Afferent Connections to the Striatum and the Nucleus Accumbens

Total Page:16

File Type:pdf, Size:1020Kb

Afferent Connections to the Striatum and the Nucleus Accumbens THE JOURNAL OF COMPARATIVE NEUROLOGY 378:16–49 (1997) Basal Ganglia Organization in Amphibians: Afferent Connections to the Striatum and the Nucleus Accumbens OSCAR MARI´N,1 AGUSTI´N GONZA´ LEZ,1* AND WILHELMUS J.A.J. SMEETS2 1Departamento de Biologı´a Celular, Facultad de Biologı´a, Universidad Complutense, Madrid, Spain 2 Graduate School of Neurosciences of Amsterdam, Research Institute of Neurosciences and Department of Anatomy and Embryology, Vrije Universiteit, Amsterdam, The Netherlands ABSTRACT As part of a research program to determine if the organization of basal ganglia (BG) of amphibians is homologous to that of amniotes, the afferent connections of the BG in the anurans Xenopus laevis and Rana perezi and the urodele Pleurodeles waltl were investigated with sensitive tract-tracing techniques. Hodological evidence is presented that supports a division of the amphibian BG into a nucleus accumbens and a striatum. Both structures have inputs in common from the olfactory bulb, medial pallium, striatopallial transition area, preoptic area, ventral thalamus, ventral hypothalamic nucleus, posterior tubercle, several mesencephalic and rhombencephalic reticular nuclei, locus coeruleus, raphe, and the nucleus of the solitary tract. Several nuclei that project to both subdivisions of the BG, however, show a clear preference for either the striatum (lateral amygdala, parabrachial nucleus) or the nucleus accumbens (medial amygdala, ventral midbrain tegmentum). In addition, the anterior entopeduncular nucleus, central thalamic nucleus, anterior and posteroventral divisions of the lateral thalamic nucleus, and torus semicircularis project exclusively to the striatum, whereas the anterior thalamic nucleus, anteroventral, and anterodorsal tegmental nuclei provide inputs solely to the nucleus accumbens. Apart from this subdivision of the basal forebrain, the results of the present study have revealed more elaborate patterns of afferent projections to the BG of amphibians than previously thought. Moreover, regional differences within the striatum and the nucleus accumbens were demonstrated, suggesting the existence of functional subdivisions. The present study has revealed that the organization of the afferent connections to the BG in amphibians is basically similar to that of amniotes. According to their afferent connections, the striatum and the nucleus accumbens of amphib- ians may play a key role in processing olfactory, visual, auditory, lateral line, and visceral information. However, contrary to the situation in amniotes, only a minor involvement of pallial structures on the BG functions is present in amphibians. J. Comp. Neurol. 378:16–49, 1997. r 1997 Wiley-Liss, Inc. Indexing terms: forebrain; solitary tract nucleus; locus coeruleus; visceral; evolution Research during the last two decades has revealed many share numerous cytoarchitectonical and neurochemical similarities in the organization of the basal ganglia (BG) features but differ, to some extent, in the information among reptiles, birds, and mammals (see, e.g., Reiner et precessed and connectivity. The dorsal striatum is consti- al., 1984; Gonza´lez et al., 1990; Reiner and Anderson, 1990; Anderson and Reiner, 1991; Heimer et al., 1991; Smeets, 1992; Zahm and Brog, 1992). One intriguing Contract grant sponsor: Spanish DGICYT; Contract grant number: question is whether this basic organization holds also for PB93-0083; Contract grant sponsor: ENP-STF; Contract grant sponsor: anamniotes, in particular amphibians. The first issue we Spanish FPU; Contract grant sponsor: N Collaborative Grant; Contract want to address is the differentiation of the striatal grant number: CRG-910970. *Correspondence to: Dr. Agustı´n Gonza´lez, Departamento de Biologı´a complex of amphibians into a nucleus accumbens and a Celular, Facultad de Biologı´a, Universidad Complutense, 28040 Madrid, striatum. In mammals, the striatum is formed by two Spain. E-mail: [email protected] major divisions, i.e., dorsal and ventral striatum, which Received 25 March 1996; Revised 9 July 1996; Accepted 9 July 1996 r 1997 WILEY-LISS, INC. AMPHIBIAN BASAL GANGLIA AFFERENTS 17 tuted by the main part of the caudate-putamen, whereas Recently, a new generation of tracers has