Blood Anticoagulant Activity of a Green Marine Alga Codium Dwarkense (Codiaceae, Chlorophyta) in Relation to Its Growth Stages

Total Page:16

File Type:pdf, Size:1020Kb

Blood Anticoagulant Activity of a Green Marine Alga Codium Dwarkense (Codiaceae, Chlorophyta) in Relation to Its Growth Stages Indian Journal of Marine Sciences Vol. 30, March 2001, pp. 49-52 Short Communication Blood anticoagulant activity of a green marine alga Codium dwarkense (Codiaceae, Chlorophyta) in relation to its growth stages M. Shanmugam, K. H. Mody*, R. M. Oza & B. K. Ramavat Marine Algae & Marine Environment Discipline, Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002, Gujarat, India Received 11 May 2000, revised 19 October 2000 Codium dwarkense was sampled from Porbandar from December 1998 to April 1999 and growth stages of each sample were examined. Sulphated polysaccharides (SPS) were extracted from each sample and blood anticoagulant activity was evaluated by Prothrombin Time (PT) test. Blood anticoagulant activity was minimum (CT ratio 1.75) in plants collected in vegetative stage without gametangium (December), marginal in plants with 40-50% gametangia (January and February), CT ratio 2.43 and 3.00, respectively, highest (CT ratio 3.75) in reproductive stage (March) where 100% gametangia were found. The activity again decreased (CT ratio 2.34) in lapse period with 98.3% gametangia (April). The activity was directly associated with sugar and sulphate content, which were more in the SPS from plant with 100% gametangia. Therefore, it can be concluded that biosysnthesis of anticoagulant by C. dwarkense is associated with abundance of its gametangia. Sulphated polysaccharides (SPS) are commonly found From a group of 13 green algal species belonging to in marine algae and higher animals and scarcely the family Codiaceae from Indian waters, Codium present in microbes and absent in higher plants. dwarkense and Codium tomentosum were identified Marine algal sulphated polysaccharides are reported as the most promising species. Bio-assay guided to have interesting bioactivities1 e.g. antiviral, purification of both these species yielded sulphated antitumor, hypolipidemic, blood anticoagulant arabinan as active molecular species10. This paper activities, etc. Heparin, a highly sulphated describes the blood anticoagulant activity of sulphated polysaccharide present in mammalian tissues, is used polysaccharides from different life stages of Codium as a blood anticoagulant commercially2. However, dwarkense Boergs. (Codiaceae, Chlorophyta). heparin has some disadvantages as it is extracted and Monthly samples of healthy, epiphyte free plants of purified from internal organs of higher animals C. dwarkense growing in the shallow tide pools and making its production difficult and it also exhibits puddles in the inter-tidal region on the coast of haemorrhagic like side effects2. These disadvantages Porbandar (22o 28´ N; 69o 05´ E), in the north west associated with heparin have opened up a new area of coast of India were collected during spring tide from antithrombotic research for discovering novel December, 1998 to April, 1999. Seasonal changes in anticoagulant agents. The anticoagulant activity of growth was determined by recording the mean length SPS from marine algae was first reported3 in 1936. of 10 plants in three replicates and calculating their The anticoagulant activities of marine algal SPS have standard deviation. Observations were made on recently been reviewed extensively4. Deacon-Smith fruiting behavior of C. dwarkense after taking the et al.5 have reported anticoagulant effects of British transverse sections of apical, middle and basal portion marine algae and mentioned for the first time that of the plants. Randomly ten observations on the anticoagulant activity was associated with extracts of morphology, length and breadth of vesicles