Utilization of the Jellyfish Occuring in the Bycatch for Human Consumption in the South of Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Utilization of the Jellyfish Occuring in the Bycatch for Human Consumption in the South of Brazil Utilization of the jellyfish occuring in the bycatch for human consumption in the south of Brazil CARLA CAMILA BAZI, MARCUS PESSATTI & CHARRID RESGALLA JUNIOR* School of the Sea, Science and Technology, Universidade do Vale do Itajaí (UNIVALI), C.P. 360, Itajaí, Santa Catarina, 88.302-901, Brazil * Corresponding author: [email protected] Abstract. With the increase in reports of the occurrence of jellyfish and the recent discoveries about their potential use in the areas of healthcare, biotechnology, and nutrition, this work tested a salt processing protocol for jellyfish caught off the Santa Catarina coast, in the south of Brazil, in an attempt to produce a unique product with nutritional value. The jellyfish were captured in bottom trawling artisanal shrimp fishing nets, and a mixed salt process was applied using a mixture of salts in six stages of dehydration. The most frequently occurring and potentially useful species for human consumption in the bycatch were Rhacostoma atlanticum, Chiropsalmus quadrumanus, and Lychnorhiza lucerna. The mean percentage yield values (salted weight/wet weight) of 10.6% for C. quadrumanus, 6.6% for L. lucerna, and 1.7% for R. atlanticum. The results of microbiological tests on the salted material were negative and the percentage of weight gain following rehydration was greater than 95% in all cases. The salting process for the three species was adapted to be started on board and completed in 21 days on land, generating a final product with color and odor characteristics that meet the standards found in the market. Key words: jellyfish, food, salting, bromatology Resumo: Utilização de medusas ocorrentes na pesca acidental para consumo humano no sul do Brasil. Com o aumento dos relatos da ocorrência de águas-vivas e as recentes descobertas sobre seu potencial de uso nas áreas de saúde, biotecnologia e nutrição, este trabalho testou um protocolo de processamento de salga para águas-vivas capturadas no litoral catarinense, sul do Brasil, na tentativa de produzir um produto único com valor nutricional. As águas-vivas foram capturadas em redes de pesca de camarão artesanal de arrasto pelo fundo, e um processo de salga mista foi aplicado usando uma mistura de sais em seis estágios de desidratação. As espécies mais frequentes e potencialmente mais úteis para o consumo humano nas capturas acessórias foram Rhacostoma atlanticum, Chiropsalmus quadrumanus e Lychnorhiza lucerna. Os valores médios do percentual de rendimento (peso salgado/peso úmido) foram 10,6% para C. quadrumanus, 6,6% para L. lucerna e 1,7% para R. atlanticum. Os resultados dos testes microbiológicos no material salgado foram negativos e o percentual de ganho de peso após a reidratação foi superior a 95% em todos os casos. O processo de salga das três espécies foi adaptado para ser iniciado a bordo e concluído em 21 dias em terra, gerando um produto final com características de cor e odor que atendem aos padrões encontrados no mercado. Palavras-chave: Medusa, Alimento, Salga, Bromatologia. Introduction 2010, Morandini et al. 2005, Resgalla Jr et al. 2005, Due to the potential for stings, large medusae 2011, Nogueira Jr. 2006). They are also avoided by are avoided by bathers and divers (Haddad et al. fishermen, as they interfere in the fishing (Nagata et Pan-American Journal of Aquatic Sciences (2019), 14(1): 13-23 14 C. C. BAZI ET AL. al. 2009). On the other hand, it is recognized that salting (Sloan & Gunn 1985, Huang 1988) in these organisms make a significant ecological basically the same way as for fish, such as sardines contribution to the carbon cycle of the oceans and cod. This type of processing promotes the (Graham et al. 2014), mainly due to the mortality of extraction of water from the tissues of the animal, the organisms after episodes of occurrence in high inhibits the growth of microorganisms, and increases densities (Sweetman et al., 2016). shelf-life. At the same time, the characteristics of The occurrence of high densities of gelatinous palatability, such as consistency, a slight organisms, known as blooms, have been correlated crunchiness, and a pleasant color are preserved with favorable conditions in the marine environment (Hsieh & Rudloe 1994, Hsieh et al. 2001). or intrinsic biological characteristics of each group Due to the great occurrence of jellyfish in (Lucas & Dawson 2014). These phenomena have artisanal shrimp fishing along the Santa Catarina been occurring frequently, and may be associated coast, in the south of Brazil, the feasibility of the with global warming, changes to the marine salting protocol technique applied to different environment from pollution, and overfishing of their jellyfish species was investigated, and the definite main predators and competitors (Mills 2001, Purcell