Constancea: Publications of P.C. Silva 12/13/2002 11:23:15 AM Constancea 83, 2002 University and Jepson Herbaria P.C

Total Page:16

File Type:pdf, Size:1020Kb

Constancea: Publications of P.C. Silva 12/13/2002 11:23:15 AM Constancea 83, 2002 University and Jepson Herbaria P.C Constancea: Publications of P.C. Silva 12/13/2002 11:23:15 AM Constancea 83, 2002 University and Jepson Herbaria P.C. Silva Festschrift Publications of Paul C. Silva Research papers and books 1. Generic names of algae proposed for conservation. Hydrobiologia 2(3): 252–280. 1950. 2. The genus Codium in California with observations on the structure of the walls of the utricles. Univ. Calif. Publ. Bot. 25(2): 79–114, pls. 1–6, 32 text−figs. 1951. 3. A review of nomenclatural conservation in the algae from the point of view of the type method. Univ. Calif. Publ. Bot. 25(4): 241–324. 1952. 4. Codium Stackhouse. In L.E. Egerod, An analysis of the siphonous Chlorophycophyta with special reference to the Siphonocladales, Siphonales, and Dasycladales of Hawaii. Univ. Calif. Publ. Bot. 25(5): 381–395, pls. 34b–36, text−figs. 11–18. 1952. 5. (E.Y. Dawson & P.C. Silva) Bossea Manza. In E.Y. Dawson, Marine red algae of Pacific Mexico. Part I. Allan Hancock Pacific Exped. 17(1): 150–161, pl. 8: figs. 1, 2, 4–8; pl. 24: fig. 2; pl. 25: fig. 2; pl. 26: fig. 2; pl. 32. 1953. 6. (P.C. Silva & R.C. Starr) Difficulties in applying the International Code of Botanical Nomenclature to certain unicellular algae, with special reference to Chlorococcum. Svensk Bot. Tidskr. 47(2): 235–247. 1953. 7. (P.C. Silva & G.F. Papenfuss) A systematic study of the algae of sewage oxidation ponds. Calif. State Water Pollution Control Board Publ. 7. 35 pp., 34 figs., 6 tables. 1953. 8. The identity of certain Fuci of Esper. Wasmann J. Biol. 11(2): 221–232. 1953. 9. (P.C. Silva & A.P. Cleary) The structure and reproduction of the red alga, Platysiphonia. Amer. J. Bot. 41(3): 251–260, 37 figs. 1954. 10. Phylogenetic significance of anatomical differences in Codium. Huitième Congrès International de Botanique, Rapports et Communications, Sect. 17: 102–103. 1954. 11. The identity of Hydrodyctium marinum Bory. Rev. Algol.. ser. 2, 1(4): 179–180, 1 fig. 1955. 12. The dichotomous species of Codium in Britain. J. Mar. Biol. Ass. U.K. 34(3): 565–577, I pl., 5 figs. 1955. 13. Evaluation of the Protista as a group of living organisms. Micropaleontology 2(3): 294–295, 1 fig. 1956. 14. (P.C. Silva & H.B.S. Womersley. The genus Codium (Chlorophyta) in southern Australia. Austral. J. Bot. 4(3): 261–289, 3 pls., 16 text−figs. 1956. 15. Notes on Pacific coast marine algae. Madroño 14(2): 41–51. 1957. 16. Remarks on algal nomenclature. Taxon 6(5); 141–145. 1957. 1/12 Constancea: Publications of P.C. Silva 12/13/2002 11:23:15 AM 17. Codium in Scandinavian waters. Svensk Bot. Tidskr. 51(1): 117–134, 2 pls., 8 text−figs. 1957. 18. (L. Stoloff & P.C. Silva) An attempt to determine possible taxonomic significance of the properties of water extractable polysaccharides in red algae. Econ. Bot. 11(4): 327–330, 2 tables. 1957. 19. Later starting points in algae. Taxon 7(7): 181–184. 1958. 20. A logical approach to the Code. Taxon 8(1): 3–11. 1959. 