Back Matter (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Back Matter (PDF) Index Note: page numbers in italics refer to figures; those in bold refer to tables ADEOS TOMS 178, 181,189 calc-silicates 125 Advanced Earth Observing Satellite (ADEOS) Cameroon, Mount 9, 182, 190 TOMS 178, 181,189 carbon disulphide (CS2) 297 Advanced Spaceborne Thermal Emission and carbonyl sulphide (OCS) 297 Reflection Radiometer (ASTER) 150, Cerro Azul, Galapagos 182, 188, 190 198 Cerro Hudson, Chile 182, 184, 188 Advanced Very High Resolution Radiometer Cerro Negro, Nicaragua 33, 182 (AVHRR) 331 volcanic fumarole 140 aerosol cloud, development of 332 chemistry-transport model (CTM) 297-8 Agnano-Monte Spina (AMS) explosive climate sensitivity 342 eruption 53-61 climatic influence 265-6 Agung, Indonesia 335, 377 closed-path spectroscopy 150 air pollution C-O-H-S fluids, saturation 81-99 mortality and 402 rhyolitic composition 87-90 tropospheric sulphur burden and 387-9 tholeiitic composition 85-7 volcanic eruptions and 401-2 Colima Rift 265 Aleutians 186 Colima volcano, Mexico 39, 139, 169, 173 andesitic compositions 26-7, 29, 30 diffuse degassing 271-4 Ardoukoba, Djibouti 243 diffuse gas measurements 267-8 Arenal, Costa Rica 206 fumarole sampling and analyses 267, Asama volcano, Japan 156 268-71,269 Aso, Japan 156 geological background 264-5 ASTER 150, 198 plume measurements 267 asymmetry parameter 335 previous geochemical studies 266-7 ATHAM 309, 314, 315, 317-18, 319 sulphur dioxide flux 271,273,273 simulation 318, 323 Colo volcano, Indonesia 182, 184, 187, 188, atmospheric impacts of tropospheric gas plumes 330 387-91 Correlation Spectrometer (COSPEC) 134, 141, atomic force microscopy (AFM) 143 143, 150-4, 151, 161, 162, 162, 204, Augustine, Mount, Alaska 39, 182, 184, 188, 219, 220, 265, 384 330, 331 applications 171-3 AVHRR 331 elevation effects in 169-75 AVIRIS 395 used at Masaya 352 operation and accuracy 151-2 Ballachulish, Scotland 134 pressure and temperature dependence Banda Api, Indonesia 182, 184, 188, 374 169-71 basaltic compositions 27-32, 31, 46 column abundances 169-70 basaltic eruption 6-9, 7 path-length concentration:column basicity moderating parameter 97 abundance relationship 171 Beer-Lambert law 56, 169, 175 path-length concentrations 170-1 Berlin, Mount, Antarctica 232 SO2 and mass of magma, correlation Bezymianny, Kamchatka 182, 187, 188, 190, 377 between 373 Big Island, Hawai'i 388 volcanological interpretation of SO2 fluxes Bishop Tuff 45, 45, 139 152-3 Boltzmann-Matano analysis 57-8 COSPEC see Correlation Spectrometer buchites 127-9 crystallization, degassing and, in ascending B6rfell-Dreki lavas, Iceland 117, 118 magma 13-16 416 INDEX DIAL 159 FESEM/EDS 23-43 difference frequency generation (DFG) lasers Fish Canyon Tuff, Colorado 27 159, 163 Flood-Grjotheim treatment 95-6 Differential Absorption LIDAR (DIAL) 159 Fourier Transform Infrared (FTIR) differential optical absorption spectroscopy spectroscopy 150, 151,153, 155-8, (DOAS) 150, 154-5, 154, 155, 161,162, 161,163, 203-18, 220, 265, 349-69 163 Mount Etna, Sicily 281-92 diffusion coefficients 57-8 measurements of water diffusivity 55-7 dimethyl sulphide (DMS) 297 Fourier Transform Ultraviolet Spectroscopy distributed feedback (DFB) lasers 159, 163 (FTUV) 163 DOAS 150, 154-5, 154, 155, 161, 162, 163 Fuego volcano, Guatemala 123, 377 dome-building eruptions 63-77 Doppler RADAR 162 Galeras volcano, Columbia 24, 70, 219, 243, 265 dry deposition 389-91 Galunggung volcano, Indonesia 181,182, 184, dry fogs 340, 389, 401,402, 403, 404-06, 411 187, 188, 206, 374 DUSTTRAK optical particle counter 160 gas correlation filter spectrometry (GASCOFIL) 153, 162 Earth Probe (EP) satellite TOMS 178, 180, 181, gas correlation imaging 154 184, 189-93, 197 gas segregation dynamics 6-13 Eastern