Anatomic Enigmas of the Olfactory Neuronal System Structures in Man

Total Page:16

File Type:pdf, Size:1020Kb

Anatomic Enigmas of the Olfactory Neuronal System Structures in Man Rom J Leg Med [27] 95-102 [2019] DOI: 10.4323/rjlm.2019.95 © 2019 Romanian Society of Legal Medicine FUNDAMENTAL RESEARCH Anatomic enigmas of the olfactory neuronal system structures in man. Implications in psychopathology Gheorghe S.Drăgoi1,2,*, Elena Pătrașcu3, Ileana Marinescu4 _________________________________________________________________________________________ Abstract: The anatomic enigmas of the olfactory neuronal system have blocked the real denominations and their systemic integration for a long time. They were finally understood as a result of anatomic and physiological studies on the dynamics of their ontogenesis and phylogeny. In the present paper we aim at bringing to light the issues associated with the anatomic enigmas of the olfactory neuronal structures in man. The object of the present paper is to report an ample anatomic study on extracerebral olfactory neuronal structures in man. The anatomic evaluation was carried out on 18 human encephala free of acute or chronic lesions taken from 8 adults (between 40 and 62 years of age), 6 feti (aged between 3 and 7 months antepartum life), and 4 embryos (30 to 36 mm long from vertex to coccigis). Prelevation, conservation and processing of the encephala was carried out on the basis of protocols worked out by the authors. Three olfactory neuronal structures in man were anatomically analyzed: the olfactory bulb, the olfactory peduncle and the olfactory tubercle. The morphogenesis of these structures was microanatomically evaluated on serial sections of embryo encephala, as well as macroanatomically on fetal samples. We encountered difficulties in denomination criteria, classification of topographic locations of chain stations and interconnective pathways. The elucidation of these issues opens up new integrative potentials of olfactory neuronal structures within the neuronal system of behavior and cognition with further implications in psychopathology. Key Words: olfactory neuronal structures, olfactory bulb, olfactory peduncle and olfactory tubercle. INTRODUCTION issues connected to the macroscopic anatomy and the morphogenesis of these structures. Our main object is to The olfactory neuronal system structures achieve the anatomic analysis of the following structures: in man has generated a score of problems regarding the olfactory bulb as a first extracerebral synaptic chain denomination, anatomic evaluation and integration in station, the olfactory peduncle as an interconnective the neuronal system the process behavior and cognition. structure and the olfactory tubercle as a first synaptic Localization and characteristics of interconnection station of the cortical chain. require the mastering of encephalon dissection methods which enable the access paths to these structures situated MATERIALS AND METHOD at the border between neocortex and archicortex. Anatomically speaking, they are forms of relief that Materials can be grouped in: synaptic stations of extracerebral The anatomic study was carried out on 18 human chains; interconnective structures and synaptic stations encephala free of acute or chronic lesions taken from of cortical integration. The present paper raises current 8 adults (between 40 and 62 years of age), 6 feti (aged 1) University of Medicine and Pharmacy of Craiova, Doctoral School, Craiova, Romania 2) Romanian Academy of Medical Sciences, Bucharest, Romania * Corresponding author: E-mail: [email protected] 3) University of Medicine and Pharmacy of Craiova, Department of Anatomy, Craiova, Romania 4) University of Medicine and Pharmacy of Craiova, 5th Department, Craiova, Romania 95 Drăgoi G.S. et al. Anatomic enigmas of the olfactory neuronal system structures in man. Implications in psychopathology between 3 and 7 months antepartum life), and 4 embryos of the peduncle. It is oval in form, surrounded by the (30, 32, 34 and 36 mm long) from vertex to coccigis. arachnoid that forms a full sleeve. It lies on the olfactory sulcus above the cribriform plate. The longitudinal Methods antero-posterior axis is oblique regarding the olfactory Prelevation and preservation of encephala was peduncle which, in turn, makes an obtuse angle, laterally done in accordance with the protocols set up by the open, of about 165 degrees. The medial margin is convex, authors of the paper (Drăgoi et al., 2019). Variability while the lateral margin is a straight line. A circular of locations, relations, connexions and morphogenesis groove is seen at the borderline of the olfactory peduncle of olfactory neuronal structures in man required the (Fig. 1B). selection of adequate anatomic methods for the two The olfactory peduncle was visualized in the anatomic entities under