Physiologic and Metagenomic Attributes of the Rhodoliths Forming

Total Page:16

File Type:pdf, Size:1020Kb

Physiologic and Metagenomic Attributes of the Rhodoliths Forming The ISME Journal (2014) 8, 52–62 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE Physiologic and metagenomic attributes of the rhodoliths forming the largest CaCO3 bed in the South Atlantic Ocean Giselle S Cavalcanti1, Gustavo B Gregoracci1, Eidy O dos Santos1, Cynthia B Silveira1, Pedro M Meirelles1, Leila Longo2, Kazuyoshi Gotoh3, Shota Nakamura3, Tetsuya Iida3, Tomoo Sawabe4, Carlos E Rezende5, Ronaldo B Francini-Filho6, Rodrigo L Moura1, Gilberto M Amado-Filho2 and Fabiano L Thompson1 1Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; 2Instituto de Pesquisas Jardim Botaˆnico do Rio de Janeiro, Rio de Janeiro, Brazil; 3Laboratory of Genomic Research on Pathogenic Bacteria, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan; 4Laboratory of Microbiology, Hokkaido University, Sapporo, Japan; 5Environmental Science Laboratory, Campos dos Goytacazes, UENF, Rio de Janeiro, Brazil and 6Department of Engineering and Environment, Federal University of Paraı´ba, Paraı´ba, Brazil Rhodoliths are free-living coralline algae (Rhodophyta, Corallinales) that are ecologically important for the functioning of marine environments. They form extensive beds distributed worldwide, providing a habitat and nursery for benthic organisms and space for fisheries, and are an important source of calcium carbonate. The Abrolhos Bank, off eastern Brazil, harbors the world’s largest 2 continuous rhodolith bed (of B21 000 km ) and has one of the largest marine CaCO3 deposits (producing 25 megatons of CaCO3 per year). Nevertheless, there is a lack of information about the microbial diversity, photosynthetic potential and ecological interactions within the rhodolith holobiont. Herein, we performed an ecophysiologic and metagenomic analysis of the Abrolhos rhodoliths to understand their microbial composition and functional components. Rhodoliths contained a specific microbiome that displayed a significant enrichment in aerobic ammonia- oxidizing betaproteobacteria and dissimilative sulfate-reducing deltaproteobacteria. We also observed a significant contribution of bacterial guilds (that is, photolithoautotrophs, anaerobic heterotrophs, sulfide oxidizers, anoxygenic phototrophs and methanogens) in the rhodolith metagenome, suggested to have important roles in biomineralization. The increased hits in aromatic compounds, fatty acid and secondary metabolism subsystems hint at an important chemically mediated interaction in which a functional job partition among eukaryal, archaeal and bacterial groups allows the rhodolith holobiont to thrive in the global ocean. High rates of photosynthesis were measured for Abrolhos rhodoliths (52.16 lmol carbon m À 2 s À 1), allowing the entire Abrolhos rhodolith bed to produce 5.65 Â 105 tons C per day. This estimate illustrates the great importance of the Abrolhos rhodolith beds for dissolved carbon production in the South Atlantic Ocean. The ISME Journal (2014) 8, 52–62; doi:10.1038/ismej.2013.133; published online 29 August 2013 Subject Category: Microbe-microbe and microbe-host interactions Keywords: rhodoliths; holobionts; carbon cycle; biomineralization; Abrolhos Bank Introduction The term holobiont refers to any organism and all of its associated symbiotic microbes (parasites, mutu- Eukaryote–microbe associations are increasingly alists, synergists and amensals) (Rosenberg and recognized as being essential for eukaryotic host Zilber-Rosenberg, 2011), including endobionts and health and metabolism, enabling the expansion of epibionts that perform diverse ecological roles their physiologic capacities (Rosenberg et al., 2007). (Wahl et al., 2012). A holobiont occupies and adapts to an ecological niche, and is able to employ Correspondence: FL Thompson, Av. Carlos Chagas Fo. S/N— strategies unavailable in any one species alone CCS—IB—BIOMAR—Lab de Microbiologia—BLOCO A (Anexo) when challenged by environmental perturbations. A3—sl 102, Cidade Universita´ria, Rio de Janeiro CEP 21941-599, The holobiont concept, first applied to corals