Volcanic Zone (EVZ), Iceland 104, 105 basaltic eruption 6-9, 7 E1 Chich6n, Mexico 27, 33, 82, 142, 182, 184, silicic eruption 9-13 188, 308,374 GASCOFIL 153, 162 (1982 eruption) 178, 188, 329, 330, 331,332, General Circulation Model (GCM) 297-8, 299 336, 338, 377 Geostationary Meterological Satellite (GMS) C/S ratio 45, 45 331 EldN/t (AD 934-940 eruption), Iceland 105, 106, glass inclusions 108-10 108, 114, 114, 116, 116, 118 Global Ozone Monitoring Experiment electron microprobe (EMP) 309 (GOME) 197, 198 environmental impacts of tropospheric volcanic GOES 196 gas plumes 381-95 Grimsv6tn volcanic system, Iceland 103-19 Envisat- 1 satellite 180 groundwater, impact of tropospheric EOS/Aura satellite 180 gas plumes on 393-4 Erebus, Mount, volcano, Antarctica 123, 157, 169, 173, 383 H20 + CO2 saturation model 94-5 Fumarolic Ice Towers 231-43 Halema'uma'u, Hawai'i 282 carbon isotope samples 234-5, 236 halogens as tracers 63-77 ice cave observations 239 Harry's Dream, Mt Erebus 237, 238, 239, 242 flux from 233-4, 235-7 Hawaiian fire-fountains 6 monitoring inside ice towers and caves Heard Island, Southern Indian Ocean 182, 186 237-9 Heimaey, Iceland (1973) 9 soil gas data 234, 239-41 Hekla, Iceland (2000 eruption) 182, 184, 190, isotopes 241-2, 242-3 191,193, 308, 374, 377 ERS-2 197 Henry coefficient 313, 314 Erta 'Ale, Ethiopia 243 Henry's Law 354 Etna, Italy 9, 123, 142, 182, 190, 231,243, 265, hercynite 127, 132 298, 387, 389 high-alumina basalts (HAB) 29-31 (2001 eruption) 193, 194, 284-5 HITRAN database (High-resolution aerosol emissions 152, 155, 157, 158, 161 Transmission molecular absorption ash leachates 205, 206 database) 156, 283, 356 FTIR 281-92 H61ms~t fires, Katla, Iceland 117, 118 factors controlling SO2, HC1 and HF 286-9 ICP-MS 143 fractional magma degassing 289-91 illness, human 401-12 mercury emissions 382 instrumental neutron activation analysis TOMS observations of 196-7 (INAA) 143 excess sulphur 152 Iraz6 volcano, Costa Rica 206, 248 Iztaccihuatl volcano, Mexico 124 Fernandina, Galapagos Islands 178, 182 Izu-Oshima, Japan 243 INDEX 417 Kalimantan 187 mafic melt compositions 38, 41, 43, 48 Kamchatka 186 magma chamber evolution, degassing and 16-18 Katla volanic system, Iceland 103-19 magma volatile contents, degassing and 18-19 Katmai, Alaska 27 Makian, Indonesia 182, 184, 188 Kilauea (Hawai'i) 2, 17, 123, 139, 231,243, 384 Mammoth Mountain, California 231 fractional degassing of 282 Manam volcano, PNG 182, 190, 193 Pu'u 'O'o vent 9, 161,282 Masaya volcano, Nicaragua 157, 158, 350-2, Krafla, Iceland 182, 186, 188, 374 350 (1984 eruption) 193 environmental impacts 382, 385, 385, 386, Krakatau, Indonesia 27, 32, 377 388 (1883 eruption) 1 location of active craters 351 Kudryavy volcano, Kurile Islands, Russia 39, measurements FTIR 357-63 142 short time-scale variability in FTIR Kuriles 186 measurements 363-6 tropospheric processes 366-7 Laacher See volcano eruption, Germany Mauna Loa, Hawai'i (1984 eruption) 182, 193, (12 900 yr Bp) 307-24 374 compositional parameters of halogens and Mayon, Mount, Philippines 182, 188 sulphur in 310-12 Melbourne, Mount, Antarctica 232 estimate of volatile release 312-13 melt inclusions 17, 26, 63, 103-21,283, 307, 372 HC1 emission 319, 321 MELTS code 66, 67, 68 hydrometeors 319, 321 Merapi, Mount, Java 39, 129, 182, 188 processes in the eruption column 313 Meteor-3 (MS) TOMS 178, 180 release of gases from ice 316-17 Michelson interferometer 156 scavenging by ice particles 315-17 mid-ocean ridge basalts (MORBs) 110 scavenging by liquid droplets 313-15 Mihara, Mount, Japan 150 transfer of solutes during microphysical Minoan eruption of Santorini 27 processes 316 Miyake-jima volcano, Japan TOMS volcanic gases 319-21 observations of S02 from 182, 190, 196 volcanic particles 318-19, 320 modelling degassing