21. Remarks on algal nomenclature II. Taxon 8(2): 60–64. 1959. 22. The genus Codium (Chlorophyta) in South Africa. J. So. Afr. Bot. 25(2): 101–165, pls. II−XVI, 22 text−figs. 1959. 23. Later starting points versus the type method. Taxon 9(1): 3–7. 1960. 24. Remarks on algal nomenclature III. Taxon 9(1): 18–25. 1960. 25. Codium (Chlorophyta) in the tropical western Atlantic. Nova Hedwigia 1(3/4): 497–536, pls. 107–123. 1960.26. (P.C. Silva & D.E.G. Irvine) Codium amphibium: a species of doubtful validity. J. Mar. Biol. Ass. U.K. 39(3): 631–636, 3 figs. 1960. 27. Classification of algae. In R.A. Lewin (ed.), Physiology and biochemistry of algae. New York: Academic Press. Pp. 827–837. 1962. 28. Comparison of algal floristic patterns in the Pacific with those in the Atlantic and Indian oceans, with special reference to Codium. Proc. Ninth Pac. Sci. Congr. [Bangkok, 1957] 4: 201–216, 13 figs. 1962. 29. Status of our knowledge of the Galapagos benthic marine algal flora prior to the Galapagos International Scientific Project. In R.I. Bowman (ed.), The Galapagos. Proceedings of the Symposia of the Galapagos International Scientific Project. Berkeley: University of California Press. Pp. 149–156, 2 tables. 1966. 30. Remarks on algal nomenclature IV. Taxon 19(6); 941–945. 1970. 31. Remarks on algal nomenclature V. Taxon 21(1): 199–205. 1972. 32. (P.C. Silva, K.R. Mattox, & W.H. Blackwell, Jr.) The generic name Hormidium as applied to green algae. Taxon 21(5/6): 639–645. 1972. 33. Index to genera and species. In R.A. Lewin (ed.), The genetics of algae. Oxford: Blackwell Scientific Publications. Pp. 344–347. 1976. 34. (R.L. Moe & P.C. Silva) Antarctic marine flora: uniquely devoid of kelps. Science 196: 1206–1208, 1 fig. 1977. 35. (R.L. Moe & P.C. Silva) Sporangia in the brown algal genus Desmarestia with special reference to Antarctic D. ligulata. Bull. Jap. Soc. Phycol. 25(suppl.): 159–167, 1 fig. 1977. 36. Type specimens of Gelidiaceae (Rhodophyceae) described by Nina H. Loomis. Phycologia 17(3): 257–261. 1978. 37. (H.W. Johansen & P.C. Silva) Janieae and Lithotricheae: two new tribes of articulated Corallinaceae (Rhodophyta). Phycologia 17(4): 413–417, 3 figs., 2 tables. 1978. 2/12 Constancea: Publications of P.C. Silva 12/13/2002 11:23:15 AM 38. Review of the taxonomic history and nomenclature of the yellow−green algae. Arch. Protistenk. 121(1): 20–63. 1979. 39. Codium giraffa, a new marine green alga from tropical Pacific Mexico. Phycologia 18(3): 264–268, 2 figs. 1979. 40. (R.L. Moe & P.C. Silva) Morphological and taxonomic studies on Antarctic Ceramiaceae (Rhodophyceae). I. Antarcticothamnion polysporum gen. et sp. nov. Brit. Phycol. J. 14(4): 385–405, 17 figs. 1979. 41. The benthic algal flora of central San Francisco Bay, In T.J. Conomos (ed.), San Francisco Bay: the urbanized estuary. San Francisco: Pacific Division, American Association for the Advancement of Science. Pp. 287–345, 17 figs., 9 tables. 1979. 42. Remarks on algal nomenclature VI. Taxon 29(1): 121–145. 1980. 43. (R.L. Moe & P.C. Silva) Morphological and taxonomic studies on Antarctic Ceramiaceae (Rhodophyceae). II. Pterothamnion antarcticum (Kylin) comb. nov. (Antithamnion antarcticum Kylin). Brit. Phycol. J. 15(1): 1–17, 10 figs. 1980. 