after RJ, Brazil. E-mail: [email protected] they were found to host abundant and species- Received 25 March 2013; revised 23 June 2013; accepted 4 July specific microbial communities (Rohwer et al., 2013; published online 29 August 2013 2002; Reshef et al., 2006; Rosenberg et al., 2007), Rhodolith physiologic and metagenomic attributes GS Cavalcanti et al 53 has since been extended to the benthic alga (Barott ecological roles that rhodoliths have in the marine et al., 2011). These holobionts are diverse and realm. Rhodoliths may be key factors in a range of distinct from the microbiota in the surrounding invertebrate-recruitment processes, functioning as seawater and biofilms on abiotic surfaces (Barott autogenic ecosystem engineers by providing three- et al., 2011; Burke et al., 2011; Barott and Rohwer, dimensional habitat structures. A better understand- 2012). A wide range of beneficial and detrimental ing of the composition of and ecological interactions interactions have been described between macro- within the rhodolith holobiont would be a powerful algae and their microbiomes based on the exchange tool for the conservation and sustainable use of of nutrients, minerals and secondary metabolites these biological resources. This understanding (Hollants et al., 2012). could also provide insights into how cooperation Rhodoliths are biogenic calcareous structures and job partitioning between constituents contribute primarily formed by encrusting coralline algae to holobiont fitness, influence holobiont viability, (CCA; Corallinales, Rhodophyta). They provide and consequently affect associated ecosystems and highly biodiverse and heterogeneous habitats and the ubiquitous rhodolith worldwide distribution. are distributed worldwide (Foster, 2001; Steller We aimed to perform a metagenomic characteriza- et al., 2003; Nelson, 2009). Despite our vast knowl- tion of the Abrolhos rhodoliths to determine the edge concerning the ecophysiology and biogeogra- major taxonomic and functional components of phy of rhodoliths, some aspects of the biology of these organisms. We also examined the associated rhodoliths remain completely unknown. For fauna diversity and physiologic aspects (photosyn- instance, information on the microbial commu- thetic capacity and dissolved organic carbon (DOC) nities, the microbial metabolic strategies associated productivity) of the rhodoliths. with biogeochemical cycles and the biomineraliza- tion of CaCO3, and the photosynthetic productivity potential of rhodoliths is absent. Materials and methods Rhodolith beds constitute one of the Earth’s four Study site and sample collection major macrophyte-dominated benthic communities, This study was carried out in the Abrolhos Shelf off along with kelp beds, seagrass meadows and eastern Brazil. Rhodoliths were collected by scuba coralline algal reefs. Our group has mapped the diving in December 2010 from three different sites largest rhodolith bed in the world, which covers near two recently described sinkhole-like structures B 2 1 0 1 0 20 900 km of the Abrolhos Shelf (16 50 –19 45 S) called Buracas (Bastos et al., 2013). Buracas are cup- (Amado-Filho et al., 2012). The Abrolhos Bank is shaped depressions on the seafloor and their one of the largest marine CaCO3 deposits in the suggested function is to trap and accumulate organic world, with a production of 25 megatons of CaCO3 matter, thus functioning as productivity hotspots in per year (Amado-Filho et al., 2012). Nevertheless, the mid- and outer shelf of the central portion of the our limited knowledge of rhodolith biology hinders Abrolhos Bank (Cavalcanti et al., 2013). Seven our ability to develop a broader systemic under- rhodoliths were sampled as follows: two individual standing of their ecological role in the Abrolhos rhodoliths from the shallower portion (27 m) Bank. There are pressing concerns relating to the (17.813301 S/38.237441 W) outside the first Buraca; future of rhodolith beds as global carbon budgets, three from the inner region of the same Buraca (43 m and ocean acidification may interfere with rhodolith deep) (17.813991 S/38.243061 W) and two from a functioning and biogeochemical stability (Webster