processes 64-5 volcanology and petrological background application to Mont Pel6e and Santa Maria- 309 Santiaguito 70-7 Laki, Iceland closed- and open-system evolution 64 (1783-84 eruption) 2, 3, 103, 105, 106, 108, correlation diagrams between residual 113-14, 114, 116, 116, 118, 149, 329, volatile contents 68-9 332, 340, 342 equations for open- and closed-system air pollution and volcanic eruptions 401-2 evolution 65-8 air pollution and mortality 402 closed-system evolution 66 English mortality trends (1783-84) 405-6, 410 estimations of parameters 66 eruption dynamics 402 open-system evolution 66 human illness after eruption 401-12, 404 partition coefficients 66-8 local mortality crises 406-10 vescularity 68 meteorology during eruption 402-3 erupted magmatic clasts 64-5 pollution damage to vegetation 403-4, 403 halogens in glasses 65 Langila, PNG 182, 188 Moderate Resolution Imaging (1997) 189 Spectroradiometer (MODIS) 197, 395 Lfiscar (Chile) 10, 182, 184, 188,374, 377 MODIS 197, 395 Lau Basin, SW Pacific 83 Momotombo volcano, Nicaragua 39, 243 Lesser Antilles arc 48 Montserrat 27, 33, 48, 203-18, 219-30, 308 LI-COR spectrometer 134, 153, 162 Monzoni Complex, Italy 134 LIDAR 143, 155, 158-9, 161,162, 163, 336 mortality, English trends during Laki eruption LIDAR In-space Technology Experiment (1783-84) 405-6, 410 (LITE) 143 moving-mirror interferometer 156 Lonquimay volcano, Chile (1989-90 eruption) Mule Creek vent complex USA 10 9, 182, 188 Lux-Flood acidity 96 National Polar-orbiting Operational Environmental Satellite System mafic arc magmas 32 (NPOESS) 197 418 INDEX Nausea Knob, Mt Erebus 240 geological and volcanological background Navier-Stokes equations 317 248 Nevado de Colima volcano, Mexico 264, 267 map of crater 249 Nevado del Ruiz volcano, Columbia 277, 393 sampling and analytical methods 248-50 Nimbus-7 (N7) satellite TOMS 177, 178, 179, sampling in Laguna Caliente 250 179, 180, 191,199 pollution NPOESS 197 air 401-2 Nyamuragira, Congo 183, 184, 187, 188, 190, damage to vegetation 403-4, 403 191,192, 193, 199,
Recommended publications
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title Assessment of high enthalpy geothermal resources and promising areas of Chile Permalink https://escholarship.org/uc/item/9s55q609 Authors Aravena, D Muñoz, M Morata, D et al. Publication Date 2016 DOI 10.1016/j.geothermics.2015.09.001 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Assessment of high enthalpy geothermal resources and promising areas of Chile Author links open overlay panel DiegoAravena ab MauricioMuñoz ab DiegoMorata ab AlfredoLahsen ab Miguel ÁngelParada ab PatrickDobson c Show more https://doi.org/10.1016/j.geothermics.2015.09.001 Get rights and content Highlights • We ranked geothermal prospects into measured, Indicated and Inferred resources. • We assess a comparative power potential in high-enthalpy geothermal areas. • Total Indicated and Inferred resource reaches 659 ± 439 MWe divided among 9 areas. • Data from eight additional prospects suggest they are highly favorable targets. • 57 geothermal areas are proposed as likely future development targets. Abstract This work aims to assess geothermal power potential in identified high enthalpy geothermal areas in the Chilean Andes, based on reservoir temperature and volume. In addition, we present a set of highly favorable geothermal areas, but without enough data in order to quantify the resource. Information regarding geothermal systems was gathered and ranked to assess Indicated or Inferred resources, depending on the degree of confidence that a resource may exist as indicated by the geoscientific information available to review. Resources were estimated through the USGS Heat in Place method. A Monte Carlo approach is used to quantify variability in boundary conditions.