study: two rostral olfactory olfactory sulcus, in direct continuation of the olfactory neuronal structures and a caudal olfactory neuronal bulb. Its form is a triangular prism. The inferior face has structure. a longitudinal groove that divides it into two tracts: the Rostral olfactory structures – the olfactory bulb olfactory medial tract and the olfactory lateral tract; they and the olfactory peduncle – that can be seen on the are more distanced in the lower third and become the inferior face of the frontal lobe were individualized by olfactory medial stria and the olfactory lateral stria that dissecting the subarachnoidian space after inflating it participate in the delimitation of the olfactory trigone with air through the chiasmatic cistern situated ventrally (Fig. 1B and Fig. 2B). The apex of this triangle is in the and rostrally as reported to the optic chiasm. A large terminal part of the olfactory peduncle, while the basis number of arachnoidian trabeculae were split open in lies against the anterior perforated substance. We followed order to individualize the structural characteristics of the the routes of the two olfactory striae. The lateral olfactory form. stria is continuous, from the lateral angle of the olfactory The caudal olfactory structure – the olfactory trigone to the posterior and the lateral parts, and reaches tubercle in the anterior perforated substance – was the anterior border of the temporal lobe. The olfactory identified as the Sylvius’ valley after cutting a frontal medial stria goes from the margin of the medial angle of plane in the anterior extremity of the temporal lobe and the olfactory trigone to the medial and disappears in the pulling the optic chiasm towards the posterior. Following antero-medial of the anterior perforated substance (Fig. the opening up of the chiasmatic cistern by sectioning the 1C and Fig. 2B). arachnoid, we identified the rostral components of the The anterior perforated substance was visualized internal carotid system: the anterior cerebral artery and the as a small rectangular space, its long axis parallel to the middle cerebral artery. The former, as the terminal branch optic tract that makes up its posterior part. The medial of the internal carotid artery, passes medially and rostrally part is formed, towards the inferior, by a blunt crease that between the optic nerve and the anterior perforated is situated at the junction of medial and inferior faces of substance, further penetrating the longitudinal cerebral the frontal lobe. The lateral segment of the anterior face fissure where it comes into anastomoses with the collateral displays a prominent crease – the falciform crease – that homonymous artery through the anterior communicating separates the Sylvius’ valley from the lateral cerebral fossa artery (Fig.1A and 1B). The latter passes laterally and (Sylvius). The posterior face is made up of the optic tract rostrally between the temporal lobe and the frontal lobe which, from the optic chiasm, moves obliquely outwardly in the direction of the lateral cerebral fossae. We have also and to the posterior. identified the perforating branches of striate arteries that The anterior of the optic tract, the diagonal band enter the anterior perforated substance (Fig. 1A and 1C). (Broca) can easily be seen. The surface of the anterior perforated substance is smooth, grey in color and marked RESULTS by many orifices that make it look like a sieve because of the arterioles and venules of the corpus striatum. These The evaluation of the olfactory neuronal orifices are co-linear and make up spaced regular rows. In structures in man is based on the macroscopic anatomic each of these rows the diameter of the orifices increases analysis and on the study regarding the formation from medial towards lateral. The orifices that are situated processes and their evolution in ontogenesis. on a tract parallel to the posterior border are oval in shape and their larger diameter is oriented transversally. A. Macroscopic anatomic analysis In the anterior part of the perforated space, but Three extracerebral olfactory neuronal structures posteriorly to the bifurcation of the olfactory peduncle, were macroscopically analyzed: the olfactory bulb, the we noticed a small oval prominence generated by olfactory peduncle and the olfactory tubercle in the the olfactory tubercle that had the larger diameter anterior perforated substance. transversally oriented. It is surrounded by a large number The olfactory bulb was identified on the inferior of orifices that correspond, in the deep structure, to the faces of the frontal lobe, looking like an anterior dilatation ventral striatum (Fig. 1C and Fig. 2B). 96 Romanian Journal of Legal Medicine Vol. XXVII, No 2(2019) Figure 1. Presentation of olfactory structures in pars basalis telencephali. 1. Olfactory sulcus. 2. Olfactory bulb.