deeper point (51 m) (17.913611 S/37.909361 W) near et al., 2011; Whalan et al., 2012). In addition, another sinkhole-like structure (Supplementary because rhodoliths can be applied agriculturally to Table S1) away from the first (Figure 1). Mono- improve soil pH, rhodolith environments have specific rhodolith-forming CCA were selected by been suffering extensive commercial pressure. visual inspection. Immediately after collection, the In addition, rhodoliths are a non-renewable resource specimens were frozen in liquid nitrogen in the because of their extremely slow growth rates (Dias, field. For comparison purposes, surrounding water 2001; Barbera et al., 2003; Wilson et al., 2004). samples (8 l) collected using sterivex 0.2-mm filters Rhodoliths form biogenic matrices with complex at exactly the same points over the rhodolith beds at structures in which the interlocking branched thalli the first Buraca (inside—43 m; outside—27 m) can create microhabitats for diverse eukaryotic and outside the deeper Buraca (51 m) were used. assemblages, including epiphyte algae, microalgae A detailed description of the region of the Buracas, and different types of invertebrates
Recommended publications
  • "Lophophorates" Brachiopoda Echinodermata Asterozoa
    Deuterostomes Bryozoa Phoronida "lophophorates" Brachiopoda Echinodermata Asterozoa Stelleroidea Asteroidea Ophiuroidea Echinozoa Holothuroidea Echinoidea Crinozoa Crinoidea Chaetognatha (arrow worms) Hemichordata (acorn worms) Chordata Urochordata (sea squirt) Cephalochordata (amphioxoius) Vertebrata PHYLUM CHAETOGNATHA (70 spp) Arrow worms Fossils from the Cambrium Carnivorous - link between small phytoplankton and larger zooplankton (1-15 cm long) Pharyngeal gill pores No notochord Peculiar origin for mesoderm (not strictly enterocoelous) Uncertain relationship with echinoderms PHYLUM HEMICHORDATA (120 spp) Acorn worms Pharyngeal gill pores No notochord (Stomochord cartilaginous and once thought homologous w/notochord) Tornaria larvae very similar to asteroidea Bipinnaria larvae CLASS ENTEROPNEUSTA (acorn worms) Marine, bottom dwellers CLASS PTEROBRANCHIA Colonial, sessile, filter feeding, tube dwellers Small (1-2 mm), "U" shaped gut, no gill slits PHYLUM CHORDATA Body segmented Axial notochord Dorsal hollow nerve chord Paired gill slits Post anal tail SUBPHYLUM UROCHORDATA Marine, sessile Body covered in a cellulose tunic ("Tunicates") Filter feeder (» 200 L/day) - perforated pharnx adapted for filtering & repiration Pharyngeal basket contractable - squirts water when exposed at low tide Hermaphrodites Tadpole larvae w/chordate characteristics (neoteny) CLASS ASCIDIACEA (sea squirt/tunicate - sessile) No excretory system Open circulatory system (can reverse blood flow) Endostyle - (homologous to thyroid of vertebrates) ciliated groove
    [Show full text]
  • Genomic Analysis of Family UBA6911 (Group 18 Acidobacteria)
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 2 Genomic analysis of family UBA6911 (Group 18 3 Acidobacteria) expands the metabolic capacities of the 4 phylum and highlights adaptations to terrestrial habitats. 5 6 Archana Yadav1, Jenna C. Borrelli1, Mostafa S. Elshahed1, and Noha H. Youssef1* 7 8 1Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, 9 OK 10 *Correspondence: Noha H. Youssef: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.04.09.439258; this version posted April 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11 Abstract 12 Approaches for recovering and analyzing genomes belonging to novel, hitherto unexplored 13 bacterial lineages have provided invaluable insights into the metabolic capabilities and 14 ecological roles of yet-uncultured taxa. The phylum Acidobacteria is one of the most prevalent 15 and ecologically successful lineages on earth yet, currently, multiple lineages within this phylum 16 remain unexplored. Here, we utilize genomes recovered from Zodletone spring, an anaerobic 17 sulfide and sulfur-rich spring in southwestern Oklahoma, as well as from multiple disparate soil 18 and non-soil habitats, to examine the metabolic capabilities and ecological role of members of 19 the family UBA6911 (group18) Acidobacteria.
