Tropical Coralline Algae (Diurnal Response)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Constancea: Publications of P.C. Silva 12/13/2002 11:23:15 AM Constancea 83, 2002 University and Jepson Herbaria P.C
Constancea: Publications of P.C. Silva 12/13/2002 11:23:15 AM Constancea 83, 2002 University and Jepson Herbaria P.C. Silva Festschrift Publications of Paul C. Silva Research papers and books 1. Generic names of algae proposed for conservation. Hydrobiologia 2(3): 252–280. 1950. 2. The genus Codium in California with observations on the structure of the walls of the utricles. Univ. Calif. Publ. Bot. 25(2): 79–114, pls. 1–6, 32 text−figs. 1951. 3. A review of nomenclatural conservation in the algae from the point of view of the type method. Univ. Calif. Publ. Bot. 25(4): 241–324. 1952. 4. Codium Stackhouse. In L.E. Egerod, An analysis of the siphonous Chlorophycophyta with special reference to the Siphonocladales, Siphonales, and Dasycladales of Hawaii. Univ. Calif. Publ. Bot. 25(5): 381–395, pls. 34b–36, text−figs. 11–18. 1952. 5. (E.Y. Dawson & P.C. Silva) Bossea Manza. In E.Y. Dawson, Marine red algae of Pacific Mexico. Part I. Allan Hancock Pacific Exped. 17(1): 150–161, pl. 8: figs. 1, 2, 4–8; pl. 24: fig. 2; pl. 25: fig. 2; pl. 26: fig. 2; pl. 32. 1953. 6. (P.C. Silva & R.C. Starr) Difficulties in applying the International Code of Botanical Nomenclature to certain unicellular algae, with special reference to Chlorococcum. Svensk Bot. Tidskr. 47(2): 235–247. 1953. 7. (P.C. Silva & G.F. Papenfuss) A systematic study of the algae of sewage oxidation ponds. Calif. State Water Pollution Control Board Publ. 7. 35 pp., 34 figs., 6 tables. -
Coral Reef Algae
Coral Reef Algae Peggy Fong and Valerie J. Paul Abstract Benthic macroalgae, or “seaweeds,” are key mem- 1 Importance of Coral Reef Algae bers of coral reef communities that provide vital ecological functions such as stabilization of reef structure, production Coral reefs are one of the most diverse and productive eco- of tropical sands, nutrient retention and recycling, primary systems on the planet, forming heterogeneous habitats that production, and trophic support. Macroalgae of an astonish- serve as important sources of primary production within ing range of diversity, abundance, and morphological form provide these equally diverse ecological functions. Marine tropical marine environments (Odum and Odum 1955; macroalgae are a functional rather than phylogenetic group Connell 1978). Coral reefs are located along the coastlines of comprised of members from two Kingdoms and at least over 100 countries and provide a variety of ecosystem goods four major Phyla. Structurally, coral reef macroalgae range and services. Reefs serve as a major food source for many from simple chains of prokaryotic cells to upright vine-like developing nations, provide barriers to high wave action that rockweeds with complex internal structures analogous to buffer coastlines and beaches from erosion, and supply an vascular plants. There is abundant evidence that the his- important revenue base for local economies through fishing torical state of coral reef algal communities was dominance and recreational activities (Odgen 1997). by encrusting and turf-forming macroalgae, yet over the Benthic algae are key members of coral reef communities last few decades upright and more fleshy macroalgae have (Fig. 1) that provide vital ecological functions such as stabili- proliferated across all areas and zones of reefs with increas- zation of reef structure, production of tropical sands, nutrient ing frequency and abundance. -
Brazilian Journal of Oceanography V Olume 64 Special Issue 2
Brazilian Journal of Oceanography Volume 64 Special Issue 2 P. 1-156 2016 CONTENTS BRAZILIAN JOURNAL OF OCEANOGRAPHY Editorial 1 Turra A.; Denadai M.R.; Brazilian sandy beaches: characteristics, ecosystem services, impacts, knowledge and priorities 5 Amaral A.C.Z.; Corte G.N.; Rosa Filho J.S.; Denadai M.R.; Colling L.A.; Borzone C.; Veloso V.; Omena E.P.; Zalmon I.R.; Rocha-Barreira C.A.; Souza J.R.B.; Rosa L.C.; Tito Cesar Marques de Almeida State of the art of the meiofauna of Brazilian Sandy Beaches 17 Maria T.F.; Wandeness A.P.; Esteves A.M. Studies on benthic communities of rocky shores on the Brazilian coast and climate change monitoring: status of 27 knowledge and challenges Coutinho R.; Yaginuma L.E.; Siviero F.; dos Santos J.C.Q.P.; López M.S.; Christofoletti R.A.; Berchez F.; Ghilardi-Lopes N.P.; Ferreira C.E.L.; Gonçalves J.E.A.; Masi B.P.; Correia M.D.; Sovierzoski H.H.; Skinner L.F.; Zalmon I.R. Climate changes in mangrove forests and salt marshes 37 Schaeffer-Novelli Y.; Soriano-Sierra E.J.; Vale C.C.; Bernini E.; Rovai A.S.; Pinheiro M.A.A.; Schmidt A.J.; Almeida R.; Coelho Júnior C.; Menghini R.P.; Martinez D.I.; Abuchahla G.M.O.; Cunha-Lignon M.; Charlier-Sarubo S.; Shirazawa-Freitas J.; Gilberto Cintrón-Molero G. Seagrass and Submerged Aquatic Vegetation (VAS) Habitats off the Coast of Brazil: state of knowledge, conservation and 53 main threats Copertino M.S.; Creed J.C.; Lanari M.O.; Magalhães K.; Barros K.; Lana P.C.; Sordo L.; Horta P.A. -