44. Names of classes and families of living algae with special reference to their use in the Index Nominum Genericorum (Plantarum). Regnum Vegetabile 103. [iii +] 156 pp. 1980. 45. (R.L. Moe & P.C. Silva) Morphology and taxonomy of Himantothallus (including Phaeoglossum and Phyllogigas), an Antarctic member of the Desmarestiales (Phaeophyceae). J. Phycol. 17(1): 15–29, 28 figs. 1981. 46. Conspicuous features of the intertidal and shallow subtidal algal flora of the central part of San Francisco Bay, California. In G.E. Fogg & W.E. Jones (eds.), Proceedings of the Eighth International Seaweed Symposium, Bangor, North Wales, 18–23 August 1974. Menai Bridge: The Marine Science Laboratories. Pp. 484–488, 1 fig. 1981. 47. (R.L. Moe & P.C. Silva) Morphological and taxonomic studies on Antarctic Ceramiaceae (Rhodophyceae). III. Georgiella and Plumariopsis (tribe Ptiloteae). Brit. Phycol. J. 18(3): 275–298, 46 figs., I table. 1983. 48. The role of extrinsic factors in the past and future of green algal systematics. In D.E.G. Irvine & D.M. John (eds.), Systematics of the green algae. London etc.: Academic Press. Pp. 419–433, 2 figs. 1984. 49. (W.J. Woelkerling, Y.M. Chamberlain, & P.C. Silva) A taxonomic and nomenclatural reassessment of Tenarea, Titanoderma and Dermatolithon (Corallinaceae, Rhodophyta) based on studies of type and other critical specimens. Phycologia 24(3): 317–337, 39 figs., 2 tables. 1985. 50. (P.C. Silva & H.W. Johansen) A reappraisal of the order Corallinales (Rhodophyceae). Brit. Phycol. J. 21(3): 245–254. 1986. 51. (P.C. Silva, E.G. Meñez, & R.L. Moe) Catalog of the benthic marine algae of the Philippines. Smithson. Contrib. Mar. Sci. 27. 179 pp., 2 figs. 1987. 52. (E. Hegewald & P.C. Silva) Annotated catalogue of Scenedesmus and nomenclaturally related genera, including original descriptions and figures. Biblioth. Phycol. 80. xii + 587 pp., 900 figs. [1–896, 39A, 311A, 323A, 497A]. 1988. 53. (R.L. Moe & P.C. Silva) Desmarestia antarctica (Desmarestiales, Phaeophyceae), a new ligulate Antarctic species with an endophytic gametophyte. Plant Syst. & Evol. 164: 273–286, 13 figs. 1989. 54. Hesperophycus Setchell & Gardner, nom. cons. prop., a problematic name applied to a distinctive genus of Fucaceae (Phaeophyceae). Taxon 39(1): 1–8, 3 figs. 1990. 3/12 Constancea: Publications of P.C. Silva 12/13/2002 11:23:15 AM 55. Notes on the type specimens of red algal parasites described from California by W.A. Setchell. Taxon 40(3): 463–470. 1991. 56. Nomenclatural remarks on Agarum (Laminariaceae, Phaeophyceae). Jap. J. Phycol. 39(3): 217–221. 1991. 57. (T.R. Deason, P.C. Silva, S. Watanabe, & G.L. Floyd) Taxonomic status of the species of the green algal genus Neochloris. Plant Syst. & Evol. 177: 213–219, 1 table. 1991. 58. The nomenclatural status of Holodiscus Maxim. (Rosaceae), with a proposal (1005) to reject Sericotheca Raf. Taxon 40(4): 638–642. 1991. 59. Nomenclatural notes on Clemente's Ensayo. Anal. Jard. Bot. Madrid 49(2): 163–170. 1992. 60. (T. Yoshida & P.C. Silva) On the identity of Fucus babingtonii Harvey (Fucales, Phaeophyta). Jap. J. Phycol. 40(2): 121–124, 3 figs. 1992. 61. (T.C.