and green algae. Subsequently, high molecular weight gametangia were made. Salinity, pH and seawater proteoglycans and low molecular weight sulphated temperature were recorded at the time of collection. polysaccharides from Codium fragile spp. atlanticum Samples of C. dwarkense were cleaned; quick-washed possessing blood anticoagulant activity were reported in tap water; dried in shade; powdered and, defatted and their mechanism of action was also proposed6,7. and depigmented in methanol. Defatted and Further, blood anticoagulant activity of some more depigmented sample (50g) of each collection was green algae including Codium latum were reported8,9. soaked in 20 volumes (w/v) of distilled water and kept _____________ overnight at 8 to 10oC. The extract was filtered *Corresponding author; E-mail: [email protected] through muslin cloth followed by Whatmann 541 50 INDIAN J. MAR. SCI., VOL. 30, MARCH 2001 filter paper. The extract was concentrated under performed in duplicate, and the average of the two reduced pressure (Rotavapor, Buchi RE 111, replicates was recorded. Standard blood anticoagulant Switzerland), precipitated with acetone (1:4 v/v), heparin (140.3 units/mg) was used for comparative dehydrated with acetone and dried at 40oC. The dried study. The results of the clotting tests were expressed product was dissolved in minimum distilled water, as a clotting time ratio (CT ratio). The ratio was dialysed (Sigma dialysis tubing, MWCO 12,000) and obtained by dividing the clotting time achieved with lyophilised (VirTis Freeze Dryer, USA) to obtain algal SPS included in the system by the time achieved crude sulphated polysaccharide product11. Yield of under similar conditions with normal saline solution. crude sulphated polysaccharide was calculated on dry Growth and fruiting behavior of C. dwarkense at weight basis. Ash content of SPS sample was the coast of Porbandar is given in Table 1. Codium. determined by igniting at 550oC for 6h. Total sugar dwarkense, generally grows during November to was estimated by phenol-sulphuric acid method12 and June. In December, the young plants were in protein content was estimated as per the method of vegetative stage with mean length 3.5 ± 0.5cm. In 13 Lowry et al. Sulphate content was determined January and February, mean length was 4.87 ± 1.12 cm 14 15 following Dogson & Price and Knutson & Jeans and 6.85 ± 1.99cm; 40% and 50% gamentangia were method was used for the estimation of uronic acid. All observed in apical portion of the plants respectively. the spectroscopic analyses were done on a Shimadzu Peak growth of 8.4 ± 1.94 cm mean length and 100% UV-160A UV-Visible spectrophotometer. gametangia on apical and middle portion of the plants Human blood was collected from healthy were recorded in reproductive stage (March). volunteers and normal human plasma was prepared as Marginal decline in mean length 7.4 ± 1.32 cm and follows: Blood was anticoagulated using 3.8% tri- percentage gametangial formation in apical portion sodium citrate in a polypropylene container (9 parts of (96%) was observed in lapse period (April). During blood to 1 part of tri-sodium citrate solution) and was investigation period, salinity ranged between 35- centrifuged immediately at 3000 rpm for 15 min. 37.5‰ and pH 7.27-8.454. Seawater temperature Plasma was separated and pooled. Pooled plasma was o o ranged between 18.0-26.5 C in December to stored at 4 C and it was used within 3-6 h of its February, 23.0-29.0oC in March and 26-32.0oC in collection. Algal SPS sample was prepared in normal April. saline (0.85% NaCl) solution. Freeze-dried crude SPS extracts of all samples Anticoagulant activity of algal SPS was tested were either colorless or slightly yellowish and fluffy using Prothrombin time (PT) test16 with 750μg/ml in nature. The yield varied from 1.51 to 3.46% and concentration. All clotting and control tests