Sex Determination: Why So Many Ways of Doing It?

Total Page:16

File Type:pdf, Size:1020Kb

Sex Determination: Why So Many Ways of Doing It? Essay Sex Determination: Why So Many Ways of Doing It? Doris Bachtrog1*, Judith E. Mank2, Catherine L. Peichel3, Mark Kirkpatrick4, Sarah P. Otto5, Tia-Lynn Ashman6, Matthew W. Hahn7, Jun Kitano8, Itay Mayrose9, Ray Ming10, Nicolas Perrin11, Laura Ross12, Nicole Valenzuela13, Jana C. Vamosi14, The Tree of Sex Consortium" 1 University of California, Berkeley, Department of Integrative Biology, Berkeley, California, United States of America, 2 University College London, Department of Genetics, Evolution and Environment, London, United Kingdom, 3 Fred Hutchinson Cancer Research Center, Divisions of Human Biology and Basic Sciences, Seattle, Washington, United States of America, 4 University of Texas, Department of Integrative Biology, Austin, Texas, United States of America, 5 University of British Columbia, Department of Zoology, Vancouver, British Columbia, Canada, 6 University of Pittsburgh, Department of Biological Sciences, Pittsburgh, Pennsylvania, United States of America, 7 Indiana University, Department of Biology, Bloomington Indiana, United States of America, 8 National Institute of Genetics, Ecological Genetics Laboratory, Mishima, Shizuoka, Japan, 9 Tel Aviv University, Department of Molecular Biology and Ecology of Plants, Tel Aviv, Israel, 10 University of Illinois, Department of Plant Biology, Urbana- Champaign, Illinois, United States of America, 11 University of Lausanne, Department of Ecology and Evolution, Lausanne, Switzerland, 12 University of Oxford, Department of Zoology, Oxford, United Kingdom, 13 Iowa State University, Department of Ecology, Evolution and Organismal Biology, Ames, Iowa, United States of America, 14 University of Calgary, Department of Biological Sciences, Calgary, Alberta, Canada Abstract: Sexual reproduction is variance that is otherwise hidden [2]. or female depends on the presence of a an ancient feature of life on earth, While many unicellular organisms pro- single master sex-determining locus, the Sry and the familiar X and Y chromo- duce gametes of equal size (isogamy, see gene, on the male-limited Y chromosome. somes in humans and other model Box 1), sexual reproduction in most Expression of Sry early in embryonic species have led to the impression multicellular organisms has led to the development initiates testis differentiation that sex determination mecha- evolution of female and male gametes by activating male-specific developmental nisms are old and conserved. In differing in size (anisogamy), and often to networks, while in its absence, ovaries fact, males and females are deter- the evolution of two separate sexes. Even develop. The first visible signs of sexual mined by diverse mechanisms that though the outcome of sex determina- differentiation of the ovary and testis occur evolve rapidly in many taxa. Yet tion—whether an individual produces by the sixth week of gestation in humans this diversity in primary sex-deter- relatively few large ova or many small [6], and sex hormones initiate further sexual mining signals is coupled with sperm—is strongly conserved, a bewilder- differentiation in nongonadal tissues and conserved molecular pathways that ing number of underlying mechanisms can organs [7]. When this developmental pro- trigger male or female develop- trigger development as either a male or cess goes awry, the effects can be cata- ment. Conflicting selection on dif- female [3,4]. strophic, causing everything from ambigu- ferent parts of the genome and on In humans, sex is determined by sex ous external genitalia (which occurs in up to the two sexes may drive many of chromosomes (XX females, XY males). The one in 4,500 infants) to sterility (which is these transitions, but few systems X and Y chromosomes harbor dramatically more cryptic and difficult to diagnose but with rapid turnover of sex determi- different numbers and sets of genes (about may be far more common). nation mechanisms have been rig- orously studied. Here we survey 1,000 genes on the X and only a few dozen Like humans and most mammals, other our current