Recommended publications
  • Tropical Coralline Algae (Diurnal Response)
    Burdett, Heidi L. (2013) DMSP dynamics in marine coralline algal habitats. PhD thesis. http://theses.gla.ac.uk/4108/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] DMSP Dynamics in Marine Coralline Algal Habitats Heidi L. Burdett MSc BSc (Hons) University of Plymouth Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Geographical and Earth Sciences College of Science and Engineering University of Glasgow March 2013 © Heidi L. Burdett, 2013 ii Dedication In loving memory of my Grandads; you may not get to see this in person, but I hope it makes you proud nonetheless. John Hewitson Burdett 1917 – 2012 and Denis McCarthy 1923 - 1998 Heidi L. Burdett March 2013 iii Abstract Dimethylsulphoniopropionate (DMSP) is a dimethylated sulphur compound that appears to be produced by most marine algae and is a major component of the marine sulphur cycle. The majority of research to date has focused on the production of DMSP and its major breakdown product, the climatically important gas dimethylsulphide (DMS) (collectively DMS/P), by phytoplankton in the open ocean.
    [Show full text]
  • Coral Reef Algae
    Coral Reef Algae Peggy Fong and Valerie J. Paul Abstract Benthic macroalgae, or “seaweeds,” are key mem- 1 Importance of Coral Reef Algae bers of coral reef communities that provide vital ecological functions such as stabilization of reef structure, production Coral reefs are one of the most diverse and productive eco- of tropical sands, nutrient retention and recycling, primary systems on the planet, forming heterogeneous habitats that production, and trophic support. Macroalgae of an astonish- serve as important sources of primary production within ing range of diversity, abundance, and morphological form provide these equally diverse ecological functions. Marine tropical marine environments (Odum and Odum 1955; macroalgae are a functional rather than phylogenetic group Connell 1978). Coral reefs are located along the coastlines of comprised of members from two Kingdoms and at least over 100 countries and provide a variety of ecosystem goods four major Phyla. Structurally, coral reef macroalgae range and services. Reefs serve as a major food source for many from simple chains of prokaryotic cells to upright vine-like developing nations, provide barriers to high wave action that rockweeds with complex internal structures analogous to buffer coastlines and beaches from erosion, and supply an vascular plants. There is abundant evidence that the his- important revenue base for local economies through fishing torical state of coral reef algal communities was dominance and recreational activities (Odgen 1997). by encrusting and turf-forming macroalgae, yet over the Benthic algae are key members of coral reef communities last few decades upright and more fleshy macroalgae have (Fig. 1) that provide vital ecological functions such as stabili- proliferated across all areas and zones of reefs with increas- zation of reef structure, production of tropical sands, nutrient ing frequency and abundance.
    [Show full text]
  • Codium Pulvinatum (Bryopsidales, Chlorophyta), a New Species from the Arabian Sea, Recently Introduced Into the Mediterranean Sea
    Phycologia Volume 57 (1), 79–89 Published 6 November 2017 Codium pulvinatum (Bryopsidales, Chlorophyta), a new species from the Arabian Sea, recently introduced into the Mediterranean Sea 1 2 3 4 5 RAZY HOFFMAN *, MICHAEL J. WYNNE ,TOM SCHILS ,JUAN LOPEZ-BAUTISTA AND HEROEN VERBRUGGEN 1School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel 2University of Michigan Herbarium, 3600 Varsity Drive, Ann Arbor, Michigan 48108, USA 3University of Guam Marine Laboratory, Mangilao, Guam 96923, USA 4Biological Sciences, University of Alabama, Box 35487, Tuscaloosa, Alabama 35487, USA 5School of Biosciences, University of Melbourne, Victoria 3010, Australia ABSTRACT: Codium pulvinatum sp. nov. (Bryopsidales, Chlorophyta) is described from the southern shores of Oman and from the Mediterranean shore of Israel. The new species has a pulvinate to mamillate–globose habit and long narrow utricles. Molecular data from the rbcL gene show that the species is distinct from closely related species, and concatenated rbcL and rps3–rpl16 sequence data show that it is not closely related to other species with similar external morphologies. The recent discovery of well-established populations of C. pulvinatum along the central Mediterranean coast of Israel suggests that it is a new Lessepsian migrant into the Mediterranean Sea. The ecology and invasion success of the genus Codium, now with four alien species reported for the Levantine Sea, and some ecological aspects are also discussed in light of the discovery of the new species. KEY WORDS: Codium pulvinatum, Israel, Lessepsian migrant, Levantine Sea, Oman, rbcL, rps3–rpl16 INTRODUCTION updated), except for ‘TAU’. All investigated specimens are listed in Table S1 (collecting data table).