    [Show full text]
  • Festuca Pallescens Colliguaya Integerrima- Festuca Pallescens
    Zona de Pastizales Rolando Demanet Filippi Universidad de la Frontera Superficie de Praderas y Pasturas PRADERAS Y PASTURAS REGIÓN SEMBRADAS, PERMANENTES Y MEJORADAS NATURALES DE ROTACION * I 2,829 84 475,755 II 1,890 142 24,808 III 1,489 279 418,836 IV 43,412 10,999 3,070,887 V 14,587 13,232 782,081 VI 16,680 18,234 503,384 VII 49,116 89,070 811,014 VIII 51,157 75,746 733,471 IX 77,248 138,206 829,919 X 145,524 525,312 680,515 XI 14,969 29,324 662,616 XII 9,865 94,979 2,664,242 RM 23,840 14,193 264,694 Total País 452,606 1,009,801 11,922,222 Fuente: INE * No incluye Anuales Importancia del Almacenamiento del Agua Altitud Capacidad Año Tiempo de uso Nombre Categoría Región Ubicación m.s.n.m. (Mm3) Area km2 Inauguración (Años) Chungará Lago I 196 km NO Arica 4.750 msnm 4.750 21.000 Cotacotani Laguna I 190 km NO Arica. 600 Huasco Laguna I 174 km SE Arica Chaxa Laguna II 56 km San Pedro Atacama 18 km Sur Socaire 5.910 Miscanti y Miñiques Laguna II msnm 5.910 213 km SE Calama 4.260 Legía Laguna II msnm 4.260 8 Del Negro Francisco Laguna III 226 kms E Copiapó 4.126 860 Laguna Verde Laguna III 265 km NE Copiapó 4.325 Santa Rosa Laguna III Sur del salar de Maricunga Santa Juana Emabalse III 20 km E Vallenar. 160 410 1955 53 Lautaro Tranque III 96 km SE Copiapó 27 1930 78 Recoleta Embalse IV 25 km NO Ovalle 100 1934 74 La Paloma Embalse IV 27 km SE Ovalle 780 3.000 1974 34 La Laguna Embalse IV 3.350 msnm Elqui 3.350 40 5 Cogotí Embalse IV 19 km N Combarbalá 150 Peñuelas Lago V 13 km Valparaíso 8.000 1900 108 Rapel Lago VI 102 km O Rancagua 720
    [Show full text]
  • Volcanes Cercanos Volcanes Cercanos
    Localidades al interior de un radio de 30 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá Callaqui, Copahue Ralco Santa Bárbara Bio Bio Bio Bio Nevados de Chillán Recinto Los Lleuques Pinto Ñuble Bio Bio Villarrica, Quetrupillán, Lanín, Sollipulli Curarrehue Curarrehue Cautín La Araucanía Llaima, Sollipulli Mellipeuco Melipeuco Cautín La Araucanía Villarrica, Quetrupillán, Lanín Pucón Pucón Cautín La Araucanía Llaima Cherquenco Vilcún Cautín La Araucanía Villarrica Lican Ray Villarrica Cautín La Araucanía Villarrica Villarrica Villarrica Cautín La Araucanía Llaima, Lonquimay Curacautín Curacautín Malleco La Araucanía Llaima, Lonquimay Lonquimay Lonquimay Malleco La Araucanía Villarrica, Quetrupillán, Lanín, Mocho Coñaripe Panguipulli Valdivia Los Rios Calbuco, Osorno Alerce