Recommended publications
  • Medial Temporal Lobe (The Limbic System)
    MEDIAL TEMPORAL LOBE (THE LIMBIC SYSTEM) On the medial surface of the temporal lobe are three structures critical for normal human functioning. From rostral to caudal, they are the olfactory cortex, the amygdala, and the hippocampus. We will look at the anatomy and function of each separately, although they are often grouped together as "the limbic system". A. The olfactory system: The olfactory system actually begins in the roof of the nasal cavity. The olfactory receptors are ciliated epithelial cells with an array of receptors capable of detecting thousands of different odors. However, just as with any sensory system, the receptor neurons themselves do not project to the cerebral hemispheres. Their axons project up through the cribiform plate of the skull to synapse on the dendrites of the mitral cells of the olfactory bulb. The axons of the olfactory receptors make up the elusive cranial nerve I. This fragile tract is susceptible to shearing forces in head trauma, and loss of smell is a surprisingly debilitating injury. Here is an example of a section through olfactory bulb. The olfactory bulb is not a simple relay (something which passively transmits the signal), but is a sophisticated structure in itself. The mitral cell- olfactory neuron synapse is actually within a tangle of axons and dendrites that is called a glomerulus. There is a second cell type tucked around these glomeruli which probably affects how the signal is transmitted. These cells are small and densely packed, which gives them the name "granule cells". However, they bear no relation to the granule cells of the cerebellum or cerebral cortex.
    [Show full text]
  • Olfactory Maps, Circuits and Computations
    Available online at www.sciencedirect.com ScienceDirect Olfactory maps, circuits and computations Andrew J Giessel and Sandeep Robert Datta Sensory information in the visual, auditory and somatosensory between local positional features to extract information systems is organized topographically, with key sensory features like object identity, depth and motion [4–6]. Unlike the ordered in space across neural sheets. Despite the existence of a small number of continuous sensory parameters that spatially stereotyped map of odor identity within the olfactory characterize vision, audition and touch (such as position, bulb, it is unclear whether the higher olfactory cortex uses frequency and amplitude), olfactory parameter space is topography to organize information about smells. Here, we poorly defined and highly multidimensional [7]. For review recent work on the anatomy, microcircuitry and example, any given monomolecular odorant can be neuromodulation of two higher-order olfactory areas: the described in terms of its functional groups, molecular piriform cortex and the olfactory tubercle. The piriform is an weight, chain length, bond substitution, resonance fre- archicortical region with an extensive local associational network quency or any number of additional chemical descrip- that constructs representations of odor identity. The olfactory tors. Furthermore, olfactory space is inherently tubercle is an extension of the ventral striatum that may use discrete — not only are individual odorants structurally reward-based learning rules to encode odor valence. We argue unique but many of the molecular descriptors typically that in contrast to brain circuits for other sensory modalities, both used for individual odorants (such as functional group or the piriform and the olfactory tubercle largely discard any bond substitution) cannot be mapped continuously in topography present in the bulb and instead use distributive any scheme for chemical space.
    [Show full text]
  • Variants of Olfactory Memory and Their Dependencies on the Hippocampal Formation
    The Journal of Neuroscience, February 1995, f5(2): 1162-i 171 Variants of Olfactory Memory and Their Dependencies on the Hippocampal Formation Ursula Sttiubli,’ To-Tam Le,2 and Gary Lynch* ‘Center for Neural Science, New York University, New York, New York 10003 and *Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92717 Olfactory memory in control rats and in animals with entor- pal pyramidal cells (e.g., Hjorth-Simonsen, 1972; Witter, 1993). hinal cortex lesions was tested in four paradigms: (1) a known Moreover, physiological activity in rat hippocampus becomes correct odor was present in a group of familiar but nonre- synchronized with that in the olfactory bulb and cortex during warded odors, (2) six known correct odors were simulta- odor sampling(Macrides et al., 1982). Theseobservations have neously present in a maze, (3) correct responses required prompted speculationand experimentation concerning the pos- the learning of associations between odors and objects, and sible contributions of the several stagesof the olfactory-hip- (4) six odors, each associated with a choice between two pocampal circuit to the encoding and use of memory. Lesions objects, were presented simultaneously. Control rats had no to the lateral entorhinal cortex, which separatethe hippocampus difficulty with the first problem and avoided repeating se- from its primary source of olfactory input, did not detectably lections in the second; this latter behavior resembles that affect the ability of rats to perform odor discriminations learned reported for spatial mazes but, in the present experiments, prior to surgery although they did disrupt the learning of new was not dependent upon memory for the configuration of discriminations (Staubli et al., 1984, 1986).This result suggested pertinent cues.