    [Show full text]
  • Codium(Chlorophyta) Species Presented in the Galápagos Islands
    Hidrobiológica 2016, 26 (2): 151-159 Codium (Chlorophyta) species presented in the Galápagos Islands Las especies del género Codium (Chlorophyta) presentes en las Islas Galápagos Max E. Chacana1, Paul C. Silva1, Francisco F. Pedroche1, 2 and Kathy Ann Miller1 1University Herbarium, University of California, Berkeley, CA 94720-2465. USA 2Depto. Ciencias Ambientales, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, 52007. México e-mail: [email protected] Chacana M. E., P. C. Silva, F. F. Pedroche and K. A. Miller. 2016. Codium (Chlorophyta) species presented in the Galápagos Islands. Hidrobiológica 26 (2): 151-159. ABSTRACT Background. The Galápagos Islands have been the subject of numerous scientific expeditions. The chief source of in- formation on their marine algae is the report published in 1945 by the late William Randolph Taylor on collections made by the Allan Hancock Pacific Expedition of 1934. Prior to this work, there were no published records ofCodium from the Galápagos. Taylor recorder six species of Codium of which C. isabelae and C. santamariae were new descriptions. Goals. On the basis of collections made since 1939, we have reviewed the registry of Codium in these islands. Methods. Com- parative analysis based on morphology and utricle anatomy. Results. Codium isabelae and C. santamariae are combined under the former name. Records of C. cervicorne and C. dichotomum also are referred to C. isabelae, those of C. setchellii are based partly on representatives of C. picturatum, a recently described species from the Mexican Pacific, Panama, Colombia, and Hawaii, and partly on representatives of a species similar if not identical to C.
    [Show full text]
  • Print This Article
    Mediterranean Marine Science Vol. 15, 2014 Seaweeds of the Greek coasts. II. Ulvophyceae TSIAMIS K. Hellenic Centre for Marine Research PANAYOTIDIS P. Hellenic Centre for Marine Research ECONOMOU-AMILLI A. Faculty of Biology, Department of Ecology and Taxonomy, Athens University KATSAROS C. of Biology, Department of Botany, Athens University https://doi.org/10.12681/mms.574 Copyright © 2014 To cite this article: TSIAMIS, K., PANAYOTIDIS, P., ECONOMOU-AMILLI, A., & KATSAROS, C. (2014). Seaweeds of the Greek coasts. II. Ulvophyceae. Mediterranean Marine Science, 15(2), 449-461. doi:https://doi.org/10.12681/mms.574 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 25/09/2021 06:44:40 | Review Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net Doi: http://dx.doi.org/ 10.12681/mms.574 Seaweeds of the Greek coasts. II. Ulvophyceae K. TSIAMIS1, P. PANAYOTIDIS1, A. ECONOMOU-AMILLI2 and C. KATSAROS3 1 Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, Anavyssos 19013, Attica, Greece 2 Faculty of Biology, Department of Ecology and Taxonomy, Athens University, Panepistimiopolis 15784, Athens, Greece 3 Faculty of Biology, Department of Botany, Athens University, Panepistimiopolis 15784, Athens, Greece Corresponding author: [email protected] Handling Editor: Sotiris Orfanidis Received: 5 August 2013 ; Accepted: 5 February 2014; Published on line: 14 March 2014 Abstract An updated checklist of the green seaweeds (Ulvophyceae) of the Greek coasts is provided, based on both literature records and new collections. The total number of species and infraspecific taxa currently accepted is 96.