were ash content was ca. 25-30%. Chemical compositions Table 1 ⎯ Growth and fruiting behavior of Codium dwarkense at Porbandar Date of collection Mean length of 10 Mean (μm) of utricles Gameta- Mean (μm) of gametangia (Sample no.) plants (cm) Length Breadth ngia (%) Breadth Length 18-12-1998 3.5 ± 0.50 A: 391 ± 83.72 123 ± 30.90 Nil Nil Nil (1) B: 469 ± 70.59 141 ± 29.49 Nil Nil Nil C: 512 ±62.11 145 ± 28.23 Nil Nil Nil 17-1-1999 4.87 ± 1.12 A: 721 ± 76.39 187 ± 36.50 40 230 ± 25.0 84 ± 13.1 (2) B: 629 ± 120.4 167 ± 45.21 Nil Nil Nil C: 606 ± 73.97 174 ± 28.30 Nil Nil NIL 16-2-1999 6.85 ± 1.99 A: 570 ± 86.93 154 ± 30.67 50 235 ± 10.5 95 ± 10.0 (3) B: 663 ± 69.72 175 ± 36.77 Nil Nil Nil C 469 ± 67.86 143 ± 31.71 Nil Nil Nil 17-3-1999 8.4 ± 1.948 A: 513 ± 70.76 102 ± 27.21 100 238 ± 32.1 86 ± 14.0 (4) B: 676 ± 89.85 195 ± 51.57 100 182 ± 25.6 74 ± 26.9 C: 424 ± 99.82 147 ± 34.21 Nil Nil Nil 16-4-1999 7.4 ± .3291 A: 639 ± 68.44 166 ± 13.00 96.6 187 ± 40.1 54.0 ± 10.2 (5) B: 705 ± 91.00 180 ± 11.51 100 217 ± 30.8 76.6 ± 16.5 C: 605 ± 150.48 173 ± 05.04 Nil Nil Nil A = apical; B = middle; C = basal. SHORT COMMUNICATION 51 Table 2 ⎯ Chemical composition and blood anticoagulant activity of Codium dwarkense in relation to growth stages Sample Yield Total Sulphate Protein Uronic C H N CT ratio1 no. (%) sugar (%) (%) acid (%) (%) (%) (μg/ml) (%) (%) 500 750 1 2.11 29.46 17.17 16.20 2.80 25.31 4.94 2.13 1.77 1.75 2 3.17 26.40 19.79 16.26 2.45 25.16 5.05 1.76 1.83 2.42 3 3.02 38.24 22.37 6.98 2.56 21.23 4.52 0.60 2.00 3.00 4 3.46 39.20 26.01 6.94 2.34 21.22 4.51 0.90 2.38 3.75 5 3.00 37.37 16.94 13.96 3.08 25.21 4.95 1.86 1.10 2.34 1 Activity was measured by PT test; CT ratio of anticoagulant drug heparin (140.3 units/mg) in PT at 500μg/ml = 5.37 viz.
Recommended publications
  • Kleptoplast Photoacclimation State Modulates the Photobehaviour of the Solar-Powered Sea Slug Elysia Viridis
    © 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb180463. doi:10.1242/jeb.180463 SHORT COMMUNICATION Kleptoplast photoacclimation state modulates the photobehaviour of the solar-powered sea slug Elysia viridis Paulo Cartaxana1, Luca Morelli1,2, Carla Quintaneiro1, Gonçalo Calado3, Ricardo Calado1 and Sónia Cruz1,* ABSTRACT light intensities, possibly as a strategy to prevent the premature loss Some sacoglossan sea slugs incorporate intracellular functional of kleptoplast photosynthetic function (Weaver and Clark, 1981; algal chloroplasts (kleptoplasty) for periods ranging from a few days Cruz et al., 2013). A distinguishable behaviour in response to light to several months. Whether this association modulates the has been recorded in Elysia timida: a change in the position of its photobehaviour of solar-powered sea slugs is unknown. In this lateral folds (parapodia) from a closed position to a spread, opened study, the long-term kleptoplast retention species Elysia viridis leaf-like posture under lower irradiance and the opposite behaviour showed avoidance of dark independently of light acclimation state. under high light levels (Rahat and Monselise, 1979; Jesus et al., In contrast, Placida dendritica, which shows non-functional retention 2010; Schmitt and Wägele, 2011). This behaviour in response to of kleptoplasts, showed no preference over dark, low or high light. light changes was only recorded for this species and has been assumed to be linked to long-term retention of kleptoplasts (Schmitt High light-acclimated (HLac) E. viridis showed a higher preference for and Wägele, 2011). high light than low light-acclimated (LLac) conspecifics. The position of the lateral folds (parapodia) was modulated by irradiance, with In this study, we determine whether the photobehaviour of increasing light levels leading to a closure of parapodia and protection the solar-powered sea slug Elysia viridis is linked to the of kleptoplasts from high light exposure.