nutritional value of the product, as demonstrated by et al. 2007, Condon et al. 2012). Recent studies bromatological analyses, indicated an alternative for show the occurrence of increasingly intense blooms the use of certain jellyfish species within the fishing along the coasts of the countries of Oceania production chain. (Richardson et al. 2009), East Asia (Dong et al. 2010), and in the Mediterranean Sea (Boero, 2013, Material and Methods Purcell et al. 2001). Collection: Sampling campaigns for the collection However, in Brazil, little is known about the of jellyfish were conducted monthly, from February abundance pattern of these organisms. In a study 2012 to January 2016, on the northern coast of Santa conducted on the southern coast of Brazil, Schereder Catarina and in the region around the mouth of the et al. (2014) measured the density of animals caught Itajaí-açu River, between the 10 to 20 m isobaths as bycatch in the fishing nets of the commercial and 25 km off the coast (26°45’ to 27°00’ S) (Fig. 1). fleet. The authors identified that the jellyfish with 49 o 26 o Itaj aí- açu ri ver o 27 28 o the highest frequency and number, especially in 29 o spring and summer, was the hydromedusa Rhacostoma atlanticum. Because of it high biomass, organisms of this species have become a problem for fishermen, since in warmer seasons fishing is greatly hampered by the large volume occupied by the jellyfish in the trawling nets, increasing the fishing time of the boats and consequently reducing income. On the other hand, the knowledge of the potential use of these organisms for commercial purposes, and the utilization of the bycatch, is still in its early stages. The capture and processing of jellyfish for human consumption have been developed in Asian countries for more than 1700 years (Li & Hsieh 2004, Martínez & Tello 2013). Because it is considered to be a delicacy, jellyfish production has already been commercialized in those countries, as is the case of the species Rhopilema esculentum, which is farming in China (You et al. 2007). Recently, countries of North and South America, particularly the USA and Mexico, have begun to invest in the capture and processing of these Figure 1 - Coast of Santa Catarina and shrimp artisanal fishing area (marked area) used to obtain macromedusae products, but this exploration is far more intense in specimens. Asian countries (Brotz et al., 2016). The processing of medusa jellyfish as food is carried out mainly by Pan-American Journal of Aquatic Sciences (2019), 14(1): 13-23 Use of bycatch jellyfish 15 The bottom trawls were performed from a Protein, mineral residue, and aluminum content: motorized boat, using nets with a mesh size of 50 The chemical analyses were performed according to mm between opposite knots in the body and 30 mm Horwitz (2000). The total crude protein analysis was in the bagger, with a length of 14 meters and performed using an adaptation of the protocol of opening of 5 meters. Surface temperature and Galvani & Gaertner (2006). To the procedure was salinity data were obtained using a YSI 30 thermo- used 50 mg of the dry sample and 500 mg of salinometer. For the salting process, 22 sampling catalyzer (Na2SO4 and CuSO4.5H2O), which was campaigns were conducted to collect organisms digested in 2 mL of sulfuric acid in a block digestor during the study period, 9 of which gathered enough at 350 ºC for about 3 hours, until the color change. organisms to perform the salting process. The After digestion, distillation was performed, adding 6 jellyfish obtained in the trawls were bagged on mL of distilled water to the digested sample. The board and transported to the laboratory, where they sample was neutralized in the distiller with NaOH at were washed in running water and sent to the salt 8 M and the receiver solution was composed of 25 processing. To estimate the density of the species mL of boric acid at 4% and universal coloring. captured, the data were standardized by number of Finally, the receiver solution was titrated with HCl at organisms per 10 minutes of bottom trawling. 0.05 N and the protein content calculated, Salting: The protocol used for jellyfish processing considering 6.25 as the nitrogen conversion factor was that proposed by Sloan & Gunn (1985), with for protein. To determine the mineral residue modifications in an attempt to initiate the processing content, the hydrated (desalted) jellyfish samples on board, eliminating the problem of having to land were dried at a constant weight in a heating chamber immediately after the catch, since jellyfish cannot be at 105°C and incinerated in a muffle oven at 550ºC kept on ice prior to processing (steps I-VI, Table I). for 2 hours. The mineral residue content was defined For this reason, the first 24 hours of the protocol as the difference between the weight of the dry were conducted in sea water. In this procedure, a sample before incineration and the weight of the mixture of sodium chloride, potassium alum, and sample after incineration.