understanding of how genes on the Y), yet they originated from genetic model systems, such as Drosophila and why sex determination evolves ordinary autosomes during the early evolu- melanogaster flies and Caenorhabditis elegans in animals and plants and identify tion of mammals (Figure 1). Restriction of nematodes, harbor sex chromosomes, and important gaps in our knowledge recombination followed by gene loss on the their commonalities have led to general that present exciting research op- Y has resulted in the morphological differ- assumptions about the conservation of sex portunities to characterize the evo- entiation of sex chromosomes (for a review determination mechanisms. However, lutionary forces and molecular of the molecular and evolutionary processes these model organisms present a false pathways underlying the evolution involved in Y degeneration, see [4,5]). The impression of stability in how sex is of sex determination. vast majority of genes on the sex chromo- determined, and their commonalities somes are not directly involved in sex mask the diversity and turnover in sex determination, and development as a male determination mechanisms that is readily Introduction Citation: Bachtrog D, Mank JE, Peichel CL, Kirkpatrick M, Otto SP, et al. (2014) Sex Determination: Why So Many Sex—the mixing of genomes via meiosis Ways of Doing It? PLoS Biol 12(7): e1001899. doi:10.1371/journal.pbio.1001899 and fusion of gametes—is nearly universal Published July 1, 2014 to eukaryotic life and encompasses a Copyright: ß 2014 Bachtrog et al. This is an open-access article distributed under the terms of the Creative diverse array of systems and mechanisms Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, [1]. One major role of sex is to bring provided the original author and source are credited. together alleles carried by different Funding: The Tree of Sex Consortium was funded by NESCent. The funders had no role in study design, data individuals, revealing beneficial genetic collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. Essays articulate a specific perspective on a topic of broad interest to scientists. * E-mail: [email protected] " Membership of the Tree of Sex Consortium is provided in the Acknowledgments. PLOS Biology | www.plosbiology.org 1 July 2014 | Volume 12 | Issue 7 | e1001899 apparent when taking a broader taxonom- [18]). Thus, sex chromosomes that are separation of male and female gonads in ic view. In this article, we address three morphologically similar (homomorphic) the same individual, as in monoecious common myths about sex determination must be evolutionarily young, and in time plants with separate male and female and then deconstruct them based on a they too will degenerate. flowers (e.g., maize) and in most hermaph- broad taxonomic survey of animals and roditic animals. Alternatively, male and plants. The Myths Deconstructed female function can be separated in time within an individual, as found in many Myths of Sex Determination These myths do not survive a survey of plants (‘‘dichogamy,’’ [23]) and some sex determination systems across the tree animals (‘‘sequential hermaphroditism,’’ Myth 1: Sex is typically determined of life. To deconstruct these myths, we first by X and Y chromosomes [24]); slipper shells, for example, are born provide background on the evolution of male and become female later in life. Many biologists are habituated to think- separate sexes. We then summarize the Finally, male and female reproductive ing about sex determination through the diversity of sex-determining mechanisms organs can be segregated into different familiar examples of mammals and D. found among animals and plants and individuals, as in some plants (such as melanogaster, and assume that sex determi- discuss the evolutionary forces that drive papaya and cannabis) and most animals. nation by sex chromosomes is the norm, transitions among systems (Myth 1 revis- that males are XY and females are XX, Separate sexes have evolved indepen- ited). This is followed by a summary of dently many times among plants and and that sex chromosomes are a stable more recent findings on the underlying component of the