been intro- the olfactory tubercle and the nucleus accumbens repre- duced, viz. dextran amines (Glover et al., 1986; Fritzsch sent the major components of the ventral striatum (Hei- and Sonntag, 1991; Fritzsch, 1993). These tracers, which mer et al., 1995). By means of cytoarchitectonic criteria, a are transported anterogradely as well as retrogradely, can striatum and a nucleus accumbens were already recog- be delivered to restricted sites in the brain, and are nized in anurans at the beginning of this century (for sensitive enough to enable a selective study of the connec- review, see Northcutt and Kicliter, 1980; Parent, 1986). tions of the striatum and the nucleus accumbens. The Thus, the striatum (caudado-putamen in mammals) occu- main goal of the present study was to get detailed informa- pies the ventrolateral portion of the telencephalic hemi- tion of the afferent connections of the BG in anurans and sphere, whereas the nucleus accumbens lies in the ventro- urodeles. Although the outcome of the present study is medial portion of the telencephalic wall. Further, the partly confirmatory, it makes a substantial contribution to amphibian striatum has been subdivided on the basis of our current understanding of BG organization in amphib- differences in cell density and degree of cell migration into ians for the following reasons: 1) the present study reveals dorsal and ventral parts (Northcutt, 1974). Therefore, the differences in afferent connections between the nucleus terms ‘‘dorsal and ventral striatum’’ used for amphibians accumbens and the striatum in both groups of amphibians; are not equivalent to those employed for mammals. 2) it provides evidence for the existence of a nucleus Despite the early recognition of the amphibian striatum accumbens in the brain of urodeles, which has remained and nucleus accumbens as two anatomically and, most likely, functionally distinct basal forebrain structures, unclear until now; 3) the results also indicate the existence little effort has been made to study each of these structures of regional differences within the striatum and the nucleus separately. A major reason for the lack of such information accumbens; and 4) several afferents to the striatum and may have been the absence of sensitive neuronal tracers the nucleus accumbens are demonstrated, which were not that can be injected at restricted sites. Thus, our current described previously. understanding of BG connections in amphibians is primar- The present study is a first step in a research program ily based on the results of anterograde tracing studies by that aims to answer the question to what extent the BG means of the degeneration technique and, less frequently, organization of amphibians is comparable to that of amni- autoradiography (for reviews, see Northcutt and Kicliter, otes. To reach that goal, hodological, chemoarchitectonical, 1980; Parent, 1986), physiological studies (Vesselkin et al., and developmental aspects of the basal forebrain in am- 1971; Vesselkin and Kovacevic, 1973; Gruberg and Am- phibians are considered. Our accompanying paper deals in bros, 1974; Mudry and Capranica, 1980), or retrograde detail with the sites of origin of the catecholaminergic tracing studies with horseradish peroxidase (Kicliter, 1979; input to the nucleus accumbens and the striatum as Vesselkin et al., 1980; Wilczynski and Northcutt, 1983a; revealed by a combined tract-tracing/transmitter-immuno- Neary, 1988; Wicht and Himstedt, 1988, 1990; Dube´ et al., histochemical study. Further studies will provide informa- 1990). tion on the efferent connections and chemoarchitectonic Abbreviations A anterior thalamic nucleus nri nucleus reticularis isthmi Acc nucleus accumbens Nsol nucleus of the solitary tract Ad nucleus anterodorsalis tegmenti n V nervus trigeminus Aob accessory olfactory bulb n VII nervus facialis Apl amygdala, pars lateralis n VIII nervus octavus Apm amygdala. pars medialis n IX-X glossopharyngeal and vagus nerves Av nucleus anteroventralis tegmenti ob olfactory bulb C central thalamic nucleus P posterior thalamic nucleus Cb cerebellum Pb parabrachial nucleus cStr caudal subdivision of the striatum POa anterior preoptic area DB diagonal band nucleus Ra raphe nuclei Dp dorsal pallium Ri nucleus reticularis inferior dStr dorsal subdivision of the striatum Rm nucleus reticularis medius Ea anterior entopeduncular nucleus Rs nucleus reticularis