Atoll Research Bulletin No. 373 Chapter 9
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kleptoplast Photoacclimation State Modulates the Photobehaviour of the Solar-Powered Sea Slug Elysia Viridis
© 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb180463. doi:10.1242/jeb.180463 SHORT COMMUNICATION Kleptoplast photoacclimation state modulates the photobehaviour of the solar-powered sea slug Elysia viridis Paulo Cartaxana1, Luca Morelli1,2, Carla Quintaneiro1, Gonçalo Calado3, Ricardo Calado1 and Sónia Cruz1,* ABSTRACT light intensities, possibly as a strategy to prevent the premature loss Some sacoglossan sea slugs incorporate intracellular functional of kleptoplast photosynthetic function (Weaver and Clark, 1981; algal chloroplasts (kleptoplasty) for periods ranging from a few days Cruz et al., 2013). A distinguishable behaviour in response to light to several months. Whether this association modulates the has been recorded in Elysia timida: a change in the position of its photobehaviour of solar-powered sea slugs is unknown. In this lateral folds (parapodia) from a closed position to a spread, opened study, the long-term kleptoplast retention species Elysia viridis leaf-like posture under lower irradiance and the opposite behaviour showed avoidance of dark independently of light acclimation state. under high light levels (Rahat and Monselise, 1979; Jesus et al., In contrast, Placida dendritica, which shows non-functional retention 2010; Schmitt and Wägele, 2011). This behaviour in response to of kleptoplasts, showed no preference over dark, low or high light. light changes was only recorded for this species and has been assumed to be linked to long-term retention of kleptoplasts (Schmitt High light-acclimated (HLac) E. viridis showed a higher preference for and Wägele, 2011). high light than low light-acclimated (LLac) conspecifics. The position of the lateral folds (parapodia) was modulated by irradiance, with In this study, we determine whether the photobehaviour of increasing light levels leading to a closure of parapodia and protection the solar-powered sea slug Elysia viridis is linked to the of kleptoplasts from high light exposure. -
Checklist of the Marine Macroalgae of Vietnam
DOI 10.1515/bot-2013-0010 Botanica Marina 2013; 56(3): 207–227 Tu Van Nguyen * , Nhu Hau Le, Showe-Mei Lin , Frederique Steen and Olivier De Clerck Checklist of the marine macroalgae of Vietnam Abstract: Despite a rich seaweed flora, information about in approximately 1,000,000 sq km of sea area. The primar- Vietnamese seaweeds is scattered throughout a large number ily north-south orientation of the coastline spans two cli- of often regional publications and, hence, difficult to access. matic zones with a subtropical climate at higher latitudes This paper presents an up-to-date checklist of the marine and a tropical climate in the south. A diverse variety of macroalgae of Vietnam, compiled by means of an exhaustive ecosystems, ranging from extensive lagoons and man- bibliographical search and revision of taxon names. A total groves to rocky shores and coral reefs, provide suitable of 827 species are reported, of which the Rhodophyta show habitats for luxuriant seaweed growth. Marine macroalgae the highest species number (412 species), followed by the play an important role in the everyday lives of the people Chlorophyta (180 species), Phaeophyceae (147 species) and of Vietnam. Several species are used as food (humans and Cyanobacteria (88 species). This species richness is compa- livestock), for the extraction of agar and carrageenan, rable to that of the Philippines and considerably higher than in traditional medicine or as biofertilizer (Huynh and Taiwan, Thailand or Malaysia, which indicates that Vietnam Nguyen H. Dinh 1998, Dang et al. 2007 ). Yet knowledge possibly represents a diversity hotspot for macroalgae. -
Marine Macroalgal Biodiversity of Northern Madagascar: Morpho‑Genetic Systematics and Implications of Anthropic Impacts for Conservation