genome. While biolo- animals, which suggests that there must molecular genetics of sex determination be an evolutionary cost to hermaphrodit- gists are generally aware of other modes of (Myth 2 revisited) and a deconstruction of ism, at least in some groups. Two major sex determination (such as female hetero- common misconceptions of sex chromo- hypotheses have been proposed to explain gamety in birds, temperature-dependent some evolution in humans and other the evolution of separate sexes. The first sex determination in reptiles, or develop- species (Myth 3 revisited). We conclude hypothesis is that there are trade-offs ment of males from unfertilized eggs in with an outlook for future research that between male and female function, such bees), these alternatives are often viewed as might improve our understanding of how as when mating displays enhance male strange and aberrant [8]. and why sex determination evolves so fitness but decrease female fitness. In this rapidly in many animals and plants. case, individuals can gain reproductive Myth 2: Sex is controlled by one advantages by specializing as a male or master-switch gene The Evolution of Separate Sexes female
Recommended publications
  • Sexual Selection in Fungi
    Sexual selection in Fungi Bart P. S. Nieuwenhuis Thesis committee Thesis supervisor Prof. dr. R.F. Hoekstra Emeritus professor of Genetics (Population and Quantitative Genetics) Wageningen University Thesis co-supervisor Dr. D.K. Aanen Assistant professor at the Laboratory of Genetics Wageningen University Other members Prof. dr. J. B. Anderson, University of Toronto, Toronto, Canada Prof. dr. W. de Boer, NIOO, Wageningen and Wageningen University Prof. dr. P.G.L. Klinkhamer, Leiden University, Leiden Prof. dr. H.A.B. Wösten, Utrecht Univesity, Utrecht This research was conducted under the auspices of the C.T. de Wit Graduate School for Production Ecology and Resource Conservation (PE&RC) Sexual selection in Fungi Bart P. S. Nieuwenhuis Thesis submittted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 21 September 2012 at 4 p.m. in the Aula. Bart P. S. Nieuwenhuis Sexual selection in Fungi Thesis, Wageningen University, Wageningen, NL (2012) With references, with summaries in Dutch and English ISBN 978-94-6173-358-0 Contents Chapter 1 7 General introduction Chapter 2 17 Why mating types are not sexes Chapter 3 31 On the asymmetry of mating in the mushroom fungus Schizophyllum commune Chapter 4 49 Sexual selection in mushroom-forming basidiomycetes Chapter 5 59 Fungal fidelity: Nuclear divorce from a dikaryon by mating or monokaryon regeneration Chapter 6 69 Fungal nuclear arms race: experimental evolution for increased masculinity in a mushroom Chapter 7 89 Sexual selection in the fungal kingdom Chapter 8 109 Discussion: male and female fitness Bibliography 121 Summary 133 Dutch summary 137 Dankwoord 147 Curriculum vitea 153 Education statement 155 6 Chapter 1 General introduction Bart P.
    [Show full text]
  • DNA Barcoding Cannot Reliably Identify Species of the Blowfly Genus Protocalliphora (Diptera: Calliphoridae)
    DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). T. L. Whitworth, R. D. Dawson, Hélène Magalon, E. Baudry To cite this version: T. L. Whitworth, R. D. Dawson, Hélène Magalon, E. Baudry. DNA barcoding cannot reli- ably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae).. Proceedings of the Royal Society B: Biological Sciences, Royal Society, The, 2007, 274 (1619), pp.1731-1739. 10.1098/rspb.2007.0062. hal-00941689 HAL Id: hal-00941689 https://hal.archives-ouvertes.fr/hal-00941689 Submitted on 6 May 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae) T. L. Whitworth1, R. D. Dawson2, H. Magalon3 and E. Baudry4,* 1Washington State University, 2533 Inter Avenue, Puyallup, WA 98372, USA 2University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada 3Laboratoire d’Ecologie, Universite´ Paris VI, Paris 75252, France 4Laboratoire Ecologie, Systematique et Evolution, Universite´ Paris-Sud, Baˆtiment 362, 91405 Orsay Cedex, France In DNA barcoding, a short standardized DNA sequence is used to assign unknown individuals to species and aid in the discovery of new species.