Recommended publications
  • Proteomic Analysis of the Venom of Jellyfishes Rhopilema Esculentum and Sanderia Malayensis
    marine drugs Article Proteomic Analysis of the Venom of Jellyfishes Rhopilema esculentum and Sanderia malayensis 1, 2, 2 2, Thomas C. N. Leung y , Zhe Qu y , Wenyan Nong , Jerome H. L. Hui * and Sai Ming Ngai 1,* 1 State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; [email protected] 2 Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; [email protected] (Z.Q.); [email protected] (W.N.) * Correspondence: [email protected] (J.H.L.H.); [email protected] (S.M.N.) Contributed equally. y Received: 27 November 2020; Accepted: 17 December 2020; Published: 18 December 2020 Abstract: Venomics, the study of biological venoms, could potentially provide a new source of therapeutic compounds, yet information on the venoms from marine organisms, including cnidarians (sea anemones, corals, and jellyfish), is limited. This study identified the putative toxins of two species of jellyfish—edible jellyfish Rhopilema esculentum Kishinouye, 1891, also known as flame jellyfish, and Amuska jellyfish Sanderia malayensis Goette, 1886. Utilizing nano-flow liquid chromatography tandem mass spectrometry (nLC–MS/MS), 3000 proteins were identified from the nematocysts in each of the above two jellyfish species. Forty and fifty-one putative toxins were identified in R. esculentum and S. malayensis, respectively, which were further classified into eight toxin families according to their predicted functions. Amongst the identified putative toxins, hemostasis-impairing toxins and proteases were found to be the most dominant members (>60%).
    [Show full text]
  • Nomad Jellyfish Rhopilema Nomadica Venom Induces Apoptotic Cell
    molecules Article Nomad Jellyfish Rhopilema nomadica Venom Induces Apoptotic Cell Death and Cell Cycle Arrest in Human Hepatocellular Carcinoma HepG2 Cells Mohamed M. Tawfik 1,* , Nourhan Eissa 1 , Fayez Althobaiti 2, Eman Fayad 2,* and Ali H. Abu Almaaty 1 1 Department of Zoology, Faculty of Science, Port Said University, Port Said 42526, Egypt; [email protected] (N.E.); [email protected] (A.H.A.A.) 2 Department of Biotechnology, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; [email protected] * Correspondence: tawfi[email protected] (M.M.T.); [email protected] (E.F.) Abstract: Jellyfish venom is a rich source of bioactive proteins and peptides with various biological activities including antioxidant, antimicrobial and antitumor effects. However, the anti-proliferative activity of the crude extract of Rhopilema nomadica jellyfish venom has not been examined yet. The present study aimed at the investigation of the in vitro effect of R. nomadica venom on liver cancer cells (HepG2), breast cancer cells (MDA-MB231), human normal fibroblast (HFB4), and human normal lung cells (WI-38) proliferation by using MTT assay. The apoptotic cell death in HepG2 cells was investigated using Annexin V-FITC/PI double staining-based flow cytometry analysis, western blot analysis, and DNA fragmentation assays. R. nomadica venom displayed significant Citation: Tawfik, M.M.; Eissa, N.; dose-dependent cytotoxicity on HepG2 cells after 48 h of treatment with IC50 value of 50 µg/mL Althobaiti, F.; Fayad, E.; Abu Almaaty, and higher toxicity (3:5-fold change) against MDA-MB231, HFB4, and WI-38 cells.
