Sexual Development in the Industrial Workhorse Trichoderma Reesei
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Direct Ethanol Production from Cellulose by Consortium Of
Spec. Matrices 2019; 7:1–19 Research Article Open Access Kazumasa Nomura* and Paul Terwilliger Green Process Synth 2019; 8: 416–420 Self-dual Leonard pairs Yingjie Bu, Bassam Alkotaini, Bipinchandra K. Salunke, Aarti R. Deshmukh, Pathikrit Saha and Beom Soo Kim* https://doi.org/10.1515/spma-2019-0001 Received May 8, 2018; accepted September 22, 2018 Direct ethanol productionAbstract: Let F denote from a eld and cellulose let V denote a vector by space over F with nite positive dimension. Consider a pair A, A∗ of diagonalizable F-linear maps on V, each of which acts on an eigenbasis for the other one in an consortium of Trichodermairreducible tridiagonal fashion. reesei Such a and pair is called Candida a Leonard pair. We consider the self-dual case in which molischiana there exists an automorphism of the endomorphism algebra of V that swaps A and A∗. Such an automorphism is unique, and called the duality A A∗. In the present paper we give a comprehensive description of this ↔ duality. In particular, we display an invertible F-linear map T on V such that the map X TXT− is the duality https://doi.org/10.1515/gps-2019-0009 waste are attractive alternatives to fossil fuels [1]. New → A A∗. We express T as a polynomial in A and A∗. We describe how T acts on ags, decompositions, Received August 13, 2018; accepted October 09,↔ 2018. technologies to convert plant biomass into alternative and 24 bases for V. biofuels, such as bioethanol, are being developed [2]. Abstract: Industrial cellulosic ethanol production is a Fermentation-derived ethanol can be produced from challenge due to the high cost of cellulasesKeywords: for Leonardhydroly- pair, tridiagonal matrix, self-dual sugar, starch, or lignocellulosic biomass. -
Sexual Selection in Fungi
Sexual selection in Fungi Bart P. S. Nieuwenhuis Thesis committee Thesis supervisor Prof. dr. R.F. Hoekstra Emeritus professor of Genetics (Population and Quantitative Genetics) Wageningen University Thesis co-supervisor Dr. D.K. Aanen Assistant professor at the Laboratory of Genetics Wageningen University Other members Prof. dr. J. B. Anderson, University of Toronto, Toronto, Canada Prof. dr. W. de Boer, NIOO, Wageningen and Wageningen University Prof. dr. P.G.L. Klinkhamer, Leiden University, Leiden Prof. dr. H.A.B. Wösten, Utrecht Univesity, Utrecht This research was conducted under the auspices of the C.T. de Wit Graduate School for Production Ecology and Resource Conservation (PE&RC) Sexual selection in Fungi Bart P. S. Nieuwenhuis Thesis submittted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 21 September 2012 at 4 p.m. in the Aula. Bart P. S. Nieuwenhuis Sexual selection in Fungi Thesis, Wageningen University, Wageningen, NL (2012) With references, with summaries in Dutch and English ISBN 978-94-6173-358-0 Contents Chapter 1 7 General introduction Chapter 2 17 Why mating types are not sexes Chapter 3 31 On the asymmetry of mating in the mushroom fungus Schizophyllum commune Chapter 4 49 Sexual selection in mushroom-forming basidiomycetes Chapter 5 59 Fungal fidelity: Nuclear divorce from a dikaryon by mating or monokaryon regeneration Chapter 6 69 Fungal nuclear arms race: experimental evolution for increased masculinity in a mushroom Chapter 7 89 Sexual selection in the fungal kingdom Chapter 8 109 Discussion: male and female fitness Bibliography 121 Summary 133 Dutch summary 137 Dankwoord 147 Curriculum vitea 153 Education statement 155 6 Chapter 1 General introduction Bart P. -
Classifications of Fungi
Chapter 24 | Fungi 675 Sexual Reproduction Sexual reproduction introduces genetic variation into a population of fungi. In fungi, sexual reproduction often occurs in response to adverse environmental conditions. During sexual reproduction, two mating types are produced. When both mating types are present in the same mycelium, it is called homothallic, or self-fertile. Heterothallic mycelia require two different, but compatible, mycelia to reproduce sexually. Although there are many variations in fungal sexual reproduction, all include the following three stages (Figure 24.8). First, during plasmogamy (literally, “marriage or union of cytoplasm”), two haploid cells fuse, leading to a dikaryotic stage where two haploid nuclei coexist in a single cell. During karyogamy (“nuclear marriage”), the haploid nuclei fuse to form a diploid zygote nucleus. Finally, meiosis takes place in the gametangia (singular, gametangium) organs, in which gametes of different mating types are generated. At this stage, spores are disseminated into the environment. Review the characteristics of fungi by visiting this interactive site (http://openstaxcollege.org/l/ fungi_kingdom) from Wisconsin-online. 24.2 | Classifications of Fungi By the end of this section, you will be able to do the following: • Identify fungi and place them into the five major phyla according to current classification • Describe each phylum in terms of major representative species and patterns of reproduction The kingdom Fungi contains five major phyla that were established according to their mode of sexual reproduction or using molecular data. Polyphyletic, unrelated fungi that reproduce without a sexual cycle, were once placed for convenience in a sixth group, the Deuteromycota, called a “form phylum,” because superficially they appeared to be similar. -