    [Show full text]
  • Comprehensive Phylogenomic Analyses Resolve Cnidarian Relationships and the Origins of Key Organismal Traits
    Comprehensive phylogenomic analyses resolve cnidarian relationships and the origins of key organismal traits Ehsan Kayal1,2, Bastian Bentlage1,3, M. Sabrina Pankey5, Aki H. Ohdera4, Monica Medina4, David C. Plachetzki5*, Allen G. Collins1,6, Joseph F. Ryan7,8* Authors Institutions: 1. Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution 2. UPMC, CNRS, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France 3. Marine Laboratory, university of Guam, UOG Station, Mangilao, GU 96923, USA 4. Department of Biology, Pennsylvania State University, University Park, PA, USA 5. Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, USA 6. National Systematics Laboratory, NOAA Fisheries, National Museum of Natural History, Smithsonian Institution 7. Whitney Laboratory for Marine Bioscience, University of Florida, St Augustine, FL, USA 8. Department of Biology, University of Florida, Gainesville, FL, USA PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.3172v1 | CC BY 4.0 Open Access | rec: 21 Aug 2017, publ: 21 Aug 20171 Abstract Background: The phylogeny of Cnidaria has been a source of debate for decades, during which nearly all-possible relationships among the major lineages have been proposed. The ecological success of Cnidaria is predicated on several fascinating organismal innovations including symbiosis, colonial body plans and elaborate life histories, however, understanding the origins and subsequent diversification of these traits remains difficult due to persistent uncertainty surrounding the evolutionary relationships within Cnidaria. While recent phylogenomic studies have advanced our knowledge of the cnidarian tree of life, no analysis to date has included genome scale data for each major cnidarian lineage. Results: Here we describe a well-supported hypothesis for cnidarian phylogeny based on phylogenomic analyses of new and existing genome scale data that includes representatives of all cnidarian classes.
    [Show full text]
  • Tropical Coralline Algae (Diurnal Response)
    Burdett, Heidi L. (2013) DMSP dynamics in marine coralline algal habitats. PhD thesis. http://theses.gla.ac.uk/4108/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] DMSP Dynamics in Marine Coralline Algal Habitats Heidi L. Burdett MSc BSc (Hons) University of Plymouth Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Geographical and Earth Sciences College of Science and Engineering University of Glasgow March 2013 © Heidi L. Burdett, 2013 ii Dedication In loving memory of my Grandads; you may not get to see this in person, but I hope it makes you proud nonetheless. John Hewitson Burdett 1917 – 2012 and Denis McCarthy 1923 - 1998 Heidi L. Burdett March 2013 iii Abstract Dimethylsulphoniopropionate (DMSP) is a dimethylated sulphur compound that appears to be produced by most marine algae and is a major component of the marine sulphur cycle. The majority of research to date has focused on the production of DMSP and its major breakdown product, the climatically important gas dimethylsulphide (DMS) (collectively DMS/P), by phytoplankton in the open ocean.