superior epl external plexiform layer rStr rostral subdivision of the striatum gr granule cell layer of the olfactory bulb SC nucleus suprachiasmaticus gl glomerular layer of the olfactory bulb SIR superficial isthmal reticular nucleus Hab habenula sol solitary tract Ip nucleus interpeduncularis spta striatopallial transition area La lateral thalamic nucleus, anterior division Str striatum Lc locus coeruleus tect tectum mesencephali lfb lateral forebrain bundle Tor torus semicircularis Ll lateral line lobe TP tuberculum posterius Lp lateral pallium v ventricle Lpv lateral thalamic nucleus, posteroventral division Vds tractus descendens nervi trigemini Ls lateral septum VH ventral hypothalamic nucleus m medial tegmental area VM ventromedial thalamic nucleus mfb medial forebrain bundle VL ventrolateral thalamic nucleus ml mitral cell layer of the olfactory bulb Vm nucleus motoris nervi trigemini
Recommended publications
  • The Connexions of the Amygdala
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.28.2.137 on 1 April 1965. Downloaded from J. Neurol. Neurosurg. Psychiat., 1965, 28, 137 The connexions of the amygdala W. M. COWAN, G. RAISMAN, AND T. P. S. POWELL From the Department of Human Anatomy, University of Oxford The amygdaloid nuclei have been the subject of con- to what is known of the efferent connexions of the siderable interest in recent years and have been amygdala. studied with a variety of experimental techniques (cf. Gloor, 1960). From the anatomical point of view MATERIAL AND METHODS attention has been paid mainly to the efferent connexions of these nuclei (Adey and Meyer, 1952; The brains of 26 rats in which a variety of stereotactic or Lammers and Lohman, 1957; Hall, 1960; Nauta, surgical lesions had been placed in the diencephalon and and it is now that there basal forebrain areas were used in this study. Following 1961), generally accepted survival periods of five to seven days the animals were are two main efferent pathways from the amygdala, perfused with 10 % formol-saline and after further the well-known stria terminalis and a more diffuse fixation the brains were either embedded in paraffin wax ventral pathway, a component of the longitudinal or sectioned on a freezing microtome. All the brains were association bundle of the amygdala. It has not cut in the coronal plane, and from each a regularly spaced generally been recognized, however, that in studying series was stained, the paraffin sections according to the Protected by copyright. the efferent connexions of the amygdala it is essential original Nauta and Gygax (1951) technique and the frozen first to exclude a contribution to these pathways sections with the conventional Nauta (1957) method.
    [Show full text]
  • Medial Temporal Lobe (The Limbic System)
    MEDIAL TEMPORAL LOBE (THE LIMBIC SYSTEM) On the medial surface of the temporal lobe are three structures critical for normal human functioning. From rostral to caudal, they are the olfactory cortex, the amygdala, and the hippocampus. We will look at the anatomy and function of each separately, although they are often grouped together as "the limbic system". A. The olfactory system: The olfactory system actually begins in the roof of the nasal cavity. The olfactory receptors are ciliated epithelial cells with an array of receptors capable of detecting thousands of different odors. However, just as with any sensory system, the receptor neurons themselves do not project to the cerebral hemispheres. Their axons project up through the cribiform plate of the skull to synapse on the dendrites of the mitral cells of the olfactory bulb. The axons of the olfactory receptors make up the elusive cranial nerve I. This fragile tract is susceptible to shearing forces in head trauma, and loss of smell is a surprisingly debilitating injury. Here is an example of a section through olfactory bulb. The olfactory bulb is not a simple relay (something which passively transmits the signal), but is a sophisticated structure in itself. The mitral cell- olfactory neuron synapse is actually within a tangle of axons and dendrites that is called a glomerulus. There is a second cell type tucked around these glomeruli which probably affects how the signal is transmitted. These cells are small and densely packed, which gives them the name "granule cells". However, they bear no relation to the granule cells of the cerebellum or cerebral cortex.