Puerto Montt Llanquihue Los Lagos Calbuco, Osorno Las Cascadas Puerto Octay Osorno Los Lagos Chaitén, Michinmahuida, Corcovado Chaitén Chaitén Palena Los Lagos Hornopirén, Yate, Apagado, Huequi Rio Negro Hualaihue Palena Los Lagos Localidades al interior de un radio de 50 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá San José San Alfonso San José de Maipo Cordillera Metropolitana San José San José de Maipo San José de Maipo Cordillera Metropolitana Tupungatito La Parva Lo Barnechea Santiago
    [Show full text]
  • Boron and Other Trace Element Constraints on the Slab-Derived Component in Quaternary Volcanic Rocks from the Southern Volcanic Zone of the Andes
    Geochemical Journal, Vol. 47, pp. 185 to 199, 2013 Boron and other trace element constraints on the slab-derived component in Quaternary volcanic rocks from the Southern Volcanic Zone of the Andes HIRONAO SHINJOE,1* YUJI ORIHASHI,2 JOSÉ A. NARANJO,3 DAIJI HIRATA,4 TOSHIAKI HASENAKA,5 TAKAAKI FUKUOKA,6 TAKASHI SANO7 and RYO ANMA8 1Tokyo Keizai University, Japan 2Earthquake Research Institute, The University of Tokyo, Japan 3Servicio Nacional de Geología y Minería, Chile 4Kanagawa Prefectural Museum of Natural History, Japan 5Department of Earth and Environmental Sciences, Graduate School of Science and Technology, Kumamoto University, Japan 6Department of Environment Systems, Faculty of Geo-environmental Science, Rissho University, Japan 7Department of Geology and Paleontology, National Museum of Nature and Science, Japan 8Integrative Environmental Sciences, Graduate School of Life and Environmental Sciences, Tsukuba University, Japan (Received April 18, 2012; Accepted December 25, 2012) We present a dataset for boron and other trace element contents obtained from samples from 13 volcanoes distributed along the Quaternary volcanic front of the Southern Volcanic Zone (SVZ) of the Chilean Andes. The dataset shows con- straints on the nature of slab-derived component to mantle source. Analyzed samples show large negative Nb and Ta anomalies, and enrichment of alkaline earth elements and Pb, which are features of typical island arc volcanic rocks. Boron contents of SVZ volcanic rocks range 2.3–125.5 ppm, exhibiting marked enrichment relative to N-MORB and OIB. Both the boron contents and B/Nb ratios of the volcanic rocks increase from the southern SVZ (SSVZ) to central SVZ (CSVZ). Fluid mobile/immobile element ratios (B/Nb, Ba/Nb, Pb/Nb, and K/Nb) are used to examine slab-derived com- ponent to mantle source.