    [Show full text]
  • Yu-Chen Ling and John W. Moreau
    Microbial Distribution and Activity in a Coastal Acid Sulfate Soil System Introduction: Bioremediation in Yu-Chen Ling and John W. Moreau coastal acid sulfate soil systems Method A Coastal acid sulfate soil (CASS) systems were School of Earth Sciences, University of Melbourne, Melbourne, VIC 3010, Australia formed when people drained the coastal area Microbial distribution controlled by environmental parameters Microbial activity showed two patterns exposing the soil to the air. Drainage makes iron Microbial structures can be grouped into three zones based on the highest similarity between samples (Fig. 4). Abundant populations, such as Deltaproteobacteria, kept constant activity across tidal cycling, whereas rare sulfides oxidize and release acidity to the These three zones were consistent with their geological background (Fig. 5). Zone 1: Organic horizon, had the populations changed activity response to environmental variations. Activity = cDNA/DNA environment, low pH pore water further dissolved lowest pH value. Zone 2: surface tidal zone, was influenced the most by tidal activity. Zone 3: Sulfuric zone, Abundant populations: the heavy metals. The acidity and toxic metals then Method A Deltaproteobacteria Deltaproteobacteria this area got neutralized the most. contaminate coastal and nearby ecosystems and Method B 1.5 cause environmental problems, such as fish kills, 1.5 decreased rice yields, release of greenhouse gases, Chloroflexi and construction damage. In Australia, there is Gammaproteobacteria Gammaproteobacteria about a $10 billion “legacy” from acid sulfate soils, Chloroflexi even though Australia is only occupied by around 1.0 1.0 Cyanobacteria,@ Acidobacteria Acidobacteria Alphaproteobacteria 18% of the global acid sulfate soils. Chloroplast Zetaproteobacteria Rare populations: Alphaproteobacteria Method A log(RNA(%)+1) Zetaproteobacteria log(RNA(%)+1) Method C Method B 0.5 0.5 Cyanobacteria,@ Bacteroidetes Chloroplast Firmicutes Firmicutes Bacteroidetes Planctomycetes Planctomycetes Ac8nobacteria Fig.
    [Show full text]
  • Insights Into Archaeal Evolution and Symbiosis from the Genomes of a Nanoarchaeon and Its Inferred Crenarchaeal Host from Obsidian Pool, Yellowstone National Park
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Microbiology Publications and Other Works Microbiology 4-22-2013 Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar University of Tennessee - Knoxville, [email protected] Kira S. Makarova National Institutes of Health David E. Graham University of Tennessee - Knoxville, [email protected] Yuri I. Wolf National Institutes of Health Eugene V. Koonin National Institutes of Health See next page for additional authors Follow this and additional works at: https://trace.tennessee.edu/utk_micrpubs Part of the Microbiology Commons Recommended Citation Biology Direct 2013, 8:9 doi:10.1186/1745-6150-8-9 This Article is brought to you for free and open access by the Microbiology at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Microbiology Publications and Other Works by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Authors Mircea Podar, Kira S. Makarova, David E. Graham, Yuri I. Wolf, Eugene V. Koonin, and Anna-Louise Reysenbach This article is available at TRACE: Tennessee Research and Creative Exchange: https://trace.tennessee.edu/ utk_micrpubs/44 Podar et al. Biology Direct 2013, 8:9 http://www.biology-direct.com/content/8/1/9 RESEARCH Open Access Insights into archaeal evolution and symbiosis from the genomes of a nanoarchaeon and its inferred crenarchaeal host from Obsidian Pool, Yellowstone National Park Mircea Podar1,2*, Kira S Makarova3, David E Graham1,2, Yuri I Wolf3, Eugene V Koonin3 and Anna-Louise Reysenbach4 Abstract Background: A single cultured marine organism, Nanoarchaeum equitans, represents the Nanoarchaeota branch of symbiotic Archaea, with a highly reduced genome and unusual features such as multiple split genes.