    [Show full text]
  • Olfactory Maps, Circuits and Computations
    Available online at www.sciencedirect.com ScienceDirect Olfactory maps, circuits and computations Andrew J Giessel and Sandeep Robert Datta Sensory information in the visual, auditory and somatosensory between local positional features to extract information systems is organized topographically, with key sensory features like object identity, depth and motion [4–6]. Unlike the ordered in space across neural sheets. Despite the existence of a small number of continuous sensory parameters that spatially stereotyped map of odor identity within the olfactory characterize vision, audition and touch (such as position, bulb, it is unclear whether the higher olfactory cortex uses frequency and amplitude), olfactory parameter space is topography to organize information about smells. Here, we poorly defined and highly multidimensional [7]. For review recent work on the anatomy, microcircuitry and example, any given monomolecular odorant can be neuromodulation of two higher-order olfactory areas: the described in terms of its functional groups, molecular piriform cortex and the olfactory tubercle. The piriform is an weight, chain length, bond substitution, resonance fre- archicortical region with an extensive local associational network quency or any number of additional chemical descrip- that constructs representations of odor identity. The olfactory tors. Furthermore, olfactory space is inherently tubercle is an extension of the ventral striatum that may use discrete — not only are individual odorants structurally reward-based learning rules to encode odor valence. We argue unique but many of the molecular descriptors typically that in contrast to brain circuits for other sensory modalities, both used for individual odorants (such as functional group or the piriform and the olfactory tubercle largely discard any bond substitution) cannot be mapped continuously in topography present in the bulb and instead use distributive any scheme for chemical space.
    [Show full text]
  • Variants of Olfactory Memory and Their Dependencies on the Hippocampal Formation
    The Journal of Neuroscience, February 1995, f5(2): 1162-i 171 Variants of Olfactory Memory and Their Dependencies on the Hippocampal Formation Ursula Sttiubli,’ To-Tam Le,2 and Gary Lynch* ‘Center for Neural Science, New York University, New York, New York 10003 and *Center for the Neurobiology of Learning and Memory, University of California, Irvine, California 92717 Olfactory memory in control rats and in animals with entor- pal pyramidal cells (e.g., Hjorth-Simonsen, 1972; Witter, 1993). hinal cortex lesions was tested in four paradigms: (1) a known Moreover, physiological activity in rat hippocampus becomes correct odor was present in a group of familiar but nonre- synchronized with that in the olfactory bulb and cortex during warded odors, (2) six known correct odors were simulta- odor sampling(Macrides et al., 1982). Theseobservations have neously present in a maze, (3) correct responses required prompted speculationand experimentation concerning the pos- the learning of associations between odors and objects, and sible contributions of the several stagesof the olfactory-hip- (4) six odors, each associated with a choice between two pocampal circuit to the encoding and use of memory. Lesions objects, were presented simultaneously. Control rats had no to the lateral entorhinal cortex, which separatethe hippocampus difficulty with the first problem and avoided repeating se- from its primary source of olfactory input, did not detectably lections in the second; this latter behavior resembles that affect the ability of rats to perform odor discriminations learned reported for spatial mazes but, in the present experiments, prior to surgery although they did disrupt the learning of new was not dependent upon memory for the configuration of discriminations (Staubli et al., 1984, 1986).This result suggested pertinent cues.
    [Show full text]
  • Normal Mentality Associated with a Maldeveloped " Rhinencephalon " by P
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.13.3.191 on 1 August 1950. Downloaded from J. Neurol. Neurosurg. Psychiat., 1950, 13, 191. NORMAL MENTALITY ASSOCIATED WITH A MALDEVELOPED " RHINENCEPHALON " BY P. W. NATHAN and MARION C. SMITH Fronm the Neurological Research Unit of the Medical Research Coulncil, National Hospital. Queen Square, London In 1937 Papez published his views on the Case Report functions of the gyrus fornicatus. He summarized The specimen is the brain of a man, aged 34, who died them as follows. of a chondrosarcoma of the ileum. He was one of a series of cases under investigation in a programme of " It is proposed that the hypothalamus, the anterior thalamic nuclei, the gyrus cinguli, the hippocampus, research concerned with operations for the relief of and their inter-connexions constitute a harmonious pain. As many hours had been devoted to the testing mechanism which may elaborate the functions of of sensation and the discussion of signs and symptoms, central emotion, as well as participate in emotional our knowledge of the patient, which extended over a expression." period of six months, was much greater than that Bilateral temporal lobectomies performed on acquired in most routine cases. Protected by copyright. and Bucy in 1939 gave evidence No abnormality of development had been suspected monkeys by Kiuver during the patient's life, for he came well within normal supporting Papez' general hypothesis. The effects limits from intellectual and psychological points of of extensive lesions of the hippocampus-fornix view. His mother had remained well during pregnancy, system in cats and dogs were reported by Spiegel, and his birth was normal.