    [Show full text]
  • Biology, Ecology and Ecophysiology of the Box Jellyfish Biology, Ecology and Ecophysiology of the Box Jellyfishcarybdea Marsupialis (Cnidaria: Cubozoa)
    Biology, ecology and ecophysiology of the box M. J. ACEVEDO jellyfish Carybdea marsupialis (Cnidaria: Cubozoa) Carybdea marsupialis MELISSA J. ACEVEDO DUDLEY PhD Thesis September 2016 Biology, ecology and ecophysiology of the box jellyfish Biology, ecology and ecophysiology of the box jellyfishCarybdea marsupialis (Cnidaria: Cubozoa) Biologia, ecologia i ecofisiologia de la cubomedusa Carybdea marsupialis (Cnidaria: Cubozoa) Melissa Judith Acevedo Dudley Memòria presentada per optar al grau de Doctor per la Universitat Politècnica de Catalunya (UPC), Programa de Doctorat en Ciències del Mar (RD 99/2011). Tesi realitzada a l’Institut de Ciències del Mar (CSIC). Director: Dr. Albert Calbet (ICM-CSIC) Co-directora: Dra. Verónica Fuentes (ICM-CSIC) Tutor/Ponent: Dr. Xavier Gironella (UPC) Barcelona – Setembre 2016 The author has been financed by a FI-DGR pre-doctoral fellowship (AGAUR, Generalitat de Catalunya). The research presented in this thesis has been carried out in the framework of the LIFE CUBOMED project (LIFE08 NAT/ES/0064). The design in the cover is a modification of an original drawing by Ernesto Azzurro. “There is always an open book for all eyes: nature” Jean Jacques Rousseau “The growth of human populations is exerting an unbearable pressure on natural systems that, obviously, are on the edge of collapse […] the principles we invented to regulate our activities (economy, with its infinite growth) are in conflict with natural principles (ecology, with the finiteness of natural systems) […] Jellyfish are just a symptom of this
    [Show full text]
  • A Comparison of the Muscular Organization of the Rhopalial Stalk in Cubomedusae (Cnidaria)
    A COMPARISON OF THE MUSCULAR ORGANIZATION OF THE RHOPALIAL STALK IN CUBOMEDUSAE (CNIDARIA) Barbara J. Smith A Thesis Submitted to the University of North Carolina Wilmington in Partial Fulfillment of the Requirements for the Degree of Master of Science Center for Marine Science University of North Carolina Wilmington 2008 Approved by Advisory Committee Richard M. Dillaman Julian R. Keith Stephen T. Kinsey Richard A. Satterlie, Chair Accepted by _______________________ Dean, Graduate School TABLE OF CONTENTS ABSTRACT....................................................................................................................... iii ACKNOWLEDGEMENTS............................................................................................... iv DEDICATION.....................................................................................................................v LIST OF TABLES............................................................................................................. vi LIST OF FIGURES .......................................................................................................... vii INTRODUCTION ...............................................................................................................1 Cnidarian morphology ............................................................................................1 Class Cubomedusa..................................................................................................2 Cubomedusae anatomy ...........................................................................................4
    [Show full text]
  • Biology, Ecology and Ecophysiology of the Box Jellyfish Carybdea Marsupialis (Cnidaria: Cubozoa)
    Biology, ecology and ecophysiology of the box jellyfish Carybdea marsupialis (Cnidaria: Cubozoa) MELISSA J. ACEVEDO DUDLEY PhD Thesis September 2016 Biology, ecology and ecophysiology of the box jellysh Carybdea marsupialis (Cnidaria: Cubozoa) Biologia, ecologia i ecosiologia de la cubomedusa Carybdea marsupialis (Cnidaria: Cubozoa) Melissa Judith Acevedo Dudley Memòria presentada per optar al grau de Doctor per la Universitat Politècnica de Catalunya (UPC), Programa de Doctorat en Ciències del Mar (RD 99/2011). Tesi realitzada a l’Institut de Ciències del Mar (CSIC). Director: Dr. Albert Calbet (ICM-CSIC) Co-directora: Dra. Verónica Fuentes (ICM-CSIC) Tutor/Ponent: Dr. Xavier Gironella (UPC) Barcelona – Setembre 2016 The author