    [Show full text]
  • Self-Fertility and Uni-Directional Mating-Type Switching in Ceratocystis Coerulescens, a Filamentous Ascomycete
    Curr Genet (1997) 32: 52–59 © Springer-Verlag 1997 ORIGINAL PAPER T. C. Harrington · D. L. McNew Self-fertility and uni-directional mating-type switching in Ceratocystis coerulescens, a filamentous ascomycete Received: 6 July 1996 / 25 March 1997 Abstract Individual perithecia from selfings of most some filamentous ascomycetes. Although a switch in the Ceratocystis species produce both self-fertile and self- expression of mating-type is seen in these fungi, it is not sterile progeny, apparently due to uni-directional mating- clear if a physical movement of mating-type genes is in- type switching. In C. coerulescens, male-only mutants of volved. It is also not clear if the expressed mating-types otherwise hermaphroditic and self-fertile strains were self- of the respective self-fertile and self-sterile progeny are sterile and were used in crossings to demonstrate that this homologs of the mating-type genes in other strictly heter- species has two mating-types. Only MAT-2 strains are othallic species of ascomycetes. capable of selfing, and half of the progeny from a MAT-2 Sclerotinia trifoliorum and Chromocrea spinulosa show selfing are MAT-1. Male-only, MAT-2 mutants are self- a 1:1 segregation of self-fertile and self-sterile progeny in sterile and cross only with MAT-1 strains. Similarly, self- perithecia from selfings or crosses (Mathieson 1952; Uhm fertile strains generally cross with only MAT-1 strains. and Fujii 1983a, b). In tetrad analyses of selfings or crosses, MAT-1 strains only cross with MAT-2 strains and never self. half of the ascospores in an ascus are large and give rise to It is hypothesized that the switch in mating-type during self-fertile colonies, and the other ascospores are small and selfing is associated with a deletion of the MAT-2 gene.
    [Show full text]
  • The Diversity of Plant Sex Chromosomes Highlighted Through Advances in Genome Sequencing
    G C A T T A C G G C A T genes Review The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing Sarah Carey 1,2 , Qingyi Yu 3,* and Alex Harkess 1,2,* 1 Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA; [email protected] 2 HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA 3 Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA * Correspondence: [email protected] (Q.Y.); [email protected] (A.H.) Abstract: For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics Citation: Carey, S.; Yu, Q.; to unravel the patterns that can be found across the hundreds of independent origins.
    [Show full text]
  • Wolbachia Endosymbiont Infection in Two Indian Butterflies and Female-Biased Sex Ratio in the Red Pierrot, Talicada Nyseus
    Wolbachia endosymbiont infection in two Indian butterflies and female-biased sex ratio in the Red Pierrot, Talicada nyseus 1 2 1, KUNAL ANKOLA , DOROTHEA BRUECKNER and HP PUTTARAJU * 1Division of Biological Sciences, School of Natural Sciences, Bangalore University, Bangalore, India 2Department of Biology, University of Bremen, Bremen, Germany *Corresponding author (Email, [email protected]) The maternally inherited obligate bacteria Wolbachia is known to infect various lepidopteran insects. However, so far only a few butterfly species harbouring this bacterium have been thoroughly studied. The current study aims to identify the infection status of these bacteria in some of the commonly found butterfly species in India. A total of nine butterfly species belonging to four different families were screened using PCR with Wolbachia-specific wsp and ftsZ primers. The presence of the Wolbachia super group ‘B’ in the butterflies Red Pierrot, Talicada nyseus (Guerin) (Lepidoptera: Lycaenidae) and Blue Mormon, Papilio polymnestor Cramer (Papilionidae), is documented for the first time in India. The study also gives an account on the lifetime fecundity and female-biased sex ratio in T. nyseus, suggesting a putative role for Wolbachia in the observed female-biased sex ratio distortion. [Ankola K, Brueckner D and Puttaraju HP 2011 Wolbachia endosymbiont infection in two Indian butterflies and female-biased sex ratio in the Red Pierrot, Talicada nyseus. J. Biosci. 36 845–850] DOI:10.1007/s12038-011-9149-3 1. Introduction infected by Wolbachia. It has been shown that the presence of particular clades of Wolbachia cause feminization and The maternally inherited endosymbiotic α–proteobacteria cytoplasmic incompatibility in the common grass yellow called Wolbachia is known to infect 15%–75% of insect butterfly, Eurema hecabe (Hiroki et al.