    [Show full text]
  • The Effects of Habenular and Medial Forebrain Bundle Lesions on Sexual Behavior in Female Rats'
    The effects of habenular and medial forebrain bundle lesions on sexual behavior in female rats' CHARLES H. RODGERS:?, DEPARTMENT OF PHYSIOLOGY, STANFORD UNIVERSITY O. THOMAS LAW, DEPARTMENT OF PSYCHOLOGY, CLAREMONT GRADUATE SCHOOL A comparison was made of the effects of habenular and subsequent to the experiencing trials, the preoperative medial forebrain bundle lesions on female rat sexual behavior tests were initiated. Each S received one 15 min. trial as measured by the lordosis-to-mount ratio, and by the fe­ while nonreceptive and one 15 min. trial while receptive. male's avoidance of sexual contact. Results show that Receptivity was induced as described above. destruction of the habenulae causes a decreased lordosis Lesions were produced by monopolar stainless steel response, and a greater avoidance of male sexual contacts. electrodes, insulated except for .008 in. at the tip, under Medial forebrain bundle lesions had a less pronounced effect the following conditions: (1) Habenula (Hab)-2 rnA on the female's behavior. anodal current for 10 sec.; (2) Medial forebrain bundle (MFB)-2 rnA anodal current for 15 sec. Coordinates Few studies have reported the effects of subcortical for the target areas were obtained fromdeGroot(1959). destruction on copulatory behavior in the female rat. Copulatory tests were conducted in a cylindrical It is accepted that circumscribed destruction of the mating arena made of clear Plexiglas 18 in. high x anterior hypothalamus causes female rats to become 20 in. in diameter, supported on a table surfaced with anovulatory and behaviorally nonreceptive (Flerko, 1/2-in. hardware cloth. A mirror, fixed at an angle 1963).
    [Show full text]
  • Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex
    9414 • The Journal of Neuroscience, December 2, 2020 • 40(49):9414–9425 Systems/Circuits Synaptic Organization of Anterior Olfactory Nucleus Inputs to Piriform Cortex Marco J. Russo,1 Kevin M. Franks,1 Roxanne Oghaz,1 Richard Axel,2 and Steven A. Siegelbaum3 1Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, 2Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, and 3Department of Neuroscience, Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Pharmacology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York Odors activate distributed ensembles of neurons within the piriform cortex, forming cortical representations of odor thought to be essential to olfactory learning and behaviors. This odor response is driven by direct input from the olfactory bulb, but is also shaped by a dense network of associative or intracortical inputs to piriform, which may enhance or constrain the cort- ical odor representation. With optogenetic techniques, it is possible to functionally isolate defined inputs to piriform cortex and assess their potential to activate or inhibit piriform pyramidal neurons. The anterior olfactory nucleus (AON) receives direct input from the olfactory bulb and sends an associative projection to piriform cortex that has potential roles in the state-dependent processing of olfactory behaviors. Here, we provide a detailed functional assessment of the AON afferents to piriform in male and female C57Bl/6J mice. We confirm that the AON forms glutamatergic excitatory synapses onto piriform pyramidal neurons; and while these inputs are not as strong as piriform recurrent collaterals, they are less constrained by disynaptic inhibition.
