery Test Results • Device tested: 2N4004 diode Light Emitting Diode (LED) • Turn-on voltage from 0.7V to 5V • ~5 years ago: blue and white LEDs • Recently: high power LEDs for lighting • Need to limit current LEDs in Parallel V R ⎛⎞ Vt IV()= IS ⎜⎟ e − 1 VS = 3.3V ⎜⎟ ⎝⎠ •IS is strongly dependent on temp. • Resistance decreases R R R with increasing V = 3.3V S temperature • “Power Hogging” Photodiode • Photons generate electron-hole pairs • Apply reverse bias voltage to increase sensitivity • Key specifications: – Sensitivity -
Comparing Trench and Planar Schottky Rectifiers
Whitepaper Comparing Trench and Planar Schottky Rectifiers Trench technology delivers lower Qrr, reduced switching losses and wider SOA By Dr.-Ing. Reza Behtash, Applications Marketing Manager, Nexperia The Schottky diode - named after its inventor, the German physicist Walter Hans Schottky - consists essentially of a metal-semiconductor interface. Because of its low forward voltage drop and high switching speed, the Schottky diode is widely used in a variety of applications, such as a boost diode in power conversion circuits. The electrical performance of a Schottky diode is, of course, subject to physical trade-offs, primarily between the forward voltage drop, the leakage current and the reverse blocking voltage. The Trench Schottky diode is a development on the original Schottky diode, providing greater capabilities than its planar counterpart. In this paper the structure and the benefits of Trench Schottky rectifiers are discussed. Schottky operation Trench technology The ideal rectifier would have a low forward voltage drop, Given this explanation, one might ask how the major a high reverse blocking voltage, zero leakage current and advantage of Schottky rectifiers - namely, a low voltage a low parasitic capacitance, facilitating a high switching drop across the metal semiconductor interface - is preserved, speed. When considering the forward voltage drop, despite the demand for a low leakage current and a high there are two main elements: the voltage drop across the reverse blocking voltage? Here, Trench rectifiers prove very junction - PN junction in case of PN rectifiers and metal- useful. The concept behind the Trench Schottky rectifier semiconductor junction in case of Schottky rectifiers; and is termed ‘RESURF’ (reduced surface field). -
(Or Varicap) Diode
Radio and Electronics Cookbook 20 The varactor (or varicap) diode Introduction Many of the circuits for receivers and transmitters presented in this series rely upon the variable capacitor as a means of tuning. Another method of varying capacitance (without any moving parts) is provided by the varactor diode, sometimes called a varicap diode. This is a component which changes its capacitance as the voltage across it is varied. The details Figure 1 shows how a varactor diode might be connected to demonstrate its operation. Its symbol is that of an ordinary diode, with a capacitor symbol next to it. A variable voltage is applied across it in such a way that the diode is reverse-biased. This means that virtually no current passes through it – the positive voltage is applied to the cathode. Varactors are cheaper than variable capacitors, and they are tiny in comparison, very suitable for today’s miniature circuits. If A and B were connected across the tuning coil in a simple receiver (with a series capacitor to block the DC from the battery reaching the coil), the tuning operation would be accomplished by turning the knob on the 10 kilohm potentiometer. Varactors are available with different values, from less than 20 picofarad (pF) for VHF applications to 500 pF for medium-wave radios. They are Figure 1 The capacitance of the varicap diode (between A and B) increases as the voltage is reduced, using the variable resistor 64 A portable radio for medium waves tuned usually by voltages between 2 V and 9 V. For a real application of varactors, you should consult the circuit diagram of the Yearling 20 metre receiver, elsewhere in this book. -
J. W. Miller Company the Coil Forum March 1960
J. W. MILLER COMPANY-LOS ANGELES, CALIFORNIA-VOLUME 1, NUMBER 1 MARCH 1960 A TRANSISTOR FM RECEIVER With this issue, the J. W. Miller Company inaugurates a new publication devoted to the experimenter. Although coils, and their associated com ponents, are our business, we at Miller would like to supply our customers with timely information on circuits, theory to assist with your work or experiments, and data on how to select and use our coils wisely. We believe you will agree that THE COIL FORUM is indeed an appropriate nam~. www.SteamPoweredRadio.Com J. W. M I L L E R C O M P A N Y Recent advances in the state of the semiconductor from the collector back to the base through capacitor art have made it possible to construct a transistor Cl2 and the stage oscillates. Coil L3, along with the FM receiver which performs every bit as well as a tuning capacitor and circuit capacity, determines the vacuum tube version. VHF equipment places very frequency of oscillation, which is always 10. 