    [Show full text]
  • The Genus Acraea (Lepidoptera : Nymphalidae) - Peter Hendry
    The genus Acraea (Lepidoptera : Nymphalidae) - Peter Hendry With the recent migration to Australia of the Tawny Coster (Acraea terpsicore (Linnaeus, 1758)), (see Creature Feature this issue), I thought it might be timely to take a look at the genus worldwide. It must be noted that due to a misidentification A. terpsicore had long been known as A. violae and many references in the literature and on the web refer to it as A. violae. As with much of the Lepidoptera the genus is in a state of flux, and has long been split into the subgenera Acraea (Acraea) and Acraea (Actinote). The genus is placed in the tribe Acraeini and until Harvey (1991) placed it in the subfamily Heliconiinae it was listed in the subfamily Acraeinae. Recent molecular work has made changes and a current listing of the tribe Acraeini, by Niklas Wahlberg, is available at http://www.nymphalidae.net/Classification/Acraeini.htm. It shows members of the old subgenus Acraea (Actinote) being placed in the genus Actinote, and the old subgenus Acraea (Acraea) becoming the genus Acraea with a subgenus Acraea (Bematistes). It also lists several Acraea as unplaced. This may further change as some believe the subgenus Acraea (Bematistes) will move to the genus Bematistes. The genus is primarily Afrotropical with only four species occurring outside this region, these being, Acraea andromacha (Fig. 1) A. meyeri (Fig. 10) A. moluccana and A. terpsicore. A fifth species the Yellow Coster Acraea (Actinote) issoria is now referred to the genus Actinote. Like many of the Nymphalidae the larvae feed on plants which contain cyanogens making the larvae and adults poisonous to predators.
    [Show full text]
  • The Genetics of Sex: Exploring Differences
    COMMENTARY: GENETICS OF SEX The Genetics of Sex: Exploring Differences Michelle N. Arbeitman,*,1 Artyom Kopp,† Mark L. Siegal,‡ and Mark Van Doren§ *Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, †Department of Evolution and Ecology, University of California, Davis, California 95616, ‡Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, and §Biology Department, Johns Hopkins University, Baltimore, Maryland 21218 In this commentary, Michelle Arbeitman et al., examine the previously existed. The fundamental genetic differences be- topic of the Genetics of Sex as explored in this month’s tween the sexes and how they arise continue to fascinate issues of GENETICS and G3: Genes|Genomes|Genetics.These biologists, and the results from genetic explorations of these inaugural articles are part of a joint Genetics of Sex col- topics are featured in an ongoing collection of articles published lection (ongoing) in the GSA journals. in GENETICS and G3: Genes|Genomes|Genetics. The inaugural articles address some of these topics. Two EX differences affect nearly every biological process. studies focus on the biology of reproduction: the transition These differences may be seen in obvious morpholog- S from predominantly sexual reproduction to asexuality in ical traits, such as deer antlers, beetle horns, and the sex- fungi (Solieri et al. 2014) and self-incompatibility in plants specific color patterns of birds and butterflies. Reproductive (Leducq et al. 2014). Two other articles examine differences behaviors may also be quite different between the sexes and in the evolution of sex chromosomes: Blackmon and Demuth include elaborate courtship displays, parental care of progeny, (2014) look at the evolutionary turnover of sex chromosomes and aggressive or territorial behaviors.