    [Show full text]
  • Normal Mentality Associated with a Maldeveloped " Rhinencephalon " by P
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.13.3.191 on 1 August 1950. Downloaded from J. Neurol. Neurosurg. Psychiat., 1950, 13, 191. NORMAL MENTALITY ASSOCIATED WITH A MALDEVELOPED " RHINENCEPHALON " BY P. W. NATHAN and MARION C. SMITH Fronm the Neurological Research Unit of the Medical Research Coulncil, National Hospital. Queen Square, London In 1937 Papez published his views on the Case Report functions of the gyrus fornicatus. He summarized The specimen is the brain of a man, aged 34, who died them as follows. of a chondrosarcoma of the ileum. He was one of a series of cases under investigation in a programme of " It is proposed that the hypothalamus, the anterior thalamic nuclei, the gyrus cinguli, the hippocampus, research concerned with operations for the relief of and their inter-connexions constitute a harmonious pain. As many hours had been devoted to the testing mechanism which may elaborate the functions of of sensation and the discussion of signs and symptoms, central emotion, as well as participate in emotional our knowledge of the patient, which extended over a expression." period of six months, was much greater than that Bilateral temporal lobectomies performed on acquired in most routine cases. Protected by copyright. and Bucy in 1939 gave evidence No abnormality of development had been suspected monkeys by Kiuver during the patient's life, for he came well within normal supporting Papez' general hypothesis. The effects limits from intellectual and psychological points of of extensive lesions of the hippocampus-fornix view. His mother had remained well during pregnancy, system in cats and dogs were reported by Spiegel, and his birth was normal.
    [Show full text]
  • Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex
    9414 • The Journal of Neuroscience, December 2, 2020 • 40(49):9414–9425 Systems/Circuits Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex Marco J. Russo,1 Kevin M. Franks,1 Roxanne Oghaz,1 Richard Axel,2 and Steven A. Siegelbaum3 1Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, 2Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, and 3Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York Odors activate distributed ensembles of neurons within the piriform cortex, forming cortical representations of odor thought to be essential to olfactory learning and behaviors. This odor response is driven by direct input from the olfactory bulb, but is also shaped by a dense network of associative or intracortical inputs to piriform, which may enhance or constrain the cort- ical odor representation. With optogenetic techniques, it is possible to functionally isolate defined inputs to piriform cortex and assess their potential to activate or inhibit piriform pyramidal neurons. The anterior olfactory nucleus (AON) receives direct input from the olfactory bulb and sends an associative projection to piriform cortex that has potential roles in the state-dependent processing of olfactory behaviors. Here, we provide a detailed functional assessment of the AON afferents to piriform in male and female C57Bl/6J mice. We confirm that the AON forms glutamatergic excitatory synapses onto piriform pyramidal neurons; and while these inputs are not as strong as piriform recurrent collaterals, they are less constrained by disynaptic inhibition.