Biodiversity and Conservation https://doi.org/10.1007/s10531-021-02156-0 ORIGINAL PAPER Marine macroalgal biodiversity of northern Madagascar: morpho‑genetic systematics and implications of anthropic impacts for conservation Christophe Vieira1,2 · Antoine De Ramon N’Yeurt3 · Faravavy A. Rasoamanendrika4 · Sofe D’Hondt2 · Lan‑Anh Thi Tran2,5 · Didier Van den Spiegel6 · Hiroshi Kawai1 · Olivier De Clerck2 Received: 24 September 2020 / Revised: 29 January 2021 / Accepted: 9 March 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract A foristic survey of the marine algal biodiversity of Antsiranana Bay, northern Madagas- car, was conducted during November 2018. This represents the frst inventory encompass- ing the three major macroalgal classes (Phaeophyceae, Florideophyceae and Ulvophyceae) for the little-known Malagasy marine fora. Combining morphological and DNA-based approaches, we report from our collection a total of 110 species from northern Madagas- car, including 30 species of Phaeophyceae, 50 Florideophyceae and 30 Ulvophyceae. Bar- coding of the chloroplast-encoded rbcL gene was used for the three algal classes, in addi- tion to tufA for the Ulvophyceae. This study signifcantly increases our knowledge of the Malagasy marine biodiversity while augmenting the rbcL and tufA algal reference libraries for DNA barcoding. These eforts resulted in a total of 72 new species records for Mada- gascar. Combining our own data with the literature, we also provide an updated catalogue of 442 taxa of marine benthic -
A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project .............................................................................................. -
Print This Article
Mediterranean Marine Science Vol. 15, 2014 Seaweeds of the Greek coasts. II. Ulvophyceae TSIAMIS K. Hellenic Centre for Marine Research PANAYOTIDIS P. Hellenic Centre for Marine Research ECONOMOU-AMILLI A. Faculty of Biology, Department of Ecology and Taxonomy, Athens University KATSAROS C. of Biology, Department of Botany, Athens University https://doi.org/10.12681/mms.574 Copyright © 2014 To cite this article: TSIAMIS, K., PANAYOTIDIS, P., ECONOMOU-AMILLI, A., & KATSAROS, C. (2014). Seaweeds of the Greek coasts. II. Ulvophyceae. Mediterranean Marine Science, 15(2), 449-461. doi:https://doi.org/10.12681/mms.574 http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 25/09/2021 06:44:40 | Review Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net Doi: http://dx.doi.org/ 10.12681/mms.574 Seaweeds of the Greek coasts. II. Ulvophyceae K. TSIAMIS1, P. PANAYOTIDIS1, A. ECONOMOU-AMILLI2 and C. KATSAROS3 1 Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, Anavyssos 19013, Attica, Greece 2 Faculty of Biology, Department of Ecology and Taxonomy, Athens University, Panepistimiopolis 15784, Athens, Greece 3 Faculty of Biology, Department of Botany, Athens University, Panepistimiopolis 15784, Athens, Greece Corresponding author: [email protected] Handling Editor: Sotiris Orfanidis Received: 5 August 2013 ; Accepted: 5 February 2014; Published on line: 14 March 2014 Abstract An updated checklist of the green seaweeds (Ulvophyceae) of the Greek coasts is provided, based on both literature records and new collections. The total number of species and infraspecific taxa currently accepted is 96. -
Algal Diversity and Application. Rex L