    [Show full text]
  • Checklist of the Marine Macroalgae of Vietnam
    DOI 10.1515/bot-2013-0010 Botanica Marina 2013; 56(3): 207–227 Tu Van Nguyen * , Nhu Hau Le, Showe-Mei Lin , Frederique Steen and Olivier De Clerck Checklist of the marine macroalgae of Vietnam Abstract: Despite a rich seaweed flora, information about in approximately 1,000,000 sq km of sea area. The primar- Vietnamese seaweeds is scattered throughout a large number ily north-south orientation of the coastline spans two cli- of often regional publications and, hence, difficult to access. matic zones with a subtropical climate at higher latitudes This paper presents an up-to-date checklist of the marine and a tropical climate in the south. A diverse variety of macroalgae of Vietnam, compiled by means of an exhaustive ecosystems, ranging from extensive lagoons and man- bibliographical search and revision of taxon names. A total groves to rocky shores and coral reefs, provide suitable of 827 species are reported, of which the Rhodophyta show habitats for luxuriant seaweed growth. Marine macroalgae the highest species number (412 species), followed by the play an important role in the everyday lives of the people Chlorophyta (180 species), Phaeophyceae (147 species) and of Vietnam. Several species are used as food (humans and Cyanobacteria (88 species). This species richness is compa- livestock), for the extraction of agar and carrageenan, rable to that of the Philippines and considerably higher than in traditional medicine or as biofertilizer (Huynh and Taiwan, Thailand or Malaysia, which indicates that Vietnam Nguyen H. Dinh 1998, Dang et al. 2007 ). Yet knowledge possibly represents a diversity hotspot for macroalgae.
    [Show full text]
  • Constancea: Publications of P.C. Silva 12/13/2002 11:23:15 AM Constancea 83, 2002 University and Jepson Herbaria P.C
    Constancea: Publications of P.C. Silva 12/13/2002 11:23:15 AM Constancea 83, 2002 University and Jepson Herbaria P.C. Silva Festschrift Publications of Paul C. Silva Research papers and books 1. Generic names of algae proposed for conservation. Hydrobiologia 2(3): 252–280. 1950. 2. The genus Codium in California with observations on the structure of the walls of the utricles. Univ. Calif. Publ. Bot. 25(2): 79–114, pls. 1–6, 32 text−figs. 1951. 3. A review of nomenclatural conservation in the algae from the point of view of the type method. Univ. Calif. Publ. Bot. 25(4): 241–324. 1952. 4. Codium Stackhouse. In L.E. Egerod, An analysis of the siphonous Chlorophycophyta with special reference to the Siphonocladales, Siphonales, and Dasycladales of Hawaii. Univ. Calif. Publ. Bot. 25(5): 381–395, pls. 34b–36, text−figs. 11–18. 1952. 5. (E.Y. Dawson & P.C. Silva) Bossea Manza. In E.Y. Dawson, Marine red algae of Pacific Mexico. Part I. Allan Hancock Pacific Exped. 17(1): 150–161, pl. 8: figs. 1, 2, 4–8; pl. 24: fig. 2; pl. 25: fig. 2; pl. 26: fig. 2; pl. 32. 1953. 6. (P.C. Silva & R.C. Starr) Difficulties in applying the International Code of Botanical Nomenclature to certain unicellular algae, with special reference to Chlorococcum. Svensk Bot. Tidskr. 47(2): 235–247. 1953. 7. (P.C. Silva & G.F. Papenfuss) A systematic study of the algae of sewage oxidation ponds. Calif. State Water Pollution Control Board Publ. 7. 35 pp., 34 figs., 6 tables.
    [Show full text]
  • Tropical Coralline Algae (Diurnal Response)
    Burdett, Heidi L. (2013) DMSP dynamics in marine coralline algal habitats. PhD thesis. http://theses.gla.ac.uk/4108/ Copyright and moral rights for this thesis are retained by the author A copy can be downloaded for personal non-commercial research or study This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the Author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the Author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Glasgow Theses Service http://theses.gla.ac.uk/ [email protected] DMSP Dynamics in Marine Coralline Algal Habitats Heidi L. Burdett MSc BSc (Hons) University of Plymouth Submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy School of Geographical and Earth Sciences College of Science and Engineering University of Glasgow March 2013 © Heidi L. Burdett, 2013 ii Dedication In loving memory of my Grandads; you may not get to see this in person, but I hope it makes you proud nonetheless. John Hewitson Burdett 1917 – 2012 and Denis McCarthy 1923 - 1998 Heidi L. Burdett March 2013 iii Abstract Dimethylsulphoniopropionate (DMSP) is a dimethylated sulphur compound that appears to be produced by most marine algae and is a major component of the marine sulphur cycle. The majority of research to date has focused on the production of DMSP and its major breakdown product, the climatically important gas dimethylsulphide (DMS) (collectively DMS/P), by phytoplankton in the open ocean.
