Ulrich Husemann Yale University Outline of the Talk
Total Page:16
File Type:pdf, Size:1020Kb
Experimental Particle Physics Seminar University of Pennsylvania, October 17, 2007 Search for Flavor Changing Neutral Currents in Top Quark Decays at CDF Ulrich Husemann Yale University Outline of the Talk What are Flavor Changing Neutral Currents? The CDF Experiment at the Tevatron Top Quark Physics at CDF Search for FCNC in Top Quark Decays Summary & Conclusions Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC 2 Outline of the Talk What are Flavor Changing Neutral Currents? The CDF Experiment at the Tevatron Top Quark Physics at CDF Search for FCNC in Top Quark Decays Summary & Conclusions Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC 3 Standard Model of Particle Physics Matter in the standard model: 12 fermions in three generations Six quarks and their anti-particles Six leptons and their anti-particles Forces in the standard model: Strong force (carrier: gluon) Electroweak force (carriers: photon, W± bosons, Z boson) Interactions can be described by “currents” coupling to gauge bosons, e.g. electromagnetic current electron electron [Fermilab Visual Media Service] photon L em = qe¯γ eAµ jem Aµ − µ ≡ µ Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC 4 Flavor Changing Neutral Currents Flavor changing neutral current (FCNC) q q’ interactions: Flavor Changing Transition from a quark of flavor A and charge Q Neutral to quark of flavor B with the same charge Q !,g,Z,H Current Examples: b → sγ, t → cH, … 1960s: only three light quarks (u,d,s) known, mystery in neutral kaon system: W d d + 0 – d ! 8 K π 10 times ! " K0 smaller than…? W+ u ! !– π+ W # Solution: “GIM Mechanism” (Glashow, Iliopoulos, Maiani, 1970) Fourth quark needed for cancellation in box diagram: prediction of charm quark Cancellation would be exact if all quarks had the same mass: estimate of charm quark mass Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC 5 FCNC in the Standard Model (I) Standard model: no FCNC at Lagrangian level Massless theory: weak neutral current is flavor-diagonal 1 4 1 2 JNC = J3 2sin2 θ jem = u¯ γ (1 γ ) sin2 θ γ u d¯ γ (1 γ ) sin2 θ γ d µ µ − W µ 2 µ − 5 − 3 W µ − 2 µ − 5 − 3 W µ ! " ! " Quark masses via Higgs mechanism: Eigenstates of electroweak interactions are not mass eigenstates αβ α β αβ ¯ α β 1 αβ α β 1 αβ ¯ α β LYuk = mu u¯" u" m d" d" fu u¯" h(x)u" f d" h(x)d" + h.c. − L R − d L R − √2 L R − √2 d L R Mass Terms Higgs Couplings Unitary transformation of Lagrangian to mass basis, i.e. for physical particles: u u† u† u u¯L = u¯L! UL uR = UR uR! mu = UL mu! UR ¯ ¯ d d† d† d dL = dL! UL dR = UR dR! md = UL md! UR Kinetic terms: unchanged Higgs couplings proportional to mass terms: no flavor changing Higgs couplings Neutral currents have same structure as kinetic terms: unchanged → no FCNC Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC 6 FCNC in the Standard Model (II) Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix (obtained from transformation of charged current to mass basis): CC 1 u† d J = u¯! γ (1 γ ) d! = u¯! γ d! = u¯ U γ U d = u¯ γ V d , µ 2 µ − 5 L µ L L L µ L L L µ CKM L ! " 1.5 excluded at CL > 0.95 CKM matrix: unitary 3×3 matrix excluded area has CL > 0.95 % Vud Vus Vub 1 m & m V = V V V with sin2$ & s & d CKM cd cs cb &md Vtd Vts Vtb 0.5 † † ' # # VCKM VCKM = VCKM VCKM = 1 K · · % $ " 0 Vub/Vcb yields unitarity relations, + B * ) ( e.g. the unitary triangle of -0.5 'K flavor physics (1st vs. 3rd column) # -1 V ∗ Vub +V ∗ Vcb +V ∗Vtb = 0 ud cd td CKM sol. w/ cos2$ < 0 f i t t e r (excl. at CL > 0.95) FPCP 2007 % or (used in top FCNC): -1.5 -1 -0.5 0 0.5 1 1.5 2 Vcd∗ Vtd +Vcs∗Vts +Vcb∗ Vtb = 0 ! Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC 7 FCNC in the Standard Model (III) FCNC are allowed via higher order mechanisms such as penguin diagrams, Top FCNC Penguin c,u but heavily suppressed t W+ Suppression mechanism 1: GIM Penguin matrix element depends on b,s,d universal functions of single parameter 2 2 xi = mi /mW !