has been nanced by a FI-DGR pre-doctoral fellowship (AGAUR, Generalitat de Catalunya). The research presented in this thesis has been carried out in the framework of the LIFE CUBOMED project (LIFE08 NAT/ES/0064). The design in the cover is a modication of an original drawing by Ernesto Azzurro. “There is always an open book for all eyes: nature” Jean Jacques Rousseau “The growth of human populations is exerting an unbearable pressure on natural systems that, obviously, are on the edge of collapse […] the principles we invented to regulate our activities (economy, with its innite growth) are in conict with natural principles (ecology, with the niteness of natural systems) […] Jellysh are just a symptom of this situation, another warning that Nature is giving us!” Ferdinando Boero (FAO Report 2013) Thesis contents
    [Show full text]
  • Cnidaria, Medusozoa) Encalhadas Na Praia De Guaratuba, Pr
    UNIVERSIDADE FEDERAL DO PARANÁ GUILHERME SERENESKI DE OLIVEIRA ÁGUAS-VIVAS (CNIDARIA, MEDUSOZOA) ENCALHADAS NA PRAIA DE GUARATUBA, PR CURITIBA 2016 GUILHERME SERENESKI DE OLIVEIRA ÁGUAS-VIVAS (CNIDARIA, MEDUSOZOA) ENCALHADAS NA PRAIA DE GUARATUBA, PR Monografia apresentado à Coordenação do Curso de Ciências Biológicas da Universidade Federal do Paraná. Orientadora: Profª. Dra Maria Angélica Haddad CURITIBA 2016 Dedico este estudo à minha família, em especial à meu Pai, pelos seus esforços sem medidas! AGRADECIMENTOS Trilhar o caminho que nos leva ao diploma e à uma formação profissional não é tarefa fácil. Sem dúvida, não se pode realizar tal feito sem a participação e auxílio de pessoas extraordinárias que nos acompanham. Sem a família não se pode ir a lugar algum. Agradeço ao meu pai, Senhor Edder Luiz de Oliveira, à minha mãe, Senhora Dorotéia Sereneski de Oliveira e minha irmã Senhorita Nicole Sereneski de Oliveira, por todo o carinho, amor e suporte que continuam a me dar, tornando este trabalho realidade. À excelentíssima Profª. Drª Maria Ángélica Haddad, uma grande professora e mulher, que gentil e prontamente aceitou orientar-me e guiar-me neste momento decisivo de minha graduação, concedendo-me não somente conhecimento, mas a honra de sua amizade também. A ela, sou muito grato. Ao prof. Dr André Andrian Padial, por seu companheirismo e pré- disposição em prontamente auxiliar nas análises estatísticas. Aos Profs. Dr. Miodeli Nogueira Júnior e MSc. Fernando de Pol Mayer, que gentilmente aceitaram o convite de avaliar este trabalho, investindo tempo e conhecimento. Aos mestres do curso de Ciências Biológicas, que cederam, todos, um pouco de si, do melhor de si, para construir quem sou; meu muito obrigado.
    [Show full text]
  • Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings
    toxins Review Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings Alessia Remigante 1,2, Roberta Costa 1, Rossana Morabito 2 ID , Giuseppa La Spada 2, Angela Marino 2 ID and Silvia Dossena 1,* ID 1 Institute of Pharmacology and Toxicology, Paracelsus Medical University, Strubergasse 21, A-5020 Salzburg, Austria; [email protected] (A.R.); [email protected] (R.C.) 2 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, I-98166 Messina, Italy; [email protected] (R.M.); [email protected] (G.L.S.); [email protected] (A.M.) * Correspondence: [email protected]; Tel.: +43-662-2420-80564 Received: 10 February 2018; Accepted: 21 March 2018; Published: 23 March 2018 Abstract: Cnidaria include the most venomous animals of the world. Among Cnidaria, Scyphozoa (true jellyfish) are ubiquitous, abundant, and often come into accidental contact with humans and, therefore, represent a threat for public health and safety. The venom of Scyphozoa is a complex mixture of bioactive substances—including thermolabile enzymes such as phospholipases, metalloproteinases, and, possibly, pore-forming proteins—and is only partially characterized. Scyphozoan stings may lead to local and systemic reactions via toxic and immunological mechanisms; some of these reactions may represent a medical emergency. However, the adoption of safe and efficacious first aid measures for jellyfish stings is hampered by the diffusion of folk remedies, anecdotal reports, and lack of consensus in the scientific literature. Species-specific differences may hinder the identification of treatments that work for all stings.