Codium Pulvinatum (Bryopsidales, Chlorophyta), a New Species from the Arabian Sea, Recently Introduced Into the Mediterranean Sea
Phycologia Volume 57 (1), 79–89 Published 6 November 2017 Codium pulvinatum (Bryopsidales, Chlorophyta), a new species from the Arabian Sea, recently introduced into the Mediterranean Sea 1 2 3 4 5 RAZY HOFFMAN *, MICHAEL J. WYNNE ,TOM SCHILS ,JUAN LOPEZ-BAUTISTA AND HEROEN VERBRUGGEN 1School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel 2University of Michigan Herbarium, 3600 Varsity Drive, Ann Arbor, Michigan 48108, USA 3University of Guam Marine Laboratory, Mangilao, Guam 96923, USA 4Biological Sciences, University of Alabama, Box 35487, Tuscaloosa, Alabama 35487, USA 5School of Biosciences, University of Melbourne, Victoria 3010, Australia ABSTRACT: Codium pulvinatum sp. nov. (Bryopsidales, Chlorophyta) is described from the southern shores of Oman and from the Mediterranean shore of Israel. The new species has a pulvinate to mamillate–globose habit and long narrow utricles. Molecular data from the rbcL gene show that the species is distinct from closely related species, and concatenated rbcL and rps3–rpl16 sequence data show that it is not closely related to other species with similar external morphologies. The recent discovery of well-established populations of C. pulvinatum along the central Mediterranean coast of Israel suggests that it is a new Lessepsian migrant into the Mediterranean Sea. The ecology and invasion success of the genus Codium, now with four alien species reported for the Levantine Sea, and some ecological aspects are also discussed in light of the discovery of the new species. KEY WORDS: Codium pulvinatum, Israel, Lessepsian migrant, Levantine Sea, Oman, rbcL, rps3–rpl16 INTRODUCTION updated), except for ‘TAU’. All investigated specimens are listed in Table S1 (collecting data table). -
Codium(Chlorophyta) Species Presented in the Galápagos Islands
Hidrobiológica 2016, 26 (2): 151-159 Codium (Chlorophyta) species presented in the Galápagos Islands Las especies del género Codium (Chlorophyta) presentes en las Islas Galápagos Max E. Chacana1, Paul C. Silva1, Francisco F. Pedroche1, 2 and Kathy Ann Miller1 1University Herbarium, University of California, Berkeley, CA 94720-2465. USA 2Depto. Ciencias Ambientales, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, 52007. México e-mail: [email protected] Chacana M. E., P. C. Silva, F. F. Pedroche and K. A. Miller. 2016. Codium (Chlorophyta) species presented in the Galápagos Islands. Hidrobiológica 26 (2): 151-159. ABSTRACT Background. The Galápagos Islands have been the subject of numerous scientific expeditions. The chief source of in- formation on their marine algae is the report published in 1945 by the late William Randolph Taylor on collections made by the Allan Hancock Pacific Expedition of 1934. Prior to this work, there were no published records ofCodium from the Galápagos. Taylor recorder six species of Codium of which C. isabelae and C. santamariae were new descriptions. Goals. On the basis of collections made since 1939, we have reviewed the registry of Codium in these islands. Methods. Com- parative analysis based on morphology and utricle anatomy. Results. Codium isabelae and C. santamariae are combined under the former name. Records of C. cervicorne and C. dichotomum also are referred to C. isabelae, those of C. setchellii are based partly on representatives of C. picturatum, a recently described species from the Mexican Pacific, Panama, Colombia, and Hawaii, and partly on representatives of a species similar if not identical to C. -
Print This Article