7 me. strict demands on the transistors. They must be above the incoming signal frequency. Resistors R9 capable of constant amplification over the entire and Rl 1 provide bias and RIO is used for d.c. degener band being received, create a minimum of circuit ation. Transistor QlO and diode Xl are part of the drift, and provide maximum gain with a minimum automatic frequency control system and will be of stages. ' discussed later. All tuned circuits in the "front end" are tracked with a three-gang variable capacitor The excellent performance of the receiver to be (C3, 3-lOmmfd.) described is an outgrowth of the work done by Philco Corporation on their transistor "Safari" tele The i.f. -
Capacitor & Capacitance
CAPACITOR & CAPACITANCE - TYPES Capacitor types Listed by di-electric material. A 12 pF 20 kV fixed vacuum capacitor Vacuum : Two metal, usually copper, electrodes are separated by a vacuum. The insulating envelope is usually glass or ceramic. Typically of low capacitance - 10 - 1000 pF and high voltage, up to tens of kilovolts, they are most often used in radio transmitters and other high voltage power devices. Both fixed and variable types are available. Vacuum variable capacitors can have a minimum to maximum capacitance ratio of up to 100, allowing any tuned circuit to cover a full decade of frequency. Vacuum is the most perfect of dielectrics with a zero loss tangent. This allows very high powers to be transmitted without significant loss and consequent heating. Air : Air dielectric capacitors consist of metal plates separated by an air gap. The metal plates, of which there may be many interleaved, are most often made of aluminium or silver-plated brass. Nearly all air dielectric capacitors are variable and are used in radio tuning circuits. Metallized plastic film: Made from high quality polymer film (usually polycarbonate, polystyrene, polypropylene, polyester (Mylar), and for high quality capacitors polysulfone), and metal foil or a layer of metal deposited on surface. They have good quality and stability, and are suitable for timer circuits. Suitable for high frequencies. Mica: Similar to metal film. Often high voltage. Suitable for high frequencies. Expensive. Excellent tolerance. Paper: Used for relatively high voltages. Now obsolete. Glass: Used for high voltages. Expensive. Stable temperature coefficient in a wide range of temperatures. Ceramic: Chips of alternating layers of metal and ceramic. -
Schottky Diode Replacement by Transistors: Simulation and Measured Results
SCHOTTKY DIODE REPLACEMENT BY TRANSISTORS: SIMULATION AND MEASURED RESULTS Martin Pospisilik Department of Computer and Communication Systems Faculty of Applied Informatics Tomas Bata University in Zlin 760 05, Zlin, Czech Republic E-mail: [email protected] KEYWORDS MOTIVATION Model, SPICE, MOSFET, Electronic Diode, Voltage The expansion of metal oxide field effect transistors has Drop, Power Dissipation led to efforts to substitute conventional diodes by electronic circuit that behave in the same way as the ABSTRACT diodes, but show considerably lower power dissipation The software support for simulation of electrical circuits as the voltage drop over the transistor can be eliminated has been developed for more than sixty years. Currently, to very low levels. In Fig. 1 there is a block diagram of a the standard tools for simulation of analogous circuits backup power source for the devices that use Power are the simulators based on the open source package over Ethernet technology. This solution, that has been Simulation Program with Integrated Circuit Emphasis developed at Tomas Bata University in Zlin, enables generally known as SPICE (Biolek 2003). There are immediate switching from the main supply to the backup many different applications that provide graphical one together with gentle charging of the accumulator, interface and extended functionalities on the basis of unlike the conventional on-line uninterruptable power SPICE or, at least, using SPICE models of electronic sources do (Pospisilik and Neumann 2013). devices. The author of this paper performed a simulation of a circuit that acts as an electronic diode in Multisim and provides a comparison of the simulation results with the results obtained from measurements on the real circuit. -
How Diodes Work