    [Show full text]
  • A Review of Toxins from Cnidaria
    marine drugs Review A Review of Toxins from Cnidaria Isabella D’Ambra 1,* and Chiara Lauritano 2 1 Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy 2 Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-5833201 Received: 4 August 2020; Accepted: 30 September 2020; Published: 6 October 2020 Abstract: Cnidarians have been known since ancient times for the painful stings they induce to humans. The effects of the stings range from skin irritation to cardiotoxicity and can result in death of human beings. The noxious effects of cnidarian venoms have stimulated the definition of their composition and their activity. Despite this interest, only a limited number of compounds extracted from cnidarian venoms have been identified and defined in detail. Venoms extracted from Anthozoa are likely the most studied, while venoms from Cubozoa attract research interests due to their lethal effects on humans. The investigation of cnidarian venoms has benefited in very recent times by the application of omics approaches. In this review, we propose an updated synopsis of the toxins identified in the venoms of the main classes of Cnidaria (Hydrozoa, Scyphozoa, Cubozoa, Staurozoa and Anthozoa). We have attempted to consider most of the available information, including a summary of the most recent results from omics and biotechnological studies, with the aim to define the state of the art in the field and provide a background for future research. Keywords: venom; phospholipase; metalloproteinases; ion channels; transcriptomics; proteomics; biotechnological applications 1.
    [Show full text]
  • Species Report Rhopilema Nomadica (Nomad Jellyfish)
    Mediterranean invasive species factsheet www.iucn-medmis.org Species report Rhopilema nomadica (Nomad jellyfish) AFFILIATION CNIDARIANS SCIENTIFIC NAME AND COMMON NAME REPORTS Rhopilema nomadica 18 Key Identifying Features This solid, large jellyfish is light blue in colour with tiny granules on the bell. The bell of this jellyfish can range from 10 to 90 cm in diameter, usually 40–60 cm, and the whole animal can weigh 40 kg. Hanging from the centre are eight large mouth-arms divided at mid-length into two ramifications with numerous long filaments. 2013-2021 © IUCN Centre for Mediterranean Cooperation. More info: www.iucn-medmis.org Pag. 1/5 Mediterranean invasive species factsheet www.iucn-medmis.org Identification and Habitat This species can form dense aggregations in coastal areas during summer months, although it can also appear all year round. Reproduction Its life cycle involves a small (usually < 2 mm) benthic polyp stage that reproduces asexually, and a large swimming medusa stage that reproduces sexually. Spawning usually occurs in July and August. Similar Species The most similar jellyfish is the native Mediterranean Rhizostoma pulmo. It differs from Rhopilema nomadica in its smooth bell surface and a dark purple band around its undulated margin. It has four pairs of very large mouth arms on its under surface but no tentacles. Another common native species is Pelagia noctiluca. It is much smaller and mushroom-shaped, with a bell up to 10 cm in diameter. The medusa varies from pale red to mauve-brown or purple in colour and the bell surface is covered in pink granules.
    [Show full text]
  • The First Confirmed Record of the Alien Jellyfish Rhopilema Nomadica Galil, 1990 from the Southern Aegean Coast of Turkey
    Aquatic Invasions (2011) Volume 6, Supplement 1: S95–S97 doi: 10.3391/ai.2011.6.S1.022 Open Access © 2011 The Author(s). Journal compilation © 2011 REABIC Aquatic Invasions Records The first confirmed record of the alien jellyfish Rhopilema nomadica Galil, 1990 from the southern Aegean coast of Turkey Nurçin Gülşahin* and Ahmet Nuri Tarkan Muğla University, Faculty of Fisheries, Department of Hydrobiology, 48000 Muğla, Turkey E-mail: [email protected] (NG), [email protected] (ANT) *Corresponding author Received: 13 July 2011 / Accepted: 16 August 2011 / Published online: 17 September 2011 Abstract The scyphozoan jellyfish Rhopilema nomadica Galil, 1990 has been observed in June 2011 in Marmaris Harbour, on the southern Aegean coast of Turkey. Information on previous records of this invasive species from the Mediterranean coast of Turkey is provided. Key words: Rhopilema nomadica, Scyphozoa, Marmaris Harbour, Turkey, invasive species Introduction and then preserved and deposited in the Faculty of Fisheries in Mugla University in Mugla (Collection number: MUSUM/CNI/2011/1). Rhopilema nomadica Galil, 1990, a large Rhopilema nomadica is known to shelter scyphozoan, entered the Mediterranean through juveniles of a Red Sea carangid fish, Alepes the Suez Canal in the 1970s and soon established djeddaba (Forsskål, 1775) among its tentacles a population in the SE Levantine Basin (Galil et (Galil et al. 1990), indeed, juveniles of this al. 1990). This jellyfish forms great swarms each species were observed to accompany the summer, which when drifting inshore stings specimen collected from Marmaris. The bathers and impacts fisheries by obsturcting juveniles of A. djedaba were also observed fishing nets and covering catches with their among the tentacles of Phyllorhiza punctata stinging mucous.