Mediterranean Marine Science Vol. 15, 2014 Seaweeds of the Greek coasts. II. Ulvophyceae TSIAMIS K. Hellenic Centre for Marine Research PANAYOTIDIS P. Hellenic Centre for Marine Research ECONOMOU-AMILLI A. Faculty of Biology, Department of Ecology and Taxonomy, Athens University KATSAROS C. of Biology, Department of Botany, Athens University https://doi.org/10.12681/mms.574 Copyright © 2014 To cite this article: TSIAMIS, K., PANAYOTIDIS, P., ECONOMOU-AMILLI, A., & KATSAROS, C. (2014). Seaweeds of the Greek coasts. II. Ulvophyceae. Mediterranean Marine Science, 15(2), 449-461. doi:https://doi.org/10.12681/mms.574 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 25/09/2021 06:44:40 | Review Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net Doi: http://dx.doi.org/ 10.12681/mms.574 Seaweeds of the Greek coasts. II. Ulvophyceae K. TSIAMIS1, P. PANAYOTIDIS1, A. ECONOMOU-AMILLI2 and C. KATSAROS3 1 Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, Anavyssos 19013, Attica, Greece 2 Faculty of Biology, Department of Ecology and Taxonomy, Athens University, Panepistimiopolis 15784, Athens, Greece 3 Faculty of Biology, Department of Botany, Athens University, Panepistimiopolis 15784, Athens, Greece Corresponding author: [email protected] Handling Editor: Sotiris Orfanidis Received: 5 August 2013 ; Accepted: 5 February 2014; Published on line: 14 March 2014 Abstract An updated checklist of the green seaweeds (Ulvophyceae) of the Greek coasts is provided, based on both literature records and new collections. The total number of species and infraspecific taxa currently accepted is 96. -
Mesozoic and Cenozoic Calcareous Algae, Praecursors of Family Codiaceae
ACTA PALAEONTOLOGICA ROMANIAE V. 6 (2008), P 83-95. MESOZOIC AND CENOZOIC CALCAREOUS ALGAE, PRAECURSORS OF FAMILY CODIACEAE Ovidiu N. DRAGASTAN1 Abstract. It is amaizing how long time was the using of the marine green – algae, Family Codiaceae and the genus Codium, as suffix of many fossil genera (Carpathocodium, Arabicodium, Calabricodium, Madonicodium), without any relation with the real morphology of the Recent genus Codium. The genus Codium is well represented on warm – cool transitional marine coasts or in the inner shelf environments of carbonate platform. The genus Codium has an unique structural plan with thallus multibranched, noncalcareous, vesiculous crossed by medullary siphons and only one layer of cortical utricles. The utricles show a great anatomical diversity with diagnostic value in separating the approximately 100 Recent species. Until now, a real representative of the Recent Family Codiaceae in the fossil state was not found. Also, the same situation is with Recent genus Pseudocodium (Family Pseudocodiaceae). Contrary, the fossils praecursors of the Recent Codiaceae were recorded, described and included now, for the first time in the Family Praecodiaceae nov. fam. This family only with fossil representatives contains calcareous thalli composed by cylindrical branches crossed by medullary siphons, few in number (4 to 6, rarely 8) and only one utricles layer. The utricles layer is variable in morphology from species to species. Beside the late Triassic Hydracara kubeae Dragastan et al.2000 are introduced the following taxa: Lupertosinnium bariensis nov.gen.nov.sp. (early Barremian), L. banatensis n.sp. (late Barremian – early Aptian ), Alpinium tragelehni nov.gen.nov.sp. (Thanetian) and Atlasinium nov.gen. -
Effects of Coral Reef Benthic Primary Producers on Dissolved Organic Carbon and Microbial Activity
Effects of Coral Reef Benthic Primary Producers on Dissolved Organic Carbon and Microbial Activity Andreas F. Haas1*, Craig E. Nelson2, Linda Wegley Kelly3, Craig A. Carlson2,4, Forest Rohwer3, James J. Leichter1, Alex Wyatt1, Jennifer E. Smith1 1 Scripps Institution of Oceanography, University of California San Diego, San Diego, California, United States of America, 2 Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, United States of America, 3 Department of Biology, San Diego State University, San Diego, California, United States of America, 4 Department of Ecology, Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, California, United States of America Abstract Benthic primary producers in marine ecosystems may significantly alter biogeochemical cycling and microbial processes in their surrounding environment. To examine these interactions, we studied dissolved organic matter release by dominant benthic taxa and subsequent microbial remineralization in the lagoonal reefs of Moorea, French Polynesia. Rates of photosynthesis, respiration, and dissolved organic carbon (DOC) release were assessed for several common benthic reef organisms from the backreef habitat. We assessed microbial community