Algal diversity and application. Rex L. Lowe Bowling Green State University Presentation Roadmap What are these things called algae? Species diversity & properties Ecosystem services, Ecosystem hazards Algal communities might look homogeneous but are very complex A stone this size may contain hundreds of species in a very complex community. A complex community of epilithic algae A complex community of epiphytic algae on Cladophora Ra = Rhoicosphenia abbreviata Esp = Epithemia sp. Es = Epithemia sorex Am = Achnanthidium minutissimum Cp = Cocconeis pediculus Cpl = Cocconeis placentula C = Cladophora What are algae? Algos = Latin seaweed Phycos = Greek seaweed Thalloid organisms bearing chlorophyll a, lacking multicellular gametangia and their colorless relatives. Morphologically diverse: Prokaryotes, mesokaryotes, eukaryotes Largest to smallest phototrophs (0.5µm-220 m) Physiologically diverse: autotrophs, facultative heterotrophs, obligate heterotrophs (molecules or particles), parasites). “Algae” is not a “taxonomic” group but a functional group of convenience Algae should not all be considered plants, some are, some are also protozoa, many are unique and belong in other kingdoms. But they are all part of the eclectic group called algae that are aquatic and oxygenic. Major groups of algae Common Name Phylum Kingdom Green Algae Chlorophyta Plantae Diatoms Bacillariophyta Stramenopila Chrysophytes Chrysophyta Stramenopila Brown Algae Phaeophyta Stramenopila Blue Green Algae Cyanophyta Monera Red Algae Rhodophyta Rhodophyta -
Taxonomic Study of Coenocytic Green Algae Commonly Growing on the Coast of Karacid
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Aquatic Commons Pakistan Journal of Marine Sciences, Vol.5(1), 47-68, 1996. TAXONOMIC STUDY OF COENOCYTIC GREEN ALGAE COMMONLY GROWING ON THE COAST OF KARACID R. Aliya and Mustafa Shamed Deparilnent of Botany (RA), Deparilnent of Botany I Institute of Marine Sciences (MS), University of Karachi, Karachi-75270, Pakistan ABSTRACT: Twelve commonly occurring coenocytic and siphonaceous species of marine benthic algae, i.e., Bryopsis pennatti:cLamouroux, Caulerpa chemnitzia (lEsper) Lamouroux, Ca. faridii Nizamuddin, Ca. manorensis Nizamuddin, Ca. racemosa (Forsskal) J. Agardh, Ca. taxifolia. (Vahl) C. Agardh, Chaetomorpha antennina (Bory de Saint-Vincent) Kiitzing, Cladophora uncinella Harvey, Codium decorticatum (Woodward) Howe, Co. flabellatum Nizamuddin, Co. iyengarii B0rgesen, and Valoniopsis pachynema (Martens) B0rgesen, belonging to four different orders of the class Bryqpsidophyceae, division Chlorophyta, were collected from the intertidal region of different coastal areasi·11ear Karachi (Pakistan) and investigated taxonomically. Codium decorticatum is a new report from this region and Co. decorticatum, Co. flabellatum and Co. iyengarii are described for the first time from the coast of Pakistan. KEY WORDS: Chlorophyta - Bryopsidophyceae- morphology- cell structure- reproduction- ecological notes - marine al.f(ae - northern Arabian Sea - Pakistan. INTRODUCTION The green seaweeds occupy a large area of the Karachi. coast and show great variation in type and species. It was not until the 1930s that any systematic taxonomic study was carried out on the marine algal flora of the Karachi coast. B0rgesen (1934) provided the first account of a few species from this coast. After a synaptical study by Anand (1940) on marine Chlorophyta of Karachi, Prof. -
John Stackhouse (1742-1819) and the Linnean Society
NEWSLETTER AND PROCEEDINGS OF THE LINNEAN SOCIETY OF LONDON VOLUME 24 • NUMBER 1 • JANUARY 2008 THE LINNEAN SOCIETY OF LONDON Registered Charity Number 220509 Burlington House, Piccadilly, London W1J 0BF Tel. (+44) (0)20 7434 4479; Fax: (+44) (0)20 7287 9364 e-mail: [email protected]; internet: www.linnean.org President Secretaries Council Professor David F Cutler BOTANICAL The Officers and Dr Sandra D Knapp Dr Pieter Baas Vice-Presidents Dr Andy Brown Professor Richard M Bateman ZOOLOGICAL Dr Joe Cain Dr Jenny M Edmonds Dr Vaughan R Southgate Dr John David Dr Sandy D Knapp Prof Peter S Davis Dr Vaughan R Southgate EDITORIAL Dr Shahina Ghazanfar Dr John R Edmondson Dr D J Nicholas Hind Treasurer Mr W M Alastair Land Professor Gren Ll Lucas OBE COLLECTIONS Dr D Tim J Littlewood Mrs Susan Gove Dr George McGavin Acting Executive Secretary Dr Malcolm Scoble Miss Gina Douglas Librarian & Archivist Prof Mark Seaward Miss Gina Douglas Dr Max Telford Head of Development Ms Elaine Shaughnessy Deputy Librarian Conservator Mrs Lynda Brooks Ms Janet Ashdown Financial Controller/Membership Mr Priya Nithianandan Assistant Librarian Special Publications Mr Ben Sherwood Manager Building and Office Manager Ms Leonie Berwick Ms Victoria Smith Communications Manager Ms Kate Longhurst THE LINNEAN Newsletter and Proceedings of the Linnean Society of London ISSN 0950-1096 Edited by Brian G Gardiner Editorial .......................................................................................................................2 Society News.............................................................................................................. -