    [Show full text]
  • Mesozoic and Cenozoic Calcareous Algae, Praecursors of Family Codiaceae
    ACTA PALAEONTOLOGICA ROMANIAE V. 6 (2008), P 83-95. MESOZOIC AND CENOZOIC CALCAREOUS ALGAE, PRAECURSORS OF FAMILY CODIACEAE Ovidiu N. DRAGASTAN1 Abstract. It is amaizing how long time was the using of the marine green – algae, Family Codiaceae and the genus Codium, as suffix of many fossil genera (Carpathocodium, Arabicodium, Calabricodium, Madonicodium), without any relation with the real morphology of the Recent genus Codium. The genus Codium is well represented on warm – cool transitional marine coasts or in the inner shelf environments of carbonate platform. The genus Codium has an unique structural plan with thallus multibranched, noncalcareous, vesiculous crossed by medullary siphons and only one layer of cortical utricles. The utricles show a great anatomical diversity with diagnostic value in separating the approximately 100 Recent species. Until now, a real representative of the Recent Family Codiaceae in the fossil state was not found. Also, the same situation is with Recent genus Pseudocodium (Family Pseudocodiaceae). Contrary, the fossils praecursors of the Recent Codiaceae were recorded, described and included now, for the first time in the Family Praecodiaceae nov. fam. This family only with fossil representatives contains calcareous thalli composed by cylindrical branches crossed by medullary siphons, few in number (4 to 6, rarely 8) and only one utricles layer. The utricles layer is variable in morphology from species to species. Beside the late Triassic Hydracara kubeae Dragastan et al.2000 are introduced the following taxa: Lupertosinnium bariensis nov.gen.nov.sp. (early Barremian), L. banatensis n.sp. (late Barremian – early Aptian ), Alpinium tragelehni nov.gen.nov.sp. (Thanetian) and Atlasinium nov.gen.
    [Show full text]
  • Compartmentalization of Mrnas in the Giant, Unicellular Green Algae
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.18.303206; this version posted September 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Compartmentalization of mRNAs in the giant, 2 unicellular green algae Acetabularia acetabulum 3 4 Authors 5 Ina J. Andresen1, Russell J. S. Orr2, Kamran Shalchian-Tabrizi3, Jon Bråte1* 6 7 Address 8 1: Section for Genetics and Evolutionary Biology, Department of Biosciences, University of 9 Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 10 2: Natural History Museum, University of Oslo, Oslo, Norway 11 3: Centre for Epigenetics, Development and Evolution, Department of Biosciences, University 12 of Oslo, Kristine Bonnevies Hus, Blindernveien 31, 0316 Oslo, Norway. 13 14 *Corresponding author 15 Jon Bråte, [email protected] 16 17 Keywords 18 Acetabularia acetabulum, Dasycladales, UMI, STL, compartmentalization, single-cell, mRNA. 19 20 Abstract 21 Acetabularia acetabulum is a single-celled green alga previously used as a model species for 22 studying the role of the nucleus in cell development and morphogenesis. The highly elongated 23 cell, which stretches several centimeters, harbors a single nucleus located in the basal end. 24 Although A. acetabulum historically has been an important model in cell biology, almost 25 nothing is known about its gene content, or how gene products are distributed in the cell. To 26 study the composition and distribution of mRNAs in A.