response to dissolved exudates of each benthic producer by measuring bacterioplankton growth, respiration, and DOC drawdown in two-day dark dilution culture incubations. Experiments were conducted for six benthic producers: three species of macroalgae (each representing a different algal phylum: Turbinaria ornata – Ochrophyta; Amansia rhodantha – Rhodophyta; Halimeda opuntia – Chlorophyta), a mixed assemblage of turf algae, a species of crustose coralline algae (Hydrolithon reinboldii) and a dominant hermatypic coral (Porites lobata). Our results show that all five types of algae, but not the coral, exuded significant amounts of labile DOC into their surrounding environment. -
Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E. -
Seaweed and Seagrasses Inventory of Laguna De San Ignacio, BCS
UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR ÁREA DE CONOCIMIENTO DE CIENCIAS DEL MAR DEPARTAMENTO ACADÉMICO DE BIOLOGÍA MARINA PROGRAMA DE INVESTIGACIÓN EN BOTÁNICA MARINA Seaweed and seagrasses inventory of Laguna de San Ignacio, BCS. Dr. Rafael Riosmena-Rodríguez y Dr. Juan Manuel López Vivas Programa de Investigación en Botánica Marina, Departamento de Biología Marina, Universidad Autónoma de Baja California Sur, Apartado postal 19-B, km. 5.5 carretera al Sur, La Paz B.C.S. 23080 México. Tel. 52-612-1238800 ext. 4140; Fax. 52-612-12800880; Email: [email protected]. Participants: Dr. Jorge Manuel López-Calderón, Dr. Carlos Sánchez Ortiz, Dr. Gerardo González Barba, Dr. Sung Min Boo, Dra. Kyung Min Lee, Hidrobiol. Carmen Mendez Trejo, M. en C. Nestor Manuel Ruíz Robinson, Pas Biol. Mar. Tania Cota. Periodo de reporte: Marzo del 2013 a Junio del 2014. Abstract: The present report presents the surveys of marine flora 2013 – 2014 in the San Ignacio Lagoon of the, representing the 50% of planned visits and in where we were able to identifying 19 species of macroalgae to the area plus 2 Seagrass traditionally cited. The analysis of the number of species / distribution of macroalgae and seagrass is in progress using an intense review of literature who will be concluded using the last field trip information in May-June 2014. During the last two years we have not been able to find large abundances of species of microalgae as were described since 2006 and the floristic lists developed in the 90's. This added with the presence to increase both coverage and biomass of invasive species which makes a real threat to consider. -
Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A. -
Timing of the Evolutionary History of Corallinaceae (Corallinales, Rhodophyta)1
J. Phycol. 53, 567–576 (2017) © 2017 Phycological Society of America DOI: 10.1111/jpy.12520 TIMING OF THE EVOLUTIONARY HISTORY OF CORALLINACEAE (CORALLINALES, RHODOPHYTA)1 Anja Rosler€ 2 Departamento de Estratigrafıa y Paleontologıa, Universidad de Granada, Campus Fuente Nueva, 18002 Granada, Spain Francisco Perfectti Departamento de Genetica, Universidad de Granada, Campus Fuente Nueva, 18002 Granada, Spain Viviana Pena~ Grupo de investigacion BIOCOST, Facultade de Ciencias, Universidade da Coruna,~ Campus de A Zapateira s/n, 15071 A Coruna,~ Spain Phycology Research Group, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium Equipe Exploration, Especes et Evolution, Institut de Systematique, Evolution, Biodiversite, UMR 7205 ISYEB CNRS, MNHN, UPMC, EPHE, Museum national d’Histoire naturelle (MNHN), Sorbonne Universites, 57 rue Cuvier CP 39, F-75005 Paris, France Julio Aguirre and Juan Carlos Braga Departamento de Estratigrafıa y Paleontologıa, Universidad de Granada, Campus Fuente Nueva, 18002 Granada, Spain The temporal dimension of the most recent Abbreviations: mya, million years ago; myr, million Corallinaceae (order Corallinales) phylogeny was years; OTU, operational taxonomic unit presented here, based on first occurrence time estimates from the fossil record. Calibration of the molecular clock of the genetic marker SSU entailed a Coralline red algae (Corallinophycidae, Rhodo- separation of Corallinales from Hapalidiales in the phyta) constitute the major extant group of Albian (Early Cretaceous ~105 mya). Neither calcareous algae and are important components of the calibration nor the fossil record resolved the shallow-water marine hard and sediment bottoms in succession of appearance of the first three emerging areas of low siliciclastic influx from subpolar regions subfamilies: Mastophoroideae, Corallinoideae, and to the Equator (Adey and Mcintyre 1973, Adey Neogoniolithoideae.