Self-Fertility and Uni-Directional Mating-Type Switching in Ceratocystis Coerulescens, a Filamentous Ascomycete
Curr Genet (1997) 32: 52–59 © Springer-Verlag 1997 ORIGINAL PAPER T. C. Harrington · D. L. McNew Self-fertility and uni-directional mating-type switching in Ceratocystis coerulescens, a filamentous ascomycete Received: 6 July 1996 / 25 March 1997 Abstract Individual perithecia from selfings of most some filamentous ascomycetes. Although a switch in the Ceratocystis species produce both self-fertile and self- expression of mating-type is seen in these fungi, it is not sterile progeny, apparently due to uni-directional mating- clear if a physical movement of mating-type genes is in- type switching. In C. coerulescens, male-only mutants of volved. It is also not clear if the expressed mating-types otherwise hermaphroditic and self-fertile strains were self- of the respective self-fertile and self-sterile progeny are sterile and were used in crossings to demonstrate that this homologs of the mating-type genes in other strictly heter- species has two mating-types. Only MAT-2 strains are othallic species of ascomycetes. capable of selfing, and half of the progeny from a MAT-2 Sclerotinia trifoliorum and Chromocrea spinulosa show selfing are MAT-1. Male-only, MAT-2 mutants are self- a 1:1 segregation of self-fertile and self-sterile progeny in sterile and cross only with MAT-1 strains. Similarly, self- perithecia from selfings or crosses (Mathieson 1952; Uhm fertile strains generally cross with only MAT-1 strains. and Fujii 1983a, b). In tetrad analyses of selfings or crosses, MAT-1 strains only cross with MAT-2 strains and never self. half of the ascospores in an ascus are large and give rise to It is hypothesized that the switch in mating-type during self-fertile colonies, and the other ascospores are small and selfing is associated with a deletion of the MAT-2 gene. -
The Diversity of Plant Sex Chromosomes Highlighted Through Advances in Genome Sequencing
G C A T T A C G G C A T genes Review The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing Sarah Carey 1,2 , Qingyi Yu 3,* and Alex Harkess 1,2,* 1 Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA; [email protected] 2 HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA 3 Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA * Correspondence: [email protected] (Q.Y.); [email protected] (A.H.) Abstract: For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics Citation: Carey, S.; Yu, Q.; to unravel the patterns that can be found across the hundreds of independent origins. -
Trichoderma Genome to Genomics: a Review
g in Geno nin m i ic M s ta & a P Srivastava et al., J Data Mining Genomics Proteomics 2014, 5:3 D r f o Journal of o t e l DOI: 10.4172/2153-0602.1000162 o a m n r i c u s o J ISSN: 2153-0602 Data Mining in Genomics & Proteomics Review Article Open Access Trichoderma Genome to Genomics: A Review Mukesh Srivastava*, Mohammad Shahid, Sonika Pandey, Anuradha Singh, Vipul Kumar, Shyamji Gupta and Manoj Maurya Biocontrol Laboratory, Department of Plant Pathology, Chandra Shekhar Azad University of Agriculture & Technology, Kanpur, Uttar Pradesh, India Abstract Trichoderma species are widely used in agriculture as biopesticides. These fungi reproduce asexually by production of conidia and chlamydospores and in wild habitats by ascospores. Trichoderma species are well known for their production of enzymes called Cell Wall Degrading Enzymes (CWDEs). All living organisms are made up of genes that code for a protein which performs the particular function. Some genes that play an important role in the biocontrol process are known as the biocontrol genes. These genes send some signals which help in secretion of proteins and enzymes that degrade the plant pathogens. These biocontrol genes can be cloned in huge amounts and can be used on large scale for commercial production. Some Trichoderma genes are also helpful in providing resistance to the biotic and abiotic stresses such as heat, drought and salt .The major biocontrol processes include antibiosis, mycoparasitism and providing plant nutrition. Keywords: Trichoderma; Biocontrol genes; Cell wall degrading have been preserved from this study. No further morphological enzymes differentiation of the anamorphs was attempted by Doi and Doi. -