    [Show full text]
  • Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria) Paulyn Cartwright1, Nathaniel M
    Journal of the Marine Biological Association of the United Kingdom, page 1 of 10. #2008 Marine Biological Association of the United Kingdom doi:10.1017/S0025315408002257 Printed in the United Kingdom Phylogenetics of Hydroidolina (Hydrozoa: Cnidaria) paulyn cartwright1, nathaniel m. evans1, casey w. dunn2, antonio c. marques3, maria pia miglietta4, peter schuchert5 and allen g. collins6 1Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66049, USA, 2Department of Ecology and Evolutionary Biology, Brown University, Providence RI 02912, USA, 3Departamento de Zoologia, Instituto de Biocieˆncias, Universidade de Sa˜o Paulo, Sa˜o Paulo, SP, Brazil, 4Department of Biology, Pennsylvania State University, University Park, PA 16802, USA, 5Muse´um d’Histoire Naturelle, CH-1211, Gene`ve, Switzerland, 6National Systematics Laboratory of NOAA Fisheries Service, NMNH, Smithsonian Institution, Washington, DC 20013, USA Hydroidolina is a group of hydrozoans that includes Anthoathecata, Leptothecata and Siphonophorae. Previous phylogenetic analyses show strong support for Hydroidolina monophyly, but the relationships between and within its subgroups remain uncertain. In an effort to further clarify hydroidolinan relationships, we performed phylogenetic analyses on 97 hydroidolinan taxa, using DNA sequences from partial mitochondrial 16S rDNA, nearly complete nuclear 18S rDNA and nearly complete nuclear 28S rDNA. Our findings are consistent with previous analyses that support monophyly of Siphonophorae and Leptothecata and do not support monophyly of Anthoathecata nor its component subgroups, Filifera and Capitata. Instead, within Anthoathecata, we find support for four separate filiferan clades and two separate capitate clades (Aplanulata and Capitata sensu stricto). Our data however, lack any substantive support for discerning relationships between these eight distinct hydroidolinan clades.
    [Show full text]
  • Hermit Crabs - Paguridae and Diogenidae
    Identification Guide to Marine Invertebrates of Texas by Brenda Bowling Texas Parks and Wildlife Department April 12, 2019 Version 4 Page 1 Marine Crabs of Texas Mole crab Yellow box crab Giant hermit Surf hermit Lepidopa benedicti Calappa sulcata Petrochirus diogenes Isocheles wurdemanni Family Albuneidae Family Calappidae Family Diogenidae Family Diogenidae Blue-spot hermit Thinstripe hermit Blue land crab Flecked box crab Paguristes hummi Clibanarius vittatus Cardisoma guanhumi Hepatus pudibundus Family Diogenidae Family Diogenidae Family Gecarcinidae Family Hepatidae Calico box crab Puerto Rican sand crab False arrow crab Pink purse crab Hepatus epheliticus Emerita portoricensis Metoporhaphis calcarata Persephona crinita Family Hepatidae Family Hippidae Family Inachidae Family Leucosiidae Mottled purse crab Stone crab Red-jointed fiddler crab Atlantic ghost crab Persephona mediterranea Menippe adina Uca minax Ocypode quadrata Family Leucosiidae Family Menippidae Family Ocypodidae Family Ocypodidae Mudflat fiddler crab Spined fiddler crab Longwrist hermit Flatclaw hermit Uca rapax Uca spinicarpa Pagurus longicarpus Pagurus pollicaris Family Ocypodidae Family Ocypodidae Family Paguridae Family Paguridae Dimpled hermit Brown banded hermit Flatback mud crab Estuarine mud crab Pagurus impressus Pagurus annulipes Eurypanopeus depressus Rithropanopeus harrisii Family Paguridae Family Paguridae Family Panopeidae Family Panopeidae Page 2 Smooth mud crab Gulf grassflat crab Oystershell mud crab Saltmarsh mud crab Hexapanopeus angustifrons Dyspanopeus
    [Show full text]