    [Show full text]
  • Coral Reef Algae
    Coral Reef Algae Peggy Fong and Valerie J. Paul Abstract Benthic macroalgae, or “seaweeds,” are key mem- 1 Importance of Coral Reef Algae bers of coral reef communities that provide vital ecological functions such as stabilization of reef structure, production Coral reefs are one of the most diverse and productive eco- of tropical sands, nutrient retention and recycling, primary systems on the planet, forming heterogeneous habitats that production, and trophic support. Macroalgae of an astonish- serve as important sources of primary production within ing range of diversity, abundance, and morphological form provide these equally diverse ecological functions. Marine tropical marine environments (Odum and Odum 1955; macroalgae are a functional rather than phylogenetic group Connell 1978). Coral reefs are located along the coastlines of comprised of members from two Kingdoms and at least over 100 countries and provide a variety of ecosystem goods four major Phyla. Structurally, coral reef macroalgae range and services. Reefs serve as a major food source for many from simple chains of prokaryotic cells to upright vine-like developing nations, provide barriers to high wave action that rockweeds with complex internal structures analogous to buffer coastlines and beaches from erosion, and supply an vascular plants. There is abundant evidence that the his- important revenue base for local economies through fishing torical state of coral reef algal communities was dominance and recreational activities (Odgen 1997). by encrusting and turf-forming macroalgae, yet over the Benthic algae are key members of coral reef communities last few decades upright and more fleshy macroalgae have (Fig. 1) that provide vital ecological functions such as stabili- proliferated across all areas and zones of reefs with increas- zation of reef structure, production of tropical sands, nutrient ing frequency and abundance.
    [Show full text]
  • Marine Macroalgal Biodiversity of Northern Madagascar: Morpho‑Genetic Systematics and Implications of Anthropic Impacts for Conservation
    Biodiversity and Conservation https://doi.org/10.1007/s10531-021-02156-0 ORIGINAL PAPER Marine macroalgal biodiversity of northern Madagascar: morpho‑genetic systematics and implications of anthropic impacts for conservation Christophe Vieira1,2 · Antoine De Ramon N’Yeurt3 · Faravavy A. Rasoamanendrika4 · Sofe D’Hondt2 · Lan‑Anh Thi Tran2,5 · Didier Van den Spiegel6 · Hiroshi Kawai1 · Olivier De Clerck2 Received: 24 September 2020 / Revised: 29 January 2021 / Accepted: 9 March 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract A foristic survey of the marine algal biodiversity of Antsiranana Bay, northern Madagas- car, was conducted during November 2018. This represents the frst inventory encompass- ing the three major macroalgal classes (Phaeophyceae, Florideophyceae and Ulvophyceae) for the little-known Malagasy marine fora. Combining morphological and DNA-based approaches, we report from our collection a total of 110 species from northern Madagas- car, including 30 species of Phaeophyceae, 50 Florideophyceae and 30 Ulvophyceae. Bar- coding of the chloroplast-encoded rbcL gene was used for the three algal classes, in addi- tion to tufA for the Ulvophyceae. This study signifcantly increases our knowledge of the Malagasy marine biodiversity while augmenting the rbcL and tufA algal reference libraries for DNA barcoding. These eforts resulted in a total of 72 new species records for Mada- gascar. Combining our own data with the literature, we also provide an updated catalogue of 442 taxa of marine benthic
    [Show full text]
  • A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
    English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project ..............................................................................................