    [Show full text]
  • PDF Linkchapter
    Index Page numbers in italic denote figures. Page numbers in bold denote tables. adakite vii, 3, 15–17, 23, 156, 175, 251 Baja California 390, 393–395, 396 distribution in Japan arc 25–26 basalt viii, 2, 5, 8, 65, 369 adiabatic dT/dP 202 fractionation 84–86 Aegean arc, magmatism 137–158 Gulf of California 395–398, 401 analytical techniques 142 high-TiO2(Nb) basalt 80 differentiation and eruption 155–156 intrusion rate 87 geochemistry 142–146 Mariana arc 242–243, 245 geological setting 137–140 to andesite 32 source and process 146–155 basaltic andesite viii, 82, 140, 141, 310 air-fall deposit 210, 211, 216–218, 219 fractional crystallization 223, 225 amphibole 153, 156, 270, 271 Guatemala 209, 212, 215, 219, 220, 222 Anatahan Felsic Province 237, 251, 252–253 Gulf of California 393, 395–398 Andean arc, magma sources 303–330 Oregon 284–286, 288, 293, 296, 297 geochemistry 311–320 Papua 121, 123, 124–125 magma history 308–309 batholith 401 tectonic setting 304–311 10Be isotope 2 andesite and subduction 1–2, 58–59 Benioff zone, Andean arc 304, 325, 326, 328 andesite from tholeiite 281–300 Bezymianny volcano 104, 106 andesite, Gulf of California 389, 395–401, 403 bimodal volcanism 6, 67, 80, 93, 270 andesite, NE Japan island arc 335–378 Californian Gulf 393–398, 401, 403 andesitic magma, preferential eruption 257–276 Guatemala 210, 215, mixing 258–260 Japan arc 336, 340, 374 mobility 260–261 Mariana arc 251, 252–253 origin 257, 261–270 boninite vii, 130, 131 recharge filtering 270, 272–274 Bouguer gravity anomaly 338, 354 andesitic petrogenesis
    [Show full text]
  • Evaluating a Fluorosis Hazard After a Volcanic Eruption
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/15253810 Evaluating a Fluorosis Hazard after a Volcanic Eruption Article in Archives of Environmental Health An International Journal · October 1994 DOI: 10.1080/00039896.1994.9954992 · Source: PubMed CITATIONS READS 37 59 6 authors, including: Professor Eric K. Noji, M.D. King Saud University 295 PUBLICATIONS 3,601 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: ICARUS | Max Planck Institute for Ornithology View project The Effects of Extreme Environmental Conditions on Human Physiology and Survivability View project All content following this page was uploaded by Professor Eric K. Noji, M.D. on 19 April 2015. The user has requested enhancement of the downloaded file. Evaluating a Fluorosis Hazard after a Volcanic Eruption CAROL H. RUBIN JORGE GRANDE Epidemic Inlelligence Service U.S. Agency for International Development Epidemiology Program Office Office of Disaster Assistance Atlanta, Georgia San Jose, Costa Rica ERICK. NOJI F. VITTANI Centers for Disease Control and Prevention Ministry of Health and Social Action National Center for Environmental Health Buenos Aires, Argentina Atlanta, Georgia PAULJ. SELIGMAN JOHN L. HOLTZ Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Cincinnati, Ohio ABSTRACT. The August, 1991 eruption of Mt. Hudson (Chile) deposited ash across southern Argentina and contributed to the deaths of thousands
    [Show full text]
  • Dynamical Regime and Advance Rate of Lava Flows Using Its Deposit Characteristics: 2 Cases from the Lonquimay and Villarrica
    IAVCEI 2013 Scientific Assembly - July 20 - 24, Kagoshima, Japan Forecasting Volcanic Activity - Reading and translating the messages of nature for society 0P2_3H-O11 Room A5 Date/Time: July 20 17:15-17:30 Dynamical regime and advance rate of lava flows using its deposit characteristics: 2 cases from the Lonquimay and Villarrica volcanoes, Southern Andes of Chile Maria Angelica Contreras1,2, Angelo Castruccio1,2 1Universidad de Chile, Chile, 2Centro de Excelencia en Geotermia de los Andes (CEGA), Chile E-mail: [email protected] The advance of lava flows is controlled by the effusion rate, rheology, topography and cooling effects. Consequently, the deposits of lava flows would reflect the interplay between these factors. We tested a methodology to estimate the variations of flow rate and velocity of ancient lava flows using its deposit dimensions, textural characteristics and petrography. We studied the deposits of two lava flows with contrasting styles generated during historical times in the Southern Andes of Chile: the 1971 eruption of Villarrica volcano and the 1988-89 eruption of Lonquimay volcano. Both eruptions have a record of its duration and advance rate, so we can test different dynamical models in order to fit better the available data. The Villarrica eruption lasted a couple of days and the resulting lava flow reached a length of 16.5 km, with thicknesses of 3-15 m, depending mainly on the channelling of the flow. The morphology is transitional between Pahoe-hoe and Aa. Clasts morphologies are mainly rubbly and slabby, ranging from a few cm to a couple of meters in diameter.