    [Show full text]
  • A Cortical Pathway Modulates Sensory Input Into the Olfactory Striatum 3 4 5 Kate A
    bioRxiv preprint doi: https://doi.org/10.1101/235291; this version posted December 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 A cortical pathway modulates sensory input into the olfactory striatum 3 4 5 Kate A. White1,2,3, Yun-Feng Zhang4, Zhijian Zhang5, Janardhan P. Bhattarai4, Andrew 6 H. Moberly4, Estelle in ‘t Zandt1,2, Huijie Mi6, Xianglian Jia7, Marc V. Fuccillo4, Fuqiang 7 Xu5, Minghong Ma4, Daniel W. Wesson1,2,3* 8 9 1Department of Pharmacology & Therapeutics 10 2Center for Smell and Taste 11 University of Florida 12 1200 Newell Dr.; Gainesville, FL, 32610. U.S.A. 13 3Department of Neurosciences 14 Case Western Reserve University 15 2109 Adelbert Rd.; Cleveland, OH, 44106. U.S.A. 16 4Department of Neuroscience 17 University of Pennsylvania Perelman School of Medicine 18 211 CRB, 415 Curie Blvd; Philadelphia, PA, 19104. U.S.A 19 5Center for Brain Science 20 Wuhan Institute of Physics and Mathematics 21 Chinese Academy of Sciences 22 Wuhan 430071, China 23 6College of Life Sciences 24 Wuhan University 25 Wuhan 430072, China 26 7Shenzhen Institutes of Advanced Technology 27 Chinese Academy of Sciences 28 Shenzhen 518055, China 29 30 *corresponding author; [email protected] 31 RUNNING HEAD: Olfactory striatum input 32 33 Author Contributions: Conceptualization: K.A.W. and D.W.W.; Methodology: K.A.W., Z.Z., F.X., 34 M.M., and D.W.W.; Investigation: K.A.W., Y-F.Z., Z.Z., J.P.B., A.H.M., E.I.Z., H.M., and X.J.; 35 Resources: M.V.F.; Writing – Original Draft: K.A.W., Z.Z., M.M., and D.W.W.; Writing – Review & 36 Editing: all authors; Visualization: K.A.W., Z.Z., Y-F.Z., J.P.B., D.W.W.; Supervision: F.X., M.M., 37 and D.W.W.; Funding Acquisition: K.A.W., F.X., M.M., and D.W.W.
    [Show full text]
  • AN EXPERIMENTAL INVESTIGATION of the CONNEXIONS of the OLFACTORY TRACTS in the MONKEY by MARGARET MEYER and A
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.12.4.274 on 1 November 1949. Downloaded from J. Neurol. Neurosurg. Psychiat., 1949, 12, 274. AN EXPERIMENTAL INVESTIGATION OF THE CONNEXIONS OF THE OLFACTORY TRACTS IN THE MONKEY BY MARGARET MEYER and A. C. ALLISON From the Department ofAnatomy, University of Oxford The great expansion of the-cerebral cortex which bilateral degeneration of olfactory terminals appar- has taken place in higher primates has brought ently passing through the anterior limb of the about a considerable displacement of structures on anterior commissure. The present study has been the base of the telencephalon, and the precise undertaken to map out the connexions of the comparison of certain areas in this part of the olfactory bulb in the monkey's brain as precisely brain with those in lower mammals has been a as possible with the same silver technique. matter of some difficulty. This is true particularly Material and Methods of the olfactory areas which lie on the orbital aspect guest. Protected by copyright. of the frontal lobe and the adjacent part of the Three macaque monkeys (Macaca mulatta) and two this immature Guinea baboons (Papio papio) were used. temporal lobe. Although part of the brain The operative technique was similar in all cases: under in primates has been subjected to detailed cyto- nembutal anesthesia and with the usual aseptic pre- architectural and myelo-architectural examinations cautions a large right frontal bone flap was reflected; (Rose, 1927b, 1928; Beck, 1934, and others), the the frontal lobe of the hemisphere was carefully retraced, areas directly related to olfaction have never been and the olfactory peduncle, lying on the ventral surface, clearly defined.