    [Show full text]
  • Oceans of Archaea Abundant Oceanic Crenarchaeota Appear to Derive from Thermophilic Ancestors That Invaded Low-Temperature Marine Environments
    Oceans of Archaea Abundant oceanic Crenarchaeota appear to derive from thermophilic ancestors that invaded low-temperature marine environments Edward F. DeLong arth’s microbiota is remarkably per- karyotes), Archaea, and Bacteria. Although al- vasive, thriving at extremely high ternative taxonomic schemes have been recently temperature, low and high pH, high proposed, whole-genome and other analyses E salinity, and low water availability. tend to support Woese’s three-domain concept. One lineage of microbial life in par- Well-known and cultivated archaea generally ticular, the Archaea, is especially adept at ex- fall into several major phenotypic groupings: ploiting environmental extremes. Despite their these include extreme halophiles, methanogens, success in these challenging habitats, the Ar- and extreme thermophiles and thermoacido- chaea may now also be viewed as a philes. Early on, extremely halo- cosmopolitan lot. These microbes philic archaea (haloarchaea) were exist in a wide variety of terres- first noticed as bright-red colonies trial, freshwater, and marine habi- Archaea exist in growing on salted fish or hides. tats, sometimes in very high abun- a wide variety For many years, halophilic isolates dance. The oceanic Marine Group of terrestrial, from salterns, salt deposits, and I Crenarchaeota, for example, ri- freshwater, and landlocked seas provided excellent val total bacterial biomass in wa- marine habitats, model systems for studying adap- ters below 100 m. These wide- tations to high salinity. It was only spread Archaea appear to derive sometimes in much later, however, that it was from thermophilic ancestors that very high realized that these salt-loving invaded diverse low-temperature abundance “bacteria” are actually members environments.
    [Show full text]
  • Sponges) and Phylum Cnidaria (Jellyfish, Sea Anemones and Corals
    4/14/2014 Kingdom Animalia: Phylum Porifera (sponges) and Phylum Cnidaria (jellyfish, sea anemones and corals) 1 4/14/2014 Animals have different types of symmetry AsymmetricalÆ Radial Æ Bilateral Æ Embryo development provides information about how animal groups are related Blastula: hallow with a single layer of cells Gastrula: results in two layers of cells and cavity (gut) with one opening (blastopore) Cavity reaches the other side and the gut is like a tube Some cells from a third layer of cells A second cavityyg forms between the gut and the outside of the animal 2 4/14/2014 Animals have different number of true tissue layers and different type of gut No true tissuesÆ Two tissue layers Æ Three tissue layersÆ No gutÆ Sac like gutÆ Tube like gutÆ Phylum Porifera: Simplest of Animals Sponges: No tissues, no symmetry Intracellular digestion, no digestive system or cavity Collar cells or choanocytes Support by spicules or spongin fibers 3 4/14/2014 Procedure 1 • Grantia sponge Locate osculum • Sponge spicules Bell Labs Research on Deep-Sea Sponge Yields Substantial Mechanical Engineering Insights 4 4/14/2014 Medications from Sponges Thirty percent of all potential new natural medicine has been isolated in sponges. About 75% of the recently registered and patented material to fight cancer comes from sponges. Furthermore, it appears that medicine from sponges helps, for example, asthma and psoriasis; therefore it offers enormous possibilities for research. Eribulin, a novel chemotherapy drug derived from a sea sponge, improves survival in heavily-pretreated metastatic breast cancer. Phylum Cnidaria Coral Sea Anemone Man-of-war Hydra Jellyfish 5 4/14/2014 Phylum Cnidaria Tissues: Endoderm Ectoderm Type of gut: Symmetry: Radial Cnidocytes or Stinging cells Polyp or Medusa form Importance Some jellyfish are considered a delicacy Corals: Medicines cabinets for the 21st century cancer cell inhibitor Sunscreen 6 4/14/2014 Procedure 2 2.