Blood Anticoagulant Activity of a Green Marine Alga Codium Dwarkense (Codiaceae, Chlorophyta) in Relation to Its Growth Stages
Indian Journal of Marine Sciences Vol. 30, March 2001, pp. 49-52 Short Communication Blood anticoagulant activity of a green marine alga Codium dwarkense (Codiaceae, Chlorophyta) in relation to its growth stages M. Shanmugam, K. H. Mody*, R. M. Oza & B. K. Ramavat Marine Algae & Marine Environment Discipline, Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002, Gujarat, India Received 11 May 2000, revised 19 October 2000 Codium dwarkense was sampled from Porbandar from December 1998 to April 1999 and growth stages of each sample were examined. Sulphated polysaccharides (SPS) were extracted from each sample and blood anticoagulant activity was evaluated by Prothrombin Time (PT) test. Blood anticoagulant activity was minimum (CT ratio 1.75) in plants collected in vegetative stage without gametangium (December), marginal in plants with 40-50% gametangia (January and February), CT ratio 2.43 and 3.00, respectively, highest (CT ratio 3.75) in reproductive stage (March) where 100% gametangia were found. The activity again decreased (CT ratio 2.34) in lapse period with 98.3% gametangia (April). The activity was directly associated with sugar and sulphate content, which were more in the SPS from plant with 100% gametangia. Therefore, it can be concluded that biosysnthesis of anticoagulant by C. dwarkense is associated with abundance of its gametangia. Sulphated polysaccharides (SPS) are commonly found From a group of 13 green algal species belonging to in marine algae and higher animals and scarcely the family Codiaceae from Indian waters, Codium present in microbes and absent in higher plants. dwarkense and Codium tomentosum were identified Marine algal sulphated polysaccharides are reported as the most promising species. -
Functional Chloroplasts Inside Animal Cells
Impact Objectives • Relevance of autotrophic versus heterotrophic components in the fitness of mixotrophic sacoglossan sea slugs • Fate of photosynthesis-derived carbon and nitrogen inside these animal cells • Impact of photoprotection mechanisms on the functionality of acquired chloroplasts Functional chloroplasts inside animal cells Dr Sónia Cruz and her collaborators, Drs Paulo Cartaxana, Bruno Jesus, Gonçalo Calado, João Serôdio, Anders Meibom, Cédric Hubas, and Michael Kühl are providing new insights into the biological significance of kleptoplasty. Cruz talks about their pioneering work on kleptoplasty Your latest work vary according to the algal food source. The What have been your key findings so far? looks at kleptoplasty. first step here is to answer that question for Are there any that you are particularly Can you explain the chloroplast in the algae. Then one must pleased with? this animal-plant verify if the same processes are working I am particularly keen on the investigation interaction? in the kleptoplast inside the sea slug and of the fate of photosynthetically fixed carbon for how long will these mechanisms be and nitrogen, along with showing that My current research supported. This is relevant because it is photosynthesis is indeed relevant for the Doctor Sónia Cruz focus on both known that many of these photoprotective sea slug E. viridis’ performance. We have understanding processes require synthesis of components unequivocally proven that photosynthesis the algae physiology and the particular coded by genes that are located in the algal is used to provide metabolites to the interaction where the animal (host), nucleus. Hence, if the animal digests the host and we are currently investigating instead of living symbiotically with the algae nucleus and does not incorporate other sea slug species. -