/Z M ∝ F(xd) Vcd∗ Vtd + F(xs) Vcs∗Vts + F(xb) Vcb∗ Vtb, Compare to CKM unitarity relation: Universal Function for t → γc V ∗ Vtd +V ∗Vts +V ∗ Vtb = 0 !10–6 cd cs cb ) i 0 [J.A. Aguilar-Saavedra, Re F Exact cancellation if masses of F(x Acta Phys. Polor B35 Im F b, s, and d quarks were the same –2 (2004) 2695] Quark masses more similar for down-type –4 than for up-type: top FCNC more strongly suppressed than bottom FCNC, e.g. –6 –14 –4 BR(t → Zq) ≈ 10 vs. BR(b→ sγ) ≈ 10 –8 Suppression mechanism 2: smallness of relevant CKM matrix elements 0 0.2 0.4 0.6 0.8 1.0 xi = mi /mW V ∗ V 0.002, V ∗V 0.04, V ∗ V 0.04 | cd td| ≈ | cs ts| ≈ | cb tb| ≈ Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC 8 FCNC & New Physics FCNC are enhanced in many models of physics beyond the SM c,u t W+ Enhancement mechanisms: FCNC interactions at tree level b,s,d Weaker GIM cancellation by new !/Z particles in loop corrections Examples: New quark singlets: Z couplings not flavor-diagonal → tree level FCNC Model BR(t Zq) → 14 Two Higgs doublet models: modified Standard Model O(10− ) 4 Higgs mechanism q = 2/3 Quark Singlet O(10− ) 7 Flavor changing Higgs couplings allowed Two Higgs Doublets O(10− ) 6 at tree level MSSM O(10− ) 5 Virtual Higgs in loop corrections R-Parity violating SUSY O(10− ) Supersymmetry: gluino/neutralino [after J.A. Aguilar-Saavedra, and squark in loop corrections Acta Phys. Polor B35 (2004) 2695] Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC 9 FCNC & New Physics FCNC are enhanced in many models of physics beyond the SM H+? c,u t W+ Enhancement mechanisms: FCNC interactions at tree level b,s,d Weaker GIM cancellation by new !/Z particles in loop corrections Examples: New quark singlets: Z couplings not flavor-diagonal → tree level FCNC Model BR(t Zq) → 14 Two Higgs doublet models: modified Standard Model O(10− ) 4 Higgs mechanism q = 2/3 Quark Singlet O(10− ) 7 Flavor changing Higgs couplings allowed Two Higgs Doublets O(10− ) 6 at tree level MSSM O(10− ) 5 Virtual Higgs in loop corrections R-Parity violating SUSY O(10− ) Supersymmetry: gluino/neutralino [after J.A. Aguilar-Saavedra, and squark in loop corrections Acta Phys. Polor B35 (2004) 2695] Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC 9 FCNC & New Physics FCNC are enhanced in many models of physics beyond the SM Hq?+? c,u t W+ Enhancement mechanisms: 0 FCNC interactions at tree level g, ? b,s,d Weaker GIM cancellation by new !/Z particles in loop corrections Examples: New quark singlets: Z couplings not flavor-diagonal → tree level FCNC Model BR(t Zq) → 14 Two Higgs doublet models: modified Standard Model O(10− ) 4 Higgs mechanism q = 2/3 Quark Singlet O(10− ) 7 Flavor changing Higgs couplings allowed Two Higgs Doublets O(10− ) 6 at tree level MSSM O(10− ) 5 Virtual Higgs in loop corrections R-Parity violating SUSY O(10− ) Supersymmetry: gluino/neutralino [after J.A. Aguilar-Saavedra, and squark in loop corrections Acta Phys. Polor B35 (2004) 2695] Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC 9 Experimental Tests of FCNC Experimental tests of FCNC interactions: sensitive probes of new physics Any signal above SM expectations would indicate new physics Measurements constrain allowed phase space for new physics models Two types of searches for FCNC in the top sector: Search for single top production (LEP, HERA, DØ) Search for top quark decay via FCNC (CDF) Experiments usually report limits on Branching fractions for specific processes, e.g. BR(t → Zq) Coupling parameters of effective Lagrangian, e.g. for tZq coupling g µ Leff = κ xL q¯LγµtL + xR q¯RγµtR Z + ... −2cosθW · · · · ! " Exp. Particle Physics Seminar, Penn, 10/17/07– U. Husemann: Search for Top FCNC 10 Previous Searches for Top FCNC CDF Run I search: Tevatron q F. Abe et al., PRL 80 (1998) 2525. W– " + – p Signature: Z → l l + 4 jets (1 b-jet) q ! Limit on BR(t→Zq): 33% g # q LEP searches: " t $ P. Achard et al. (L3), Phys. Lett. B549 (2002) 290. – G. Abbiendi et al. (Opal), Phys. Lett. B521 (2001) 181. Z l J. Abdallah et al. (Delphi), Phys. Lett. B590 (2004) 21. + A. Heister et al. (Aleph), Phys. Lett. B453 (2002) 173. l Hadronic top decay (4 jets) or semileptonic top e– LEP ! decay (2 jets & lepton) !*/Z* Very similar results among all LEP experiments, best limit on BR(t→Zq):13.7% (L3) e+ t HERA searches: A. Aktas et al. (H1), Eur. Phys. J. C33 (2004) 9.