    [Show full text]
  • Brazilian Journal of Oceanography V Olume 64 Special Issue 2
    Brazilian Journal of Oceanography Volume 64 Special Issue 2 P. 1-156 2016 CONTENTS BRAZILIAN JOURNAL OF OCEANOGRAPHY Editorial 1 Turra A.; Denadai M.R.; Brazilian sandy beaches: characteristics, ecosystem services, impacts, knowledge and priorities 5 Amaral A.C.Z.; Corte G.N.; Rosa Filho J.S.; Denadai M.R.; Colling L.A.; Borzone C.; Veloso V.; Omena E.P.; Zalmon I.R.; Rocha-Barreira C.A.; Souza J.R.B.; Rosa L.C.; Tito Cesar Marques de Almeida State of the art of the meiofauna of Brazilian Sandy Beaches 17 Maria T.F.; Wandeness A.P.; Esteves A.M. Studies on benthic communities of rocky shores on the Brazilian coast and climate change monitoring: status of 27 knowledge and challenges Coutinho R.; Yaginuma L.E.; Siviero F.; dos Santos J.C.Q.P.; López M.S.; Christofoletti R.A.; Berchez F.; Ghilardi-Lopes N.P.; Ferreira C.E.L.; Gonçalves J.E.A.; Masi B.P.; Correia M.D.; Sovierzoski H.H.; Skinner L.F.; Zalmon I.R. Climate changes in mangrove forests and salt marshes 37 Schaeffer-Novelli Y.; Soriano-Sierra E.J.; Vale C.C.; Bernini E.; Rovai A.S.; Pinheiro M.A.A.; Schmidt A.J.; Almeida R.; Coelho Júnior C.; Menghini R.P.; Martinez D.I.; Abuchahla G.M.O.; Cunha-Lignon M.; Charlier-Sarubo S.; Shirazawa-Freitas J.; Gilberto Cintrón-Molero G. Seagrass and Submerged Aquatic Vegetation (VAS) Habitats off the Coast of Brazil: state of knowledge, conservation and 53 main threats Copertino M.S.; Creed J.C.; Lanari M.O.; Magalhães K.; Barros K.; Lana P.C.; Sordo L.; Horta P.A.
    [Show full text]
  • Microbial Community Structure in Rice, Crops, and Pastures Rotation Systems with Different Intensification Levels in the Temperate Region of Uruguay
    Supplementary Material Microbial community structure in rice, crops, and pastures rotation systems with different intensification levels in the temperate region of Uruguay Sebastián Martínez Table S1. Relative abundance of the 20 most abundant bacterial taxa of classified sequences. Relative Taxa Phylum abundance 4,90 _Bacillus Firmicutes 3,21 _Bacillus aryabhattai Firmicutes 2,76 _uncultured Prosthecobacter sp. Verrucomicrobia 2,75 _uncultured Conexibacteraceae bacterium Actinobacteria 2,64 _uncultured Conexibacter sp. Actinobacteria 2,14 _Nocardioides sp. Actinobacteria 2,13 _Acidothermus Actinobacteria 1,50 _Bradyrhizobium Proteobacteria 1,23 _Bacillus Firmicutes 1,10 _Pseudolabrys_uncultured bacterium Proteobacteria 1,03 _Bacillus Firmicutes 1,02 _Nocardioidaceae Actinobacteria 0,99 _Candidatus Solibacter Acidobacteria 0,97 _uncultured Sphingomonadaceae bacterium Proteobacteria 0,94 _Streptomyces Actinobacteria 0,91 _Terrabacter_uncultured bacterium Actinobacteria 0,81 _Mycobacterium Actinobacteria 0,81 _uncultured Rubrobacteria Actinobacteria 0,77 _Xanthobacteraceae_uncultured forest soil bacterium Proteobacteria 0,76 _Streptomyces Actinobacteria Table S2. Relative abundance of the 20 most abundant fungal taxa of classified sequences. Relative Taxa Orden abundance. 20,99 _Fusarium oxysporum Ascomycota 11,97 _Aspergillaceae Ascomycota 11,14 _Chaetomium globosum Ascomycota 10,03 _Fungi 5,40 _Cucurbitariaceae; uncultured fungus Ascomycota 5,29 _Talaromyces purpureogenus Ascomycota 3,87 _Neophaeosphaeria; uncultured fungus Ascomycota
    [Show full text]
  • On Some Hydroids (Cnidaria) from the Coast of Pakistan