Photoprotective Role of Neoxanthin in Plants and Algae
molecules Review Photoprotective Role of Neoxanthin in Plants and Algae Chiara Giossi , Paulo Cartaxana and Sónia Cruz * CESAM–Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; [email protected] (C.G.); [email protected] (P.C.) * Correspondence: [email protected] Academic Editor: Diego Sampedro Received: 22 September 2020; Accepted: 9 October 2020; Published: 11 October 2020 Abstract: Light is a paramount parameter driving photosynthesis. However, excessive irradiance leads to the formation of reactive oxygen species that cause cell damage and hamper the growth of photosynthetic organisms. Xanthophylls are key pigments involved in the photoprotective response of plants and algae to excessive light. Of particular relevance is the operation of xanthophyll cycles (XC) leading to the formation of de-epoxidized molecules with energy dissipating capacities. Neoxanthin, found in plants and algae in two different isomeric forms, is involved in the light stress response at different levels. This xanthophyll is not directly involved in XCs and the molecular mechanisms behind its photoprotective activity are yet to be fully resolved. This review comprehensively addresses the photoprotective role of 90-cis-neoxanthin, the most abundant neoxanthin isomer, and one of the major xanthophyll components in plants’ photosystems. The light-dependent accumulation of all-trans-neoxanthin in photosynthetic cells was identified exclusively in algae of the order Bryopsidales -
Taxonomia E Distribuio Do Gnero Codium Stackhouse Para a Costa
MARIA DE FÁTIMA DE OLIVEIRA-CARVALHO TAXONOMIA, DISTRIBUIÇÃO GEOGRÁFICA E FILOGENIA DO GÊNERO CODIUM STACKHOUSE (BRYOPSIDALES-CHLOROPHYTA) NO LITORAL BRASILEIRO. RECIFE 2008 MARIA DE FÁTIMA DE OLIVEIRA-CARVALHO TAXONOMIA, DISTRIBUIÇÃO GEOGRÁFICA E FILOGENIA DO GÊNERO CODIUM STACKHOUSE (BRYOPSIDALES-CHLOROPHYTA) NO LITORAL Tese apresentada ao Programa de Pós- Graduação em Botânica (PPGB) da Universidade Federal Rural de Pernambuco, como pré-requisito para obtenção ao título de Doutor em Botânica. C. decorticatum (Woodw.) M. Howe RECIFE 2008 Oliveira-Carvalho, M. F. Taxonomia, distribuição geográfica e filogenia ... iii UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA – PPGB TAXONOMIA, DISTRIBUIÇÃO GEOGRÁFICA E FILOGENIA DO GÊNERO CODIUM STACKHOUSE (BRYOPSIDALES- CHLOROPHYTA) NO LITORAL BRASILEIRO. Orientadora: Dra. Sonia Maria Barreto Pereira Universidade Federal Rural de Pernambuco (UFRPE). Conselheiros: Dra. Mariana Cabral de Oliveira Universidade de São Paulo (USP). Dr. José Francisco Flores Pedroche. Universidad Autónoma Metropolitana, México. Recife 2008 Ficha catalográfica C331t Oliveira-Carvalho, Maria de Fátima de Taxonomia, distribuição geográfica e filogenia do gênero Codium Stackhouse (Bryopsidales – Chlorophyta) no litoral brasileiro / Maria de Fátima de Oliveira-Carvalho. -- 2008. 88 f. : il. Orientadora : Sonia Maria Barreto Pereira Tese (Doutorado em Botânica) - Universidade Federal Rural de Pernambuco. Departamento de Biologia. Inclui anexo e bibliografia. CDD 582 1. Taxonomia 2. Clorofíceas 3. Codiaceae 4. Morfologia 5. Filogenia molecular 6. rbcL 7. Atlântico Americano 8. Litoral brasileiro I. Pereira, Sonia Maria Barreto II. Título Oliveira-Carvalho, M. F. Taxonomia, distribuição geográfica e filogenia ... iv TAXONOMIA, DISTRIBUIÇÃO GEOGRÁFICA E FILOGENIA DO GÊNERO CODIUM STACKHOUSE (BRYOPSIDALES- CHLOROPHYTA) NO LITORAL BRASILEIRO. Maria de Fátima de Oliveira-Carvalho Tese aprovada pela Banca examinadora: Orientadora: ___________________________________________ Dra.