    [Show full text]
  • The Olfactory Bulb As an Independent Developmental Domain
    Cell Death and Differentiation (2002) 9, 1279 ± 1286 ã 2002 Nature Publishing Group All rights reserved 1350-9047/02 $25.00 www.nature.com/cdd Review The olfactory bulb as an independent developmental domain LLo pez-Mascaraque*,1,3 and F de Castro2,3 established. Does it awake the developmental program of the cells at the site being innervated or, does their arrival simply 1 Instituto Cajal-C.S.I.C., Madrid, Spain serve to refine the later steps of the developmental program? 2 Hospital RamoÂn y Cajal, Madrid, Spain In order to address this question, much attention has been 3 Both authors contributed equally to this work focused on the sophisticated development of the mammalian * Corresponding author: L LoÂpez-Mascaraque, Instituto Cajal, CSIC, Avenida del cerebral cortex where two different theories have been Doctor Arce 37, 28002 Madrid, Spain. Tel: 915854708; Fax: 915854754; E-mail: [email protected] proposed to explain the mechanisms underlying its formation. In the `protomap' model, cortical regions are patterned prior to Received 13.2.02; revised 30.4.02; accepted 7.5.02 the migration of the newborn neurons (intrinsic control),1 an Edited by G Melino event presumably specified by important molecular determi- nants.2 In this model, the arrival of innervating axons would Abstract merely serve to modify and refine the protomap (an important The olfactory system is a good model to study the facet of maintenance). In the second model, the `protocortex' theory, the newborn cortical neurons are a homogeneous cell mechanisms underlying guidance of growing axons to their population, that later on in corticogenesis are patterned into appropriate targets.
    [Show full text]
  • Afferent Connections to the Striatum and the Nucleus Accumbens
    THE JOURNAL OF COMPARATIVE NEUROLOGY 378:16–49 (1997) Basal Ganglia Organization in Amphibians: Afferent Connections to the Striatum and the Nucleus Accumbens OSCAR MARI´N,1 AGUSTI´N GONZA´ LEZ,1* AND WILHELMUS J.A.J. SMEETS2 1Departamento de Biologı´a Celular, Facultad de Biologı´a, Universidad Complutense, Madrid, Spain 2 Graduate School of Neurosciences of Amsterdam, Research Institute of Neurosciences and Department of Anatomy and Embryology, Vrije Universiteit, Amsterdam, The Netherlands ABSTRACT As part of a research program to determine if the organization of basal ganglia (BG) of amphibians is homologous to that of amniotes, the afferent connections of the BG in the anurans Xenopus laevis and Rana perezi and the urodele Pleurodeles waltl were investigated with sensitive tract-tracing techniques. Hodological evidence is presented that supports a division of the amphibian BG into a nucleus accumbens and a striatum. Both structures have inputs in common from the olfactory bulb, medial pallium, striatopallial transition area, preoptic area, ventral thalamus, ventral hypothalamic nucleus, posterior tubercle, several mesencephalic and rhombencephalic reticular nuclei, locus coeruleus, raphe, and the nucleus of the solitary tract. Several nuclei that project to both subdivisions of the BG, however, show a clear preference for either the striatum (lateral amygdala, parabrachial nucleus) or the nucleus accumbens (medial amygdala, ventral midbrain tegmentum). In addition, the anterior entopeduncular nucleus, central thalamic nucleus, anterior and posteroventral divisions of the lateral thalamic nucleus, and torus semicircularis project exclusively to the striatum, whereas the anterior thalamic nucleus, anteroventral, and anterodorsal tegmental nuclei provide inputs solely to the nucleus accumbens. Apart from this subdivision of the basal forebrain, the results of the present study have revealed more elaborate patterns of afferent projections to the BG of amphibians than previously thought.
    [Show full text]
  • Olfactory Cortex Development
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Review | Development Development and organization of the evolutionary conserved three-layered olfactory cortex Olfactory cortex development Esther Klingler Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland. DOI: 10.1523/ENEURO.0193-16.2016 Received: 6 July 2016 Revised: 11 November 2016 Accepted: 8 December 2016 Published: 20 January 2017 Author Contributions: EK designed and wrote the paper. Conflict of Interest: Authors report no conflict of interest. Correspondence should be addressed to Esther Klingler, Jabaudon Lab, Department of Basic Neuroscience, University of Geneva, CMU, 1, rue Michel Servet, 1206 Geneva – Switzerland, E-mail: [email protected] Cite as: eNeuro 2017; 10.1523/ENEURO.0193-16.2016 Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. Copyright © 2017 the authors ϭ Manuscript Title Page Ϯ ϯ ϰ 1. Manuscript Title ϱ Ǧ Ǥ ϲ ϳ 2. Abbreviated Title ϴ ϵ ϭϬ 3. List of all Author Names and Affiliations ϭϭ ǣ ǡ ǡ ǡǤ ϭϮ ϭϯ 4. Author Contributions ϭϰ Ǥ ϭϱ ϭϲ 5. Correspondence should be addressed to ϭϳ ǡǤ̷Ǥ ϭϴ ΪͶͳʹʹ͵͹ͻͶͳ͸͹ ϭϵ ϮϬ ǡ ǡ Ϯϭ ͳǡ ϮϮ ͳʹͲ͸ Ǧ Ϯϯ Ϯϰ 6.