HOW DIODES WORK There are several types of diode included in your Joe Knows Electronics Semiconductor Kit: general- purpose diodes, Zener diodes, Schottky diodes, PIN IMPORTANT diodes, varicap (variable capacitance) diodes, and current regulation diodes. NOTE CONTENTS ON DIODE PACKAGES CONTACT US ....................................... 3 Most of the diodes supplied in our DATASHEET ACCESS ............................ 4 semiconductor kit are in very small DO-35 glass cases. There is very little room on GENERAL PURPOSE DIODES ............... 5 these cases to print identifying numbers and codes clearly. It would be best to ZENER DIODES .................................. 11 keep track of the identities of parts from SCHOTTKY DIODES ............................ 13 the moment they are removed from their envelopes until they are replaced. PIN DIODES ....................................... 15 VARICAP DIODES ............................... 18 CURRENT REGULATION DIODES ........ 23 CONTACT US DATASHEET Email ACCESS [email protected] Access more information about this The best way to communicate with us is by product including datasheets by email. This allows us to have a record of your scanning this QR code or visiting correspondence and the ability to convey information like technical specifications wiki.joeknowselectronics.com more easily. Toll Free Number 855-JOE-KNOW (855-563-5669) Someone is available 24/7 to take your call at our toll free number. Your contact information will be taken and a member of our management team will contact you within normal business hours, 9am – 6pm EST M-F. Please note that our phone associates don’t have the necessary information to discuss products or orders but will direct your call Find community driven content and to the appropriate company representative. -
Basics of Transistors and Circuits Dr
BASICS OF TRANSISTORS AND CIRCUITS DR. HEATHER QUINN, LANL TEXTBOOK For these slides I am using many figures from the second edition of the Principles of CMOS VLSI Design by Weste and Esharaghain, and the fourth edition of CMOS VLSI Design: A Circuit and Systems Perspective INTRODUCTION There are two ways to view radiation effects in electronics: Start from the material science and work upward to transistors to circuits Start from computer circuits and work downward to transistors and then to material science There are advantages and disadvantages to both TOP/BOTTOM VS. BOTTOM/TOP Top/Bottom Bottom/Top Pros: Pros: Understanding of how the entire circuit Deep understanding of the mechanism works (sort of) Deep understanding the potential of the Understanding of the effect of electrical, effect, able to determine whether new temporal, and logical masking, which can be effects are possible used to limit the effects to the ones that cause noticeable effect Cons: Cons: Lack of understanding about electrical, temporal, and logical masking Hard to scale down to the material science Hard to scale up Might not understand the mechanism WHICH WAY TO GO? Likely depends on your background I’m a computer architect that learned radiation effects OJT, so I feel more comfortable personally going top down Some of my team is better versed in radiation effects are learning the circuit part OJT Either way, it is almost impossible to do both well, unless you would like to earn two PhDs, so working in teams is always best At the end of -
Design and Fabrication of Schottky Diode with Standard CMOS Process3
第 26 卷 第 2 期 半 导 体 学 报 Vol. 26 No. 2 2005 年 2 月 CHINESEJOURNAL OF SEMICONDUCTORS Feb. ,2005 Design and Fabrication of Schottky Diode with Standard CMOS Process 3 Li Qiang , Wang J unyu, Han Yifeng, and Min Hao ( State Key L aboratory of A S IC &System , Fudan U niversity , S hanghai 200433 , China) Abstract : Design and fabrication of Schottky barrier diodes (SBD) with a commercial standard 0135μm CMOS process are described. In order to reduce the series resistor of Schottky contact ,interdigitating the fingers of schottky diode layout is adopted. The I2V , C2V ,and S parameter are measured. The parameters of realized SBD such as the saturation current , breakdown voltage ,and the Schottky barrier height are given. The SPICE simulation model of the realized SBDs is given. Key words : CMOS; Schottky diode; integration EEACC : 2560H; 2570D CLC number : TN311 + 17 Document code : A Article ID : 025324177 (2005) 0220238205 sured results[5 ,6 ] . In this paper we describe the way to 1 Introduction design and layout a Schottky diode in a low cost com2 mercial standard CMOS process without any process Schottky diodes have advantages such as fast modification. The measured results and SPICE simu2 switching speed and low forward voltage drop. Due to lation model are offered. these excellent high frequency performance ,they have been widely used in power detection and microwave 2 Design and layout of Schottky diode network circuit [1 ] . Schottky diodes are often fabricat2 ed by depositing metals on n2type or p2type semicon2 This design was performed through MPW(multi ductor materials such as GaAs and SiC[2~4 ] .