Perithecial Ascomycetes from the 400 Million Year Old Rhynie Chert: an Example of Ancestral Polymorphism
Mycologia, 97(1), 2005, pp. 269±285. q 2005 by The Mycological Society of America, Lawrence, KS 66044-8897 Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism Editor's note: Unfortunately, the plates for this article published in the December 2004 issue of Mycologia 96(6):1403±1419 were misprinted. This contribution includes the description of a new genus and a new species. The name of a new taxon of fossil plants must be accompanied by an illustration or ®gure showing the essential characters (ICBN, Art. 38.1). This requirement was not met in the previous printing, and as a result we are publishing the entire paper again to correct the error. We apologize to the authors. T.N. Taylor1 terpreted as the anamorph of the fungus. Conidioge- Department of Ecology and Evolutionary Biology, and nesis is thallic, basipetal and probably of the holoar- Natural History Museum and Biodiversity Research thric-type; arthrospores are cube-shaped. Some peri- Center, University of Kansas, Lawrence, Kansas thecia contain mycoparasites in the form of hyphae 66045 and thick-walled spores of various sizes. The structure H. Hass and morphology of the fossil fungus is compared H. Kerp with modern ascomycetes that produce perithecial as- Forschungsstelle fuÈr PalaÈobotanik, Westfalische cocarps, and characters that de®ne the fungus are Wilhelms-UniversitaÈt MuÈnster, Germany considered in the context of ascomycete phylogeny. M. Krings Key words: anamorph, arthrospores, ascomycete, Bayerische Staatssammlung fuÈr PalaÈontologie und ascospores, conidia, fossil fungi, Lower Devonian, my- Geologie, Richard-Wagner-Straûe 10, 80333 MuÈnchen, coparasite, perithecium, Rhynie chert, teleomorph Germany R.T. -
Fungal Cannons: Explosive Spore Discharge in the Ascomycota Frances Trail
MINIREVIEW Fungal cannons: explosive spore discharge in the Ascomycota Frances Trail Department of Plant Biology and Department of Plant Pathology, Michigan State University, East Lansing, MI, USA Correspondence: Frances Trail, Department Abstract Downloaded from https://academic.oup.com/femsle/article/276/1/12/593867 by guest on 24 September 2021 of Plant Biology, Michigan State University, East Lansing, MI 48824, USA. Tel.: 11 517 The ascomycetous fungi produce prodigious amounts of spores through both 432 2939; fax: 11 517 353 1926; asexual and sexual reproduction. Their sexual spores (ascospores) develop within e-mail: [email protected] tubular sacs called asci that act as small water cannons and expel the spores into the air. Dispersal of spores by forcible discharge is important for dissemination of Received 15 June 2007; revised 28 July 2007; many fungal plant diseases and for the dispersal of many saprophytic fungi. The accepted 30 July 2007. mechanism has long been thought to be driven by turgor pressure within the First published online 3 September 2007. extending ascus; however, relatively little genetic and physiological work has been carried out on the mechanism. Recent studies have measured the pressures within DOI:10.1111/j.1574-6968.2007.00900.x the ascus and quantified the components of the ascus epiplasmic fluid that contribute to the osmotic potential. Few species have been examined in detail, Editor: Richard Staples but the results indicate diversity in ascus function that reflects ascus size, fruiting Keywords body type, and the niche of the particular species. ascus; ascospore; turgor pressure; perithecium; apothecium. 2 and 3). Each subphylum contains members that forcibly Introduction discharge their spores. -
Genetic Engineering of Fungal Cells-Margo M
BIOTECHNOLOGY- Vol III - Genetic Engineering of Fungal Cells-Margo M. Moore GENETIC ENGINEERING OF FUNGAL CELLS Margo M. Moore Department of Biological Sciences, Simon Fraser University, Burnaby, Canada Keywords: filamentous fungi, transformation, protoplasting, Agrobacterium, promoter, selectable marker, REMI, transposon, non-homologous end joining, homologous recombination Contents 1. Introduction 1.1. Industrial importance of fungi 1.2. Purpose and range of topics covered 2. Generation of transforming constructs 2.1. Autonomously-replicating plasmids 2.2. Promoters 2.2.1. Constitutive promoters 2.2.2. Inducible promoters 2.3. Selectable markers 2.3.1. Dominant selectable markers 2.3.2. Auxotropic/inducible markers 2.4. Gateway technology 2.5. Fusion PCR and Ligation PCR 3. Transformation methods 3.1. Protoplast formation and CaCl2/ PEG 3.2. Electroporation 3.3. Agrobacterium-mediated Ti plasmid 3.4. Biolistics 3.5. Homo- versus heterokaryotic selection 4. Gene disruption and gene replacement 4.1. Targetted gene disruption 4.1.1. Ectopic and homologous recombination 4.1.2. Strains deficient in non-homologous end joining (NHEJ) 4.1.3. AMT and homologous recombination 4.1.4. RNA interference 4.2. RandomUNESCO gene disruption – EOLSS 4.2.1. Restriction enzyme-mediated integration (REMI) 4.2.2. T-DNA taggingSAMPLE using Agrobacterium-mediated CHAPTERS transformation (AMT) 4.2.3. Transposon mutagenesis & TAGKO 5. Concluding statement Glossary Bibliography Biographical Sketch Summary Filamentous fungi have myriad industrial applications that benefit mankind while at the ©Encyclopedia of Life Support Systems (EOLSS) BIOTECHNOLOGY- Vol III - Genetic Engineering of Fungal Cells-Margo M. Moore same time, fungal diseases of plants cause significant economic losses. -