    Pakistan J. Zool., vol. 38(3), pp. 225-232, 2006. On Some Hydroids (Cnidaria) from the Coast of Pakistan NASEEM MOAZZAM AND MOHAMMAD MOAZZAM Institute of Marine Sciences, University of Karachi, Karachi 75270, Pakistan (NM) and Marine Fisheries Department, Government of Pakistan, Fish Harbour, West Wharf, Karachi 74900, Pakistan (MM) Abstract .- The paper deals with the occurrence of eleven species of the hydroids from the coast of Pakistan. All the species are reported for the first time from Pakistan. These species are Hydractinia epidocleensis, Pennaria disticha, Eudendrium capillare, Orthopyxis cf. crenata, Clytia noliformis, C. hummelincki, Dynamena crisioides, D. quadridentata, Sertularia distans, Pycnotheca mirabilis and Macrorhynchia philippina. Key words: Hydroids, Coelenterata, Pakistan, Hydractinia, Pennaria, Eudendrium, Orthopyxis, Clytia, Dynamena, Sertularia, Pycnotheca, Macrorhynchia. INTRODUCTION used in the paper are derived from Millard (1975), Gibbons and Ryland (1989), Ryland and Gibbons (1991). In comparison to other invertebrates, TAXONOMIC ENUMERATION hydroids are one of the least known groups of marine animals from the coast of Pakistan Haque Family BOUGAINVILLIIDAE (1977) reported a few Cnidaria from the Pakistani Genus HYDRACTINIA Van Beneden, 1841 coast including two hydroids i.e. Plumularia flabellum Allman, 1883 (= P. insignis Allman, 1. Hydractinia epidocleensis Leloup, 1931 1883) and Campanularia juncea Allman, 1874 (= (Fig. 1) Thyroscyphus junceus (Allman, 1876) from Keamari and Bhit Island, Karachi, respectively. Ahmed and Hameed (1999), Ahmed et al. (1978) and Haq et al. (1978) have mentioned the presence of hydroids in various habitats along the coast of Pakistan. Javed and Mustaquim (1995) reported Sertularia turbinata (Lamouroux, 1816) from Manora Channel, Karachi. The present paper describes eleven species of Cnidaria collected from the Pakistani coast all of which are new records for Pakistan.
    [Show full text]
  • Sponges and Bryozoans of Sandusky Bay
    Ohio Naturalist. [Vol. 1, No. SPONGES AND BRYOZOANS OF SANDUSKY BAY. F. L. LANDACRE. The two small groups of fresh water sponges and Bryozoa re- ceived some attention at the Lake laboratory during the summer of 1900 All our fresh water sponges belong to one family, the SpongiUidae, which has about seven genera. They differ from the marine sponges- in two particulars. They form skeletons of silicon only, while marine sponges may form silicious or limy or spongin skeletons. The spongin skeleton-is the-one that gives the bath sponge its value.. They also form winter buds or statoblasts which carry the sponge over the winter and reproduce it again in the spring. This peculiar process was probably acquired on account of the changes in temperature and in amount of moisture to which animals living in fresh water streams are subjected. The sponge dies in the fall of the year and its skeleton of silicious spines or spicules can be found with no protoplasm. The character of the spines in the body of the sponge and those surrounding the statoblast differ greatly, and those around the statoblast are the main reliance in identifying sponges. So that if a statoblast is found the sponge from which it came can be determined, and on the other hand it is frequently very difficult to determine the species of a sponge if it has not yet formed its stato- blast. The statoblast is a globular or disc-shaped, nitroginous cell with a chimney-like opening where the protoplasm escapes in the spring. The adult sponge is non-sexual but the statoblasts give rise to ova and spermatozoa which unite and produce a new sponge.
    [Show full text]