    [Show full text]
  • First Record of Genuine Codium Mamillosum Harvey (Codiaceae, Ulvophyceae) from Japan
    Bull. Natl. Mus. Nat. Sci., Ser. B, 43(4), pp. 93–98, November 22, 2017 First record of genuine Codium mamillosum Harvey (Codiaceae, Ulvophyceae) from Japan Taiju Kitayama Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, Ibaraki 305–0005, Japan E-mail: [email protected] (Received 29 August 2017; accepted 27 September 2017) Abstract A marine benthic green alga, Codium mamillosum Harvey (Codiaceae, Bryopsidales, Ulvophyceae) was collected from the mesophotic zone off Chichi-jima Island, Ogasawara Islands, Japan. In Japan, at the end of the 19th century, this species name was used by Okamura (in Matsumura and Miyoshi, 1899) for his specimens of solid globular Codium collected from main islands of Japan, afterward it was synonymized by Silva (1962) into Codium minus (O.C. Schmidt) P.C.Silva as “Codium mamillosum sensu Okamura”. The present alga collected recently from Oga- sawara Islands was identified as a genuine C. mamillosum because the thalli have relatively larger utricles (550–1100 µm in diameter) than those of C. minus. Key words : Codiaceae, Codium mamillosum, Japan, marine benthic green alga, Ogasawara Islands, Ulvophyceae. In the end of the 18th century, the marine Harvey (1855) based on the specimens collected green algal genus Codium (Codiaceae, Bryopsi- from Western Australia, whose appearance was dales, Ulvophyceae) was established by Stack- described as “a very solid, green, mamillated house (1795). This genus has 120–144 species (having nipples) ball”. In Japan, Okamura in (Huisman, 2015; Guiry and Guiry, 2017), which Matsumura and Miyoshi (1899) and Okamura are extremely various in external morphology: (1915) identified the specimens of solid globular flattened to erect, dorsiventral or isobilateral, Codium collected from main islands of Japan as branched or unbranched, complanate to terete, C.
    [Show full text]
  • Codium (Bryopsidales) Based on Plastid DNA Sequences
    Molecular Phylogenetics and Evolution 44 (2007) 240–254 www.elsevier.com/locate/ympev Species boundaries and phylogenetic relationships within the green algal genus Codium (Bryopsidales) based on plastid DNA sequences Heroen Verbruggen a,*, Frederik Leliaert a, Christine A. Maggs b, Satoshi Shimada c, Tom Schils a, Jim Provan b, David Booth b, Sue Murphy b, Olivier De Clerck a, Diane S. Littler d, Mark M. Littler d, Eric Coppejans a a Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 (S8), B-9000 Gent, Belgium b School of Biological Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK c Center for Advanced Science and Technology, Hokkaido University, Sapporo 060-0810, Japan d US National Herbarium, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA Received 26 July 2006; revised 6 December 2006; accepted 10 January 2007 Available online 31 January 2007 Abstract Despite the potential model role of the green algal genus Codium for studies of marine speciation and evolution, there have been dif- ficulties with species delimitation and a molecular phylogenetic framework was lacking. In the present study, 74 evolutionarily significant units (ESUs) are delimited using 227 rbcL exon 1 sequences obtained from specimens collected throughout the genus’ range. Several mor- pho-species were shown to be poorly defined, with some clearly in need of lumping and others containing pseudo-cryptic diversity. A phylogenetic hypothesis of 72 Codium ESUs is inferred from rbcL exon 1 and rps3–rpl16 sequence data using a conventional nucleotide substitution model (GTR + C + I), a codon position model and a covariotide (covarion) model, and the fit of a multitude of substitution models and alignment partitioning strategies to the sequence data is reported.
    [Show full text]
  • Molecular Survey of Codium Species Diversity in Southern Madagascar
    Cryptogamie, Algologie, 2015, 36 (2): 171-187 © 2015 Adac. Tous droits réservés Molecular survey of Codium species diversity in southern Madagascar Heroen VERBRUGGEN* & Joana F. COSTA School of BioSciences, University of Melbourne, Victoria 3010, Australia Abstract – We present a molecular survey of the species in the green algal genus Codium that were collected as part of the Atimo Vatae expedition to southern Madagascar. Based on clustering analysis of partial tufA and rbcL sequences, we recognize 11-12 species-level clusters in this area. Through a combination of morphological identifications and DNA comparisons, these clusters are identified as C. mozambiquense, C. spongiosum, C. lucasii subsp. capense, C. duthieae, C. decorticatum, C. prostratum, C. dwarkense, C. taylorii, C. arenicola and C. cf. cicatrix, and a new ball-shaped species. We present a phylogenetic tree inferred from a concatenated alignment with tufA, rbcL and rps3-rpl16 to show the placement of these species in the broader context of the genus and to analyse the biogeographic affinities of the southern Madagascan Codium flora. We conclude that the Madagascan flora shares elements with temperate South Africa and contains tropical Indo- Pacific elements. It also has endemic elements, some clearly at the species level, some possibly representing isolated populations of more widely-ranging species. Biogeography / Bryopsidales / Codium / marine green algae / molecular systematics / Madagascar INTRODUCTION Madagascar is a large island in the western Indian Ocean, nearly 500 km east from Mozambique (SE Africa). It is part of the group of (sub-)continents that resulted from the breakup of Gondwana during the Mesozoic. The block consisting of the Indian subcontinent and Madagascar separated from Gondwana roughly 130 million years ago and started drifting northwards.