    [Show full text]
  • Codium Pulvinatum (Bryopsidales, Chlorophyta), a New Species from the Arabian Sea, Recently Introduced Into the Mediterranean Sea
    Phycologia Volume 57 (1), 79–89 Published 6 November 2017 Codium pulvinatum (Bryopsidales, Chlorophyta), a new species from the Arabian Sea, recently introduced into the Mediterranean Sea 1 2 3 4 5 RAZY HOFFMAN *, MICHAEL J. WYNNE ,TOM SCHILS ,JUAN LOPEZ-BAUTISTA AND HEROEN VERBRUGGEN 1School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv 69978, Israel 2University of Michigan Herbarium, 3600 Varsity Drive, Ann Arbor, Michigan 48108, USA 3University of Guam Marine Laboratory, Mangilao, Guam 96923, USA 4Biological Sciences, University of Alabama, Box 35487, Tuscaloosa, Alabama 35487, USA 5School of Biosciences, University of Melbourne, Victoria 3010, Australia ABSTRACT: Codium pulvinatum sp. nov. (Bryopsidales, Chlorophyta) is described from the southern shores of Oman and from the Mediterranean shore of Israel. The new species has a pulvinate to mamillate–globose habit and long narrow utricles. Molecular data from the rbcL gene show that the species is distinct from closely related species, and concatenated rbcL and rps3–rpl16 sequence data show that it is not closely related to other species with similar external morphologies. The recent discovery of well-established populations of C. pulvinatum along the central Mediterranean coast of Israel suggests that it is a new Lessepsian migrant into the Mediterranean Sea. The ecology and invasion success of the genus Codium, now with four alien species reported for the Levantine Sea, and some ecological aspects are also discussed in light of the discovery of the new species. KEY WORDS: Codium pulvinatum, Israel, Lessepsian migrant, Levantine Sea, Oman, rbcL, rps3–rpl16 INTRODUCTION updated), except for ‘TAU’. All investigated specimens are listed in Table S1 (collecting data table).
    [Show full text]
  • Codium(Chlorophyta) Species Presented in the Galápagos Islands
    Hidrobiológica 2016, 26 (2): 151-159 Codium (Chlorophyta) species presented in the Galápagos Islands Las especies del género Codium (Chlorophyta) presentes en las Islas Galápagos Max E. Chacana1, Paul C. Silva1, Francisco F. Pedroche1, 2 and Kathy Ann Miller1 1University Herbarium, University of California, Berkeley, CA 94720-2465. USA 2Depto. Ciencias Ambientales, Universidad Autónoma Metropolitana, Unidad Lerma, Estado de México, 52007. México e-mail: [email protected] Chacana M. E., P. C. Silva, F. F. Pedroche and K. A. Miller. 2016. Codium (Chlorophyta) species presented in the Galápagos Islands. Hidrobiológica 26 (2): 151-159. ABSTRACT Background. The Galápagos Islands have been the subject of numerous scientific expeditions. The chief source of in- formation on their marine algae is the report published in 1945 by the late William Randolph Taylor on collections made by the Allan Hancock Pacific Expedition of 1934. Prior to this work, there were no published records ofCodium from the Galápagos. Taylor recorder six species of Codium of which C. isabelae and C. santamariae were new descriptions. Goals. On the basis of collections made since 1939, we have reviewed the registry of Codium in these islands. Methods. Com- parative analysis based on morphology and utricle anatomy. Results. Codium isabelae and C. santamariae are combined under the former name. Records of C. cervicorne and C. dichotomum also are referred to C. isabelae, those of C. setchellii are based partly on representatives of C. picturatum, a recently described species from the Mexican Pacific, Panama, Colombia, and Hawaii, and partly on representatives of a species similar if not identical to C.
    [Show full text]
  • Print This Article
    Mediterranean Marine Science Vol. 15, 2014 Seaweeds of the Greek coasts. II. Ulvophyceae TSIAMIS K. Hellenic Centre for Marine Research PANAYOTIDIS P. Hellenic Centre for Marine Research ECONOMOU-AMILLI A. Faculty of Biology, Department of Ecology and Taxonomy, Athens University KATSAROS C. of Biology, Department of Botany, Athens University https://doi.org/10.12681/mms.574 Copyright © 2014 To cite this article: TSIAMIS, K., PANAYOTIDIS, P., ECONOMOU-AMILLI, A., & KATSAROS, C. (2014). Seaweeds of the Greek coasts. II. Ulvophyceae. Mediterranean Marine Science, 15(2), 449-461. doi:https://doi.org/10.12681/mms.574 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 25/09/2021 06:44:40 | Review Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net Doi: http://dx.doi.org/ 10.12681/mms.574 Seaweeds of the Greek coasts. II. Ulvophyceae K. TSIAMIS1, P. PANAYOTIDIS1, A. ECONOMOU-AMILLI2 and C. KATSAROS3 1 Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, Anavyssos 19013, Attica, Greece 2 Faculty of Biology, Department of Ecology and Taxonomy, Athens University, Panepistimiopolis 15784, Athens, Greece 3 Faculty of Biology, Department of Botany, Athens University, Panepistimiopolis 15784, Athens, Greece Corresponding author: [email protected] Handling Editor: Sotiris Orfanidis Received: 5 August 2013 ; Accepted: 5 February 2014; Published on line: 14 March 2014 Abstract An updated checklist of the green seaweeds (Ulvophyceae) of the Greek coasts is provided, based on both literature records and new collections. The total number of species and infraspecific taxa currently accepted is 96.