    [Show full text]
  • Arterial Patterns of the Rat Rhinencephalon and Related Structures
    EXPEKIRIEN'TAI. NE~'ROI.OGY 49, 671-690 (1975) Arterial Patterns of the Rat Rhinencephalon and Related Structures PETER CoYLE1 Rccciz*cd J~r~w 7. 19i5 Course and distribution information on arteries in the rat rhinencephalon was not found in the literature. Such data are useful for designing experi- ments and interpreting findings, tracing nerve fibers on or to intracerebral vessels, and in considering routes for diffusion or transport of intracerebral injected agents. Adult rats were perfused with silicone rubber and many brains were cleared in glycerin. The major arteries to the olfactory bulb stem from the anterior cerebral artery. A middle cerebral arterial ramus could provide a collateral source. The septum receives supply exclusively from the anterior cerebral artery. A rostra1 lesion in the medial septum would most likely involve arteries supplying more caudal structures includ- ing hippocampal afferent and efferent fibers. No anastomoses between septal arteries or with middle or posterior cerebral arterial rami were observed. The cingulate cortex receives anterior cerebral arterial branches with the middle cerebral artery being a collateral source. The amygdala and over- lying cortex receive branches of the internal carotid and middle cerebral arteries. Transverse arteries in the hippocampal fissure stem from the longitudinal hippocampal artery, a branch of the posterior cerebral artery, to nourish the hippocampus and portions of the fascia dentata. Other branches supply the remainder of the fascia dentata, entorhinal and sub- icular structures, and certain vessels anastomose with middle cerebral arterial rami. A transverse artery occlusion would probably result in a lesion : No intracerebral arterial anastomoses were observed.
    [Show full text]
  • MR Imaging of Olfactory Bulbs and Tracts
    955 MR Imaging of Olfactory Bulbs and Tracts Masayuki Suzuki1 Olfactory bulbs are easily detected on coronal T1-weighted MR images. They are Tsutomu Takashima situated almost symmetrically opposite either side of the lower end of the olfactory Masumi Kadoya sulci, and, on sagittal images, they are observed as thin soft-tissue bands immediately Shiroh Takahashi beneath the frontal lobe base. On axial images they are shown as oval, paramedian Shiroh Miyayama structures of intermediate intensity. Visualization of the olfactory tract, however, is not always possible. Our study reveals that, on axial images, detection of the olfactory bulb Sakae Taira depends on technical factors; we recommend a 256 x 256 matrix, a 3-mm-thick slice, and less than a 0.6-mm gap. Despite the lack of complete visualization of olfactory bulbs and tracts, MR may be effective in demonstrating diseases of these entities. AJNR 10:955-957, September/October 1989 The radiology literature contains several reports of MR visualization of the cranial nerves [1-3]. However, to our knowledge, there are no reports of the MR appear­ ance of the olfactory nerve. The purpose of this article is to describe the MR appearal}ce of the normal first nerve and to evaluate its detectability on axial MR images. Materials and Methods Sixty-five patients were studied with MR imaging to diagnose suspected intracranial diseases, such as cerebellopontine angle tumor or facial spasm. We used a GE 1.5-T superconductive scanner with a head coil. All images were obtained with a short spin-echo technique of 500/20 (TR/TE), 256 x 128 or 256 x 256 matrices, two or four excitations, 3- mm slice thickness with gaps of 0, 0.3, 0.5, 0.6, 1.0 or 1.5 mm, and fields of view of 12, 16, or 20 em.
    [Show full text]