    [Show full text]
  • Lepidoptera: Nymphalidae)
    14 TROP. LEPID. RES., 23(1): 14-21, 2013 HASSAN ET AL.: Wolbachia and Acraea encedon MORPH RATIO DYNAMICS UNDER MALE-KILLER INVASION: THE CASE OF THE TROPICAL BUTTERFLY ACRAEA ENCEDON (LEPIDOPTERA: NYMPHALIDAE) Sami Saeed M. Hassan1, 2, 3*, Eihab Idris2 and Michael E. N. Majerus4 1 Department of Zoology, Faculty of Science, University of Khartoum, P.O. Box 321, Postal Code 11115, Khartoum, Sudan. 2 Department of Biology, Faculty of Science, University of Hail, P.O. Box 1560, Hail, Kingdom of Saudi Arabia. 3 Department of Genetics, University of Cambridge, CB2 3EH, Cambridge, UK. 4 Deceased – Department of Genetics, University of Cambridge. * Corresponding author: E-mail: [email protected] Abstract - This study aimed to provide field-based assessment for the theoretical possibility that there is a relationship between colour polymorphism and male- killing in the butterflyAcraea encedon. In an extensive, three year study conducted in Uganda, the spatial variations and temporal changes in the ratios of different colour forms were observed. Moreover, the association between Wolbachia susceptibility and colour pattern was analyzed statistically. Two hypotheses were tested: first, morph ratio dynamics is a consequence of random extinction-colonization cycles, caused by Wolbachia spread, and second, particular colour forms are less susceptible to Wolbachia infection than others, implying the existence of colour form-specific resistance alleles. Overall, obtained data are consistent with the first hypothesis but not with the second, however, further research is needed before any firm conclusions can be made on the reality, scale and nature of the presumed association between polymorphism and male-killing in A. encedon.
    [Show full text]
  • Using Caenorhabditis to Explore the Evolution of the Germ Line
    Chapter 14 Using Caenorhabditis to Explore the Evolution of the Germ Line Eric S. Haag and Qinwen Liu Abstract Germ cells share core attributes and homologous molecular components across animal phyla. Nevertheless, abrupt shifts in reproductive mode often occur that are mediated by the rapid evolution of germ cell properties. Studies of Caenorhabditis nematodes show how the otherwise conserved RNA-binding pro- teins (RBPs) that regulate germline development and differentiation can undergo surprisingly rapid functional evolution. This occurs even as the narrow biochemical tasks performed by the RBPs remain constant. The biological roles of germline RBPs are thus highly context-dependent, and the inference of archetypal roles from isolated models in different phyla may therefore be premature. Keywords RNA-binding protein • Translation • PUF proteins • GLD-1 14.1 Comparative Biology of Germline Development 14.1.1 Evolutionary Overview In this chapter, we seek to put attributes of the C. elegans germ line covered by other authors in this volume in an evolutionary context. Two major themes run through it. First, C. elegans germ cells share many features with those of other animals and are thus a useful model system for inferring general principles. Second, we discuss how comparisons with other closely related nematodes offer an important window onto the role germ cells play in the evolution of important new reproductive adaptations. E. S. Haag (*) • Q. Liu Department of Biology , University of Maryland , Building 144 , College Park , MD 20742 , USA e-mail: [email protected] T. Schedl (ed.), Germ Cell Development in C. elegans, Advances in Experimental 405 Medicine and Biology 757, DOI 10.1007/978-1-4614-4015-4_14, © Springer Science+Business Media New York 2013 406 E.S.
    [Show full text]
  • On Sexual Selection
    On Sexual Selection Larry Bull Department of Computer Science & Creative Technologies University of the West of England, Bristol BS16 1QY, UK [email protected] Abstract Sexual selection is a fundamental aspect of evolution for all eukaryotic organisms with mating types. This paper suggests intersexual selection is best viewed as a mechanism to compensate for the unavoidable dynamics of coevolution between sexes that emerge with isogamy. Using the NK model of fitness landscapes, the conditions under which allosomes emerge are first explored. This extends previous work on the evolution of sex where the fitness landscape smoothing of a rudimentary form of the Baldwin effect is suggested as the underlying cause. The NKCS model of coevolution is then used to show how varying fitness landscape size, ruggedness, and connectedness can vary the conditions under which a very simple sexual selection mechanism proves beneficial. This is found to be the case whether one or both sexes exploit sexual selection. Keywords: Baldwin effect, diploid, eukaryote, isogamy, NK model, NKCS model Introduction Sexual selection is the component of natural selection usually referring to both opposite-sex mate choice and same-sex competition for mating opportunities. In the former case, males and females can be seen to be coevolving within their species. At an abstract level coevolution is typically considered as the coupling together of the fitness landscapes of the interacting species. Hence the adaptive moves made by one species in its fitness landscape causes deformations in the fitness landscapes of its coupled partner(s). That sexes coevolve and that this need not be to their mutual benefit has been used to explain phenomena such as female-damaging genitalia and sperm selection (eg, [18]).