    [Show full text]
  • Mesozoic and Cenozoic Calcareous Algae, Praecursors of Family Codiaceae
    ACTA PALAEONTOLOGICA ROMANIAE V. 6 (2008), P 83-95. MESOZOIC AND CENOZOIC CALCAREOUS ALGAE, PRAECURSORS OF FAMILY CODIACEAE Ovidiu N. DRAGASTAN1 Abstract. It is amaizing how long time was the using of the marine green – algae, Family Codiaceae and the genus Codium, as suffix of many fossil genera (Carpathocodium, Arabicodium, Calabricodium, Madonicodium), without any relation with the real morphology of the Recent genus Codium. The genus Codium is well represented on warm – cool transitional marine coasts or in the inner shelf environments of carbonate platform. The genus Codium has an unique structural plan with thallus multibranched, noncalcareous, vesiculous crossed by medullary siphons and only one layer of cortical utricles. The utricles show a great anatomical diversity with diagnostic value in separating the approximately 100 Recent species. Until now, a real representative of the Recent Family Codiaceae in the fossil state was not found. Also, the same situation is with Recent genus Pseudocodium (Family Pseudocodiaceae). Contrary, the fossils praecursors of the Recent Codiaceae were recorded, described and included now, for the first time in the Family Praecodiaceae nov. fam. This family only with fossil representatives contains calcareous thalli composed by cylindrical branches crossed by medullary siphons, few in number (4 to 6, rarely 8) and only one utricles layer. The utricles layer is variable in morphology from species to species. Beside the late Triassic Hydracara kubeae Dragastan et al.2000 are introduced the following taxa: Lupertosinnium bariensis nov.gen.nov.sp. (early Barremian), L. banatensis n.sp. (late Barremian – early Aptian ), Alpinium tragelehni nov.gen.nov.sp. (Thanetian) and Atlasinium nov.gen.
    [Show full text]
  • Algal Diversity and Application. Rex L
    Algal diversity and application. Rex L. Lowe Bowling Green State University Presentation Roadmap What are these things called algae? Species diversity & properties Ecosystem services, Ecosystem hazards Algal communities might look homogeneous but are very complex A stone this size may contain hundreds of species in a very complex community. A complex community of epilithic algae A complex community of epiphytic algae on Cladophora Ra = Rhoicosphenia abbreviata Esp = Epithemia sp. Es = Epithemia sorex Am = Achnanthidium minutissimum Cp = Cocconeis pediculus Cpl = Cocconeis placentula C = Cladophora What are algae? Algos = Latin seaweed Phycos = Greek seaweed Thalloid organisms bearing chlorophyll a, lacking multicellular gametangia and their colorless relatives. Morphologically diverse: Prokaryotes, mesokaryotes, eukaryotes Largest to smallest phototrophs (0.5µm-220 m) Physiologically diverse: autotrophs, facultative heterotrophs, obligate heterotrophs (molecules or particles), parasites). “Algae” is not a “taxonomic” group but a functional group of convenience Algae should not all be considered plants, some are, some are also protozoa, many are unique and belong in other kingdoms. But they are all part of the eclectic group called algae that are aquatic and oxygenic. Major groups of algae Common Name Phylum Kingdom Green Algae Chlorophyta Plantae Diatoms Bacillariophyta Stramenopila Chrysophytes Chrysophyta Stramenopila Brown Algae Phaeophyta Stramenopila Blue Green Algae Cyanophyta Monera Red Algae Rhodophyta Rhodophyta
    [Show full text]