Trichoderma: the “Secrets” of a Multitalented Biocontrol Agent
plants Review Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent 1, 1, 2 3 Monika Sood y, Dhriti Kapoor y, Vipul Kumar , Mohamed S. Sheteiwy , Muthusamy Ramakrishnan 4 , Marco Landi 5,6,* , Fabrizio Araniti 7 and Anket Sharma 4,* 1 School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; [email protected] (M.S.); [email protected] (D.K.) 2 School of Agriculture, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, Punjab 144411, India; [email protected] 3 Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; [email protected] 4 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; [email protected] 5 Department of Agriculture, University of Pisa, I-56124 Pisa, Italy 6 CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy 7 Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected] (M.L.); [email protected] (A.S.) Authors contributed equal. y Received: 25 May 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens. -
The Genetics of Sex: Exploring Differences
COMMENTARY: GENETICS OF SEX The Genetics of Sex: Exploring Differences Michelle N. Arbeitman,*,1 Artyom Kopp,† Mark L. Siegal,‡ and Mark Van Doren§ *Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, †Department of Evolution and Ecology, University of California, Davis, California 95616, ‡Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, and §Biology Department, Johns Hopkins University, Baltimore, Maryland 21218 In this commentary, Michelle Arbeitman et al., examine the previously existed. The fundamental genetic differences be- topic of the Genetics of Sex as explored in this month’s tween the sexes and how they arise continue to fascinate issues of GENETICS and G3: Genes|Genomes|Genetics.These biologists, and the results from genetic explorations of these inaugural articles are part of a joint Genetics of Sex col- topics are featured in an ongoing collection of articles published lection (ongoing) in the GSA journals. in GENETICS and G3: Genes|Genomes|Genetics. The inaugural articles address some of these topics. Two EX differences affect nearly every biological process. studies focus on the biology of reproduction: the transition These differences may be seen in obvious morpholog- S from predominantly sexual reproduction to asexuality in ical traits, such as deer antlers, beetle horns, and the sex- fungi (Solieri et al. 2014) and self-incompatibility in plants specific color patterns of birds and butterflies. Reproductive (Leducq et al. 2014). Two other articles examine differences behaviors may also be quite different between the sexes and in the evolution of sex chromosomes: Blackmon and Demuth include elaborate courtship displays, parental care of progeny, (2014) look at the evolutionary turnover of sex chromosomes and aggressive or territorial behaviors. -
The Identification of Yeasts from Clinical Material
Proceedings of the Iowa Academy of Science Volume 81 Number Article 9 1974 The Identification of eastsY from Clinical Material Leila J. Walker Wadsworth Hospital Center Marguerite R. Luecke Wadsworth Hospital Center Let us know how access to this document benefits ouy Copyright ©1974 Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation Walker, Leila J. and Luecke, Marguerite R. (1974) "The Identification of eastsY from Clinical Material," Proceedings of the Iowa Academy of Science, 81(1), 14-22. Available at: https://scholarworks.uni.edu/pias/vol81/iss1/9 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Walker and Luecke: The Identification of Yeasts from Clinical Material 14 The Identification of Yeasts from Clinical Material LEILA J. WALKER and MARGUERITE R. LUECKE1 WALKER, LEILA J., and MARGUERITE R. LUECKE (Laboratory Ser medically important sexual stages and imperfect forms, and char vice, Research Service, Veterans Administration, Wadsworth Hos acteristics of the sexual stages in clinical material, are described. pital Center, Los Angeles, California 90073). The Identification Included in this report is a guide to yeast identification which of Yeasts from Clinical Material. Proc. Iowa Acad. Sci. 81 (1): relies on the Luecke plate, a modified Dalmau plate. 14-22, 1974. INDEX DESCRIPTORS: Yeast Identification, Non-Filamentous Fungi, A workable, practical scheme for the identification of yeasts iso Mycology in Medicine.