    [Show full text]
  • The Origin and Emplacement of Domo Tinto, Guallatiri Volcano, Northern Chile Andean Geology, Vol
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Watts, Robert B.; Clavero Ribes, Jorge; J. Sparks, R. Stephen The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Andean Geology, vol. 41, núm. 3, septiembre, 2014, pp. 558-588 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173932124004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (3): 558-588. September, 2014 Andean Geology doi: 10.5027/andgeoV41n3-a0410.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Robert B. Watts1, Jorge Clavero Ribes2, R. Stephen J. Sparks3 1 Office of Disaster Management, Jimmit, Roseau, Commonwealth of Dominica. [email protected] 2 Escuela de Geología, Universidad Mayor, Manuel Montt 367, Providencia, Santiago, Chile. [email protected] 3 Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol. BS8 1RJ. United Kingdom. [email protected] ABSTRACT. Guallatiri Volcano (18°25’S, 69°05’W) is a large edifice located on the Chilean Altiplano near the Bo- livia/Chile border. This Pleistocene-Holocene construct, situated at the southern end of the Nevados de Quimsachata chain, is an andesitic/dacitic complex formed of early stage lava flows and later stage coulées and lava domes.
    [Show full text]
  • Secular Variation of the Earth Magnetic Field And
    Secular variation of the Earth magnetic field and application to paleomagnetic dating of historical lava flows in Chile Pierrick Roperch, Annick Chauvin, Luis Lara, Hugo Moreno To cite this version: Pierrick Roperch, Annick Chauvin, Luis Lara, Hugo Moreno. Secular variation of the Earth magnetic field and application to paleomagnetic dating of historical lava flows in Chile. Physics oftheEarth and Planetary Interiors, Elsevier, 2015, 242, pp.65-78. 10.1016/j.pepi.2015.03.005. insu-01130332 HAL Id: insu-01130332 https://hal-insu.archives-ouvertes.fr/insu-01130332 Submitted on 4 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Secular variation and paleomagnetic dating Physics of the Earth and Planetary Interiors, 2015 Roperch, Pierrick, Annick Chauvin, Luis E. Lara, et Hugo Moreno. « Secular Variation of the Earth’s Magnetic Field and Application to Paleomagnetic Dating of Historical Lava Flows in Chile ». Physics of the Earth and Planetary Interiors 242 (mai 2015): 65-78. https://doi.org/10.1016/j.pepi.2015.03.005. Secular variation of the Earth’s magnetic field and application to paleomagnetic dating of historical lava flows in Chile. Pierrick Roperch1, Annick Chauvin1, Luis E.
    [Show full text]
  • Southern Andes Supersite Coupled Geohazards at Southern Andes: Copahue-Lanín Arc Volcanoes and Adjacent Crustal Faults
    Version 1.3 15 October 2018 www.geo-gsnl.org Biennial report for Permanent Supersite/Natural Laboratory GeoHazSA: Southern Andes Supersite Coupled geohazards at Southern Andes: Copahue-Lanín arc volcanoes and adjacent crustal faults History https://geo-gsnl.org/supersites/permanent- supersites/southern-andes-supersite/ Supersite Coordinator Luis E. Lara, SERNAGEOMIN, CIGIDEN, Av. Santa María 0104, Santiago, CHILE 1 Version 1.3 15 October 2018 www.geo-gsnl.org 1. Abstract The Southern Andes (33°-46°S) is a young and active mountain belt where volcanism and tectonic processes pose a significant threat to the communities nearby. In fact, only recent eruptions caused evacuations of 250-3500 people and critical infrastructure is present there. The segment here considered corresponds to a low altitude orogen (<2000 masl on average) but characterized by a high uplift rate as a result of competing tectonic and climate forces. This Supersite focuses on a ca. 200 km long segment of the Southern Andes where 9 active stratovolcanoes (Copahue, Callaqui, Tolhuaca, Lonquimay, Llaima, Sollipulli, Villarrica, Quetrupillan and Lanín) and 2 distributed volcanic fields (Caburgua and Huelemolles) are located, just along a tectonic corridor defined by the northern segment of the Liquiñe-Ofqui Fault System (LOFS). Activity of the LOFS has been detected prior to some eruptions and coeval with some others. There are several tectonic and volcanic models to be investigated that derive from a strong two-way coupling between tectonics and volcanism, recently detected by either geophysical techniques or numerical modeling. Hazards in the segment derive mostly from the activity of some of the most active volcanoes in South America (e.g., Villarrica, Llaima), others with long-lasting but weak current activity (e.g., Copahue) or some volcanoes with low eruptive frequency but high magnitude eruptions in the geological record (e.g., Lonquimay).