    [Show full text]
  • Blood Anticoagulant Activity of a Green Marine Alga Codium Dwarkense (Codiaceae, Chlorophyta) in Relation to Its Growth Stages
    Indian Journal of Marine Sciences Vol. 30, March 2001, pp. 49-52 Short Communication Blood anticoagulant activity of a green marine alga Codium dwarkense (Codiaceae, Chlorophyta) in relation to its growth stages M. Shanmugam, K. H. Mody*, R. M. Oza & B. K. Ramavat Marine Algae & Marine Environment Discipline, Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002, Gujarat, India Received 11 May 2000, revised 19 October 2000 Codium dwarkense was sampled from Porbandar from December 1998 to April 1999 and growth stages of each sample were examined. Sulphated polysaccharides (SPS) were extracted from each sample and blood anticoagulant activity was evaluated by Prothrombin Time (PT) test. Blood anticoagulant activity was minimum (CT ratio 1.75) in plants collected in vegetative stage without gametangium (December), marginal in plants with 40-50% gametangia (January and February), CT ratio 2.43 and 3.00, respectively, highest (CT ratio 3.75) in reproductive stage (March) where 100% gametangia were found. The activity again decreased (CT ratio 2.34) in lapse period with 98.3% gametangia (April). The activity was directly associated with sugar and sulphate content, which were more in the SPS from plant with 100% gametangia. Therefore, it can be concluded that biosysnthesis of anticoagulant by C. dwarkense is associated with abundance of its gametangia. Sulphated polysaccharides (SPS) are commonly found From a group of 13 green algal species belonging to in marine algae and higher animals and scarcely the family Codiaceae from Indian waters, Codium present in microbes and absent in higher plants. dwarkense and Codium tomentosum were identified Marine algal sulphated polysaccharides are reported as the most promising species.
    [Show full text]
  • A Multi-Locus Time-Calibrated Phylogeny of the Siphonous Green Algae
    Molecular Phylogenetics and Evolution 50 (2009) 642–653 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multi-locus time-calibrated phylogeny of the siphonous green algae Heroen Verbruggen a,*, Matt Ashworth b, Steven T. LoDuca c, Caroline Vlaeminck a, Ellen Cocquyt a, Thomas Sauvage d, Frederick W. Zechman e, Diane S. Littler f, Mark M. Littler f, Frederik Leliaert a, Olivier De Clerck a a Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium b Section of Integrative Biology, University of Texas at Austin, 1 University Station MS A6700, Austin, TX 78712, USA c Department of Geography and Geology, Eastern Michigan University, Ypsilanti, MI 48197, USA d Botany Department, University of Hawaii at Manoa, 3190 Maile Way, Honolulu, HI 96822, USA e Department of Biology, California State University at Fresno, 2555 East San Ramon Avenue, Fresno, CA 93740, USA f Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA article info abstract Article history: The siphonous green algae are an assemblage of seaweeds that consist of a single giant cell. They com- Received 4 November 2008 prise two sister orders, the Bryopsidales and Dasycladales. We infer the phylogenetic relationships Revised 15 December 2008 among the siphonous green algae based on a five-locus data matrix and analyze temporal aspects of their Accepted 18 December 2008 diversification using relaxed molecular clock methods calibrated with the fossil record. The multi-locus Available online 25 December 2008 approach resolves much of the previous phylogenetic uncertainty, but the radiation of families belonging to the core Halimedineae remains unresolved.
    [Show full text]