    [Show full text]
  • Mt Mabu, Mozambique: Biodiversity and Conservation
    Darwin Initiative Award 15/036: Monitoring and Managing Biodiversity Loss in South-East Africa's Montane Ecosystems MT MABU, MOZAMBIQUE: BIODIVERSITY AND CONSERVATION November 2012 Jonathan Timberlake, Julian Bayliss, Françoise Dowsett-Lemaire, Colin Congdon, Bill Branch, Steve Collins, Michael Curran, Robert J. Dowsett, Lincoln Fishpool, Jorge Francisco, Tim Harris, Mirjam Kopp & Camila de Sousa ABRI african butterfly research in Forestry Research Institute of Malawi Biodiversity of Mt Mabu, Mozambique, page 2 Front cover: Main camp in lower forest area on Mt Mabu (JB). Frontispiece: View over Mabu forest to north (TT, top); Hermenegildo Matimele plant collecting (TT, middle L); view of Mt Mabu from abandoned tea estate (JT, middle R); butterflies (Lachnoptera ayresii) mating (JB, bottom L); Atheris mabuensis (JB, bottom R). Photo credits: JB – Julian Bayliss CS ‒ Camila de Sousa JT – Jonathan Timberlake TT – Tom Timberlake TH – Tim Harris Suggested citation: Timberlake, J.R., Bayliss, J., Dowsett-Lemaire, F., Congdon, C., Branch, W.R., Collins, S., Curran, M., Dowsett, R.J., Fishpool, L., Francisco, J., Harris, T., Kopp, M. & de Sousa, C. (2012). Mt Mabu, Mozambique: Biodiversity and Conservation. Report produced under the Darwin Initiative Award 15/036. Royal Botanic Gardens, Kew, London. 94 pp. Biodiversity of Mt Mabu, Mozambique, page 3 LIST OF CONTENTS List of Contents .......................................................................................................................... 3 List of Tables .............................................................................................................................
    [Show full text]
  • 26768V1 | CC by 4.0 Open Access | Rec: 24 Mar 2018, Publ: 24 Mar 2018 1 Uncovering the Hidden Players in Lepidoptera Biology: the Heritable Microbial
    A peer-reviewed version of this preprint was published in PeerJ on 8 May 2018. View the peer-reviewed version (peerj.com/articles/4629), which is the preferred citable publication unless you specifically need to cite this preprint. Duplouy A, Hornett EA. (2018) Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. PeerJ 6:e4629 https://doi.org/10.7717/peerj.4629 Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts Anne Duplouy 1 , Emily A Hornett Corresp. 2 1 University of Helsinki, Helsinki, Finland 2 Department of Zoology, University of Cambridge, Cambridge, United Kingdom Corresponding Author: Emily A Hornett Email address: [email protected] The Lepidoptera is one of the most widespread and recognisable insect orders. Due to their remarkable diversity, economic and ecological importance, moths and butterflies have been studied extensively over the last 200 years. More recently, the relationship between Lepidoptera and their heritable microbial endosymbionts has received increasing attention. Heritable endosymbionts reside within the host’s body and are often, but not exclusively, inherited through the female line. Advancements in molecular genetics have revealed that host-associated microbes are both extremely prevalent among arthropods and highly diverse. Furthermore, heritable endosymbionts have been repeatedly demonstrated to play an integral role in many aspects of host biology, particularly host reproduction. Here, we review the major findings of research of heritable microbial endosymbionts of butterflies and moths. We promote the Lepidoptera as important models in the study of reproductive manipulations employed by heritable endosymbionts, with the mechanisms underlying male-killing and feminisation currently being elucidated in both moths and butterflies.
    [Show full text]