    [Show full text]
  • A Cortical Pathway Modulates Sensory Input Into the Olfactory Striatum 3 4 5 Kate A
    bioRxiv preprint doi: https://doi.org/10.1101/235291; this version posted December 16, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 2 A cortical pathway modulates sensory input into the olfactory striatum 3 4 5 Kate A. White1,2,3, Yun-Feng Zhang4, Zhijian Zhang5, Janardhan P. Bhattarai4, Andrew 6 H. Moberly4, Estelle in ‘t Zandt1,2, Huijie Mi6, Xianglian Jia7, Marc V. Fuccillo4, Fuqiang 7 Xu5, Minghong Ma4, Daniel W. Wesson1,2,3* 8 9 1Department of Pharmacology & Therapeutics 10 2Center for Smell and Taste 11 University of Florida 12 1200 Newell Dr.; Gainesville, FL, 32610. U.S.A. 13 3Department of Neurosciences 14 Case Western Reserve University 15 2109 Adelbert Rd.; Cleveland, OH, 44106. U.S.A. 16 4Department of Neuroscience 17 University of Pennsylvania Perelman School of Medicine 18 211 CRB, 415 Curie Blvd; Philadelphia, PA, 19104. U.S.A 19 5Center for Brain Science 20 Wuhan Institute of Physics and Mathematics 21 Chinese Academy of Sciences 22 Wuhan 430071, China 23 6College of Life Sciences 24 Wuhan University 25 Wuhan 430072, China 26 7Shenzhen Institutes of Advanced Technology 27 Chinese Academy of Sciences 28 Shenzhen 518055, China 29 30 *corresponding author; [email protected] 31 RUNNING HEAD: Olfactory striatum input 32 33 Author Contributions: Conceptualization: K.A.W. and D.W.W.; Methodology: K.A.W., Z.Z., F.X., 34 M.M., and D.W.W.; Investigation: K.A.W., Y-F.Z., Z.Z., J.P.B., A.H.M., E.I.Z., H.M., and X.J.; 35 Resources: M.V.F.; Writing – Original Draft: K.A.W., Z.Z., M.M., and D.W.W.; Writing – Review & 36 Editing: all authors; Visualization: K.A.W., Z.Z., Y-F.Z., J.P.B., D.W.W.; Supervision: F.X., M.M., 37 and D.W.W.; Funding Acquisition: K.A.W., F.X., M.M., and D.W.W.
    [Show full text]
  • AN EXPERIMENTAL INVESTIGATION of the CONNEXIONS of the OLFACTORY TRACTS in the MONKEY by MARGARET MEYER and A
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.12.4.274 on 1 November 1949. Downloaded from J. Neurol. Neurosurg. Psychiat., 1949, 12, 274. AN EXPERIMENTAL INVESTIGATION OF THE CONNEXIONS OF THE OLFACTORY TRACTS IN THE MONKEY BY MARGARET MEYER and A. C. ALLISON From the Department ofAnatomy, University of Oxford The great expansion of the-cerebral cortex which bilateral degeneration of olfactory terminals appar- has taken place in higher primates has brought ently passing through the anterior limb of the about a considerable displacement of structures on anterior commissure. The present study has been the base of the telencephalon, and the precise undertaken to map out the connexions of the comparison of certain areas in this part of the olfactory bulb in the monkey's brain as precisely brain with those in lower mammals has been a as possible with the same silver technique. matter of some difficulty. This is true particularly Material and Methods of the olfactory areas which lie on the orbital aspect guest. Protected by copyright. of the frontal lobe and the adjacent part of the Three macaque monkeys (Macaca mulatta) and two this immature Guinea baboons (Papio papio) were used. temporal lobe. Although part of the brain The operative technique was similar in all cases: under in primates has been subjected to detailed cyto- nembutal anesthesia and with the usual aseptic pre- architectural and myelo-architectural examinations cautions a large right frontal bone flap was reflected; (Rose, 1927b, 1928; Beck, 1934, and others), the the frontal lobe of the hemisphere was carefully retraced, areas directly related to olfaction have never been and the olfactory peduncle, lying on the ventral surface, clearly defined.