    [Show full text]
  • Recent Changes in Total Ice Volume on Volcán Villarrica, Southern Chile
    Nat Hazards DOI 10.1007/s11069-014-1306-1 ORIGINAL PAPER Recent changes in total ice volume on Volca´n Villarrica, Southern Chile Andre´s Rivera • Rodrigo Zamora • Jose´ Uribe • Anja Wendt • Jonathan Oberreuter • Sebastia´n Cisternas • Fernando Gimeno • Jorge Clavero Received: 3 October 2013 / Accepted: 13 June 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Results obtained by the first intensive airborne surveys carried out at Volca´n Villarrica (39°S) in Southern Chile, are presented. These campaigns included the use of a scanner laser system, for detecting the glacier surface topography, and a helicopter-borne ice penetrating radar, for measuring ice thicknesses. These surveys allowed determining the snow and ice volume storage at this volcano, volume which is susceptible to melt during eruptive events generating dangerous fast flows (lahars). Volca´n Villarrica is one of the most active volcanoes in Chile, with frequent eruptive events, many of them associated with lahars which are considered the most hazardous process at this volcano. In fact, most of the casualties and infrastructure damages incurred during historical eruptive events at the volcano are associated with lahars. With use of the radar and laser data, a total volume of 1.17 ± 0.1 km3 of water equivalent (w.eq.) at the volcano in 2012 was calculated, only 37 % of the estimated volume of 1961, a reduction mainly explained by the area shrinkage and ice thinning rates observed in the last 51 years. This total volume represents a lower boundary available for melting during eruptive events when lahars mudflows can be generated, because mainly in the winter, nearly 0.14 km3 w.eq.
    [Show full text]
  • Plan De Impulso a La Carga Ferroviaria Prólogo
    Bío / Chillán / San Carlos / Ñiquén / San Fabián / Coihueco / Pinto / San Ignacio / El Carmen / Yungay / Pemuco / Bulnes / Quillón / Ránquil / Portezuelo / Coelemu / Treguaco / Cobquecura / Quirihue / Ninhue / San Nicolás / Chillán Viejo / Alto Bío Bío / Los Ángeles / Cabrero / Tucapel / Antuco / Quilleco / Santa Bárbara / Quilaco / Mulchén / Negrete / Nacimiento / Laja / San Rosendo / Yumbel / Concepción / Talcahuano / Penco / Tomé / Florida / Hualpén / Hualqui / Santa Juana / Lota / Coronel / San Pedro de la Paz / Chiguayante / Lebu / Arauco / Curanilahue / Los Álamos / Cañete / Contulmo / Tirúa / Región de la Araucanía / Angol / Renaico / Collipulli / Lonquimay / Curacautín / Ercilla / Victoria / Traiguén / Lumaco / Purén / Los Sauces / Temuco / Lautaro / Perquenco / Vilcún / Cholchol / Cunco / Melipeuco / Curarrehue / Pucón / Villarrica / Freire / Pitrufquén / Gorbea / Loncoche / Toltén / Teodoro Schmidt / Saavedra / Carahue / Nueva Imperial / Galvarino / Padre Las Casas / Región de Los Ríos / Valdivia / Mariquina / Lanco / Máfil / Corral / Los Lagos / Panguipulli / Paillaco / La Unión / Futrono / Río Bueno / Lago Ranco / Región de Los Lagos / Osorno / San Pablo / Puyehue / Puerto Octay / Purranque / Río Negro / San Juan de la Costa / Puerto Montt / Puerto Varas / Cochamó / Calbuco / Maullín / Los Muermos / Fresia / Llanquihue / Frutillar / Castro / Ancud / Quemchi / Dalcahue / Curaco de Vélez / Quinchao / Puqueldón / Chonchi / Queilén / Quellón / Chaitén / Hualaihué / Futaleufú / Palena / Región de Aysén del General Carlos Ibáñez del
    [Show full text]