    [Show full text]
  • Effect of Bilateral 6-Hydroxydopamine Lesions of the Medial Forebrain Bundle on Reaction Time A.D
    Effect of Bilateral 6-Hydroxydopamine Lesions of the Medial Forebrain Bundle on Reaction Time A.D. Smith, Ph.D., M. Amalric, Ph.D., G.F. Koob, Ph.D., and M.J. Zigmond, Ph.D. Overt symptoms of Parkinson’s disease do not manifest week testing period and akinetic deficits expressed by an themselves until there is a substantial loss of the increase in delayed responding. In addition, larger DA dopaminergic nigrostriatal projection. However, as depletions (у95%) profoundly altered motor control with neuroprotective strategies are developed, it will be essential decreases in percent correct responses, increases in delayed to detect the disease in its preclinical phase. Performance on responses and increases in reaction time. These results conditioned reaction time tasks is known to be impaired by suggest that reaction time may be a relatively sensitive extensive 6-hydroxydopamine-induced lesions of the measure of preclinical or subtle deficits, although it might nigrostriatal dopamine pathway. However, the effect of be even more useful in quantitating the severity of depletion smaller lesions on a reaction time task has not been once overt deficits or symptoms appear and has the systematically assessed. We, therefore, used this test to advantage of measuring such deficits over time to follow examine behavioral deficits as a function of striatal recovery of function. Furthermore since reaction time dopamine loss. When injected at doses that produced deficits required extensive loss of dopamine, these results striatal DA depletion Ͻ50%, 6-hydroxydopamine infused are consistent with a predominant role of extrasynaptic in the medial forebrain bundle produced no reliable dopamine in the mediation of relatively skilled motor tasks.
    [Show full text]
  • The Olfactory Bulb As an Independent Developmental Domain
    Cell Death and Differentiation (2002) 9, 1279 ± 1286 ã 2002 Nature Publishing Group All rights reserved 1350-9047/02 $25.00 www.nature.com/cdd Review The olfactory bulb as an independent developmental domain LLo pez-Mascaraque*,1,3 and F de Castro2,3 established. Does it awake the developmental program of the cells at the site being innervated or, does their arrival simply 1 Instituto Cajal-C.S.I.C., Madrid, Spain serve to refine the later steps of the developmental program? 2 Hospital RamoÂn y Cajal, Madrid, Spain In order to address this question, much attention has been 3 Both authors contributed equally to this work focused on the sophisticated development of the mammalian * Corresponding author: L LoÂpez-Mascaraque, Instituto Cajal, CSIC, Avenida del cerebral cortex where two different theories have been Doctor Arce 37, 28002 Madrid, Spain. Tel: 915854708; Fax: 915854754; E-mail: [email protected] proposed to explain the mechanisms underlying its formation. In the `protomap' model, cortical regions are patterned prior to Received 13.2.02; revised 30.4.02; accepted 7.5.02 the migration of the newborn neurons (intrinsic control),1 an Edited by G Melino event presumably specified by important molecular determi- nants.2 In this model, the arrival of innervating axons would Abstract merely serve to modify and refine the protomap (an important The olfactory system is a good model to study the facet of maintenance). In the second model, the `protocortex' theory, the newborn cortical neurons are a homogeneous cell mechanisms underlying guidance of growing axons to their population, that later on in corticogenesis are patterned into appropriate targets.
    [Show full text]
  • Olfactory Cortex Development
    This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Review | Development Development and organization of the evolutionary conserved three-layered olfactory cortex Olfactory cortex development Esther Klingler Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland. DOI: 10.1523/ENEURO.0193-16.2016 Received: 6 July 2016 Revised: 11 November 2016 Accepted: 8 December 2016 Published: 20 January 2017 Author Contributions: EK designed and wrote the paper. Conflict of Interest: Authors report no conflict of interest. Correspondence should be addressed to Esther Klingler, Jabaudon Lab, Department of Basic Neuroscience, University of Geneva, CMU, 1, rue Michel Servet, 1206 Geneva – Switzerland, E-mail: [email protected] Cite as: eNeuro 2017; 10.1523/ENEURO.0193-16.2016 Alerts: Sign up at eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Accepted manuscripts are peer-reviewed but have not been through the copyediting, formatting, or proofreading process. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. Copyright © 2017 the authors ϭ Manuscript Title Page Ϯ ϯ ϰ 1. Manuscript Title ϱ Ǧ Ǥ ϲ ϳ 2. Abbreviated Title ϴ ϵ ϭϬ 3. List of all Author Names and Affiliations ϭϭ ǣ ǡ ǡ ǡǤ ϭϮ ϭϯ 4. Author Contributions ϭϰ Ǥ ϭϱ ϭϲ 5. Correspondence should be addressed to ϭϳ ǡǤ̷Ǥ ϭϴ ΪͶͳʹʹ͵͹ͻͶͳ͸͹ ϭϵ ϮϬ ǡ ǡ Ϯϭ ͳǡ ϮϮ ͳʹͲ͸ Ǧ Ϯϯ Ϯϰ 6.
    [Show full text]