Index

Note: page numbers in italics refer to figures; those in bold refer to tables

ADEOS TOMS 178, 181,189 calc-silicates 125 Advanced Earth Observing Satellite (ADEOS) Cameroon, Mount 9, 182, 190 TOMS 178, 181,189 carbon disulphide (CS2) 297 Advanced Spaceborne Thermal Emission and carbonyl sulphide (OCS) 297 Reflection Radiometer (ASTER) 150, Cerro Azul, Galapagos 182, 188, 190 198 Cerro Hudson, 182, 184, 188 Advanced Very High Resolution Radiometer Cerro Negro, Nicaragua 33, 182 (AVHRR) 331 volcanic fumarole 140 aerosol cloud, development of 332 chemistry-transport model (CTM) 297-8 Agnano-Monte Spina (AMS) explosive climate sensitivity 342 eruption 53-61 climatic influence 265-6 Agung, Indonesia 335, 377 closed-path spectroscopy 150 air pollution C-O-H-S fluids, saturation 81-99 mortality and 402 rhyolitic composition 87-90 tropospheric sulphur burden and 387-9 tholeiitic composition 85-7 volcanic eruptions and 401-2 Colima Rift 265 Aleutians 186 Colima volcano, Mexico 39, 139, 169, 173 andesitic compositions 26-7, 29, 30 diffuse degassing 271-4 Ardoukoba, Djibouti 243 diffuse gas measurements 267-8 Arenal, Costa Rica 206 fumarole sampling and analyses 267, Asama volcano, Japan 156 268-71,269 Aso, Japan 156 geological background 264-5 ASTER 150, 198 plume measurements 267 asymmetry parameter 335 previous geochemical studies 266-7 ATHAM 309, 314, 315, 317-18, 319 sulphur dioxide flux 271,273,273 simulation 318, 323 Colo volcano, Indonesia 182, 184, 187, 188, atmospheric impacts of tropospheric gas plumes 330 387-91 Correlation Spectrometer (COSPEC) 134, 141, atomic force microscopy (AFM) 143 143, 150-4, 151, 161, 162, 162, 204, Augustine, Mount, Alaska 39, 182, 184, 188, 219, 220, 265, 384 330, 331 applications 171-3 AVHRR 331 elevation effects in 169-75 AVIRIS 395 used at Masaya 352 operation and accuracy 151-2 Ballachulish, Scotland 134 pressure and temperature dependence Banda Api, Indonesia 182, 184, 188, 374 169-71 basaltic compositions 27-32, 31, 46 column abundances 169-70 basaltic eruption 6-9, 7 path-length concentration:column basicity moderating parameter 97 abundance relationship 171 Beer-Lambert law 56, 169, 175 path-length concentrations 170-1 Berlin, Mount, Antarctica 232 SO2 and mass of magma, correlation Bezymianny, Kamchatka 182, 187, 188, 190, 377 between 373 Big Island, Hawai'i 388 volcanological interpretation of SO2 fluxes Bishop Tuff 45, 45, 139 152-3 Boltzmann-Matano analysis 57-8 COSPEC see Correlation Spectrometer buchites 127-9 crystallization, degassing and, in ascending B6rfell-Dreki , Iceland 117, 118 magma 13-16 416 INDEX

DIAL 159 FESEM/EDS 23-43 difference frequency generation (DFG) lasers Fish Canyon Tuff, Colorado 27 159, 163 Flood-Grjotheim treatment 95-6 Differential Absorption LIDAR (DIAL) 159 Fourier Transform Infrared (FTIR) differential optical absorption spectroscopy spectroscopy 150, 151,153, 155-8, (DOAS) 150, 154-5, 154, 155, 161,162, 161,163, 203-18, 220, 265, 349-69 163 Mount Etna, Sicily 281-92 diffusion coefficients 57-8 measurements of water diffusivity 55-7 dimethyl sulphide (DMS) 297 Fourier Transform Ultraviolet Spectroscopy distributed feedback (DFB) lasers 159, 163 (FTUV) 163 DOAS 150, 154-5, 154, 155, 161, 162, 163 Fuego volcano, Guatemala 123, 377 dome-building eruptions 63-77 Doppler RADAR 162 volcano, Columbia 24, 70, 219, 243, 265 dry deposition 389-91 Galunggung volcano, Indonesia 181,182, 184, dry fogs 340, 389, 401,402, 403, 404-06, 411 187, 188, 206, 374 DUSTTRAK optical particle counter 160 gas correlation filter spectrometry (GASCOFIL) 153, 162 Earth Probe (EP) satellite TOMS 178, 180, 181, gas correlation imaging 154 184, 189-93, 197 gas segregation dynamics 6-13 Eastern Volcanic Zone (EVZ), Iceland 104, 105 basaltic eruption 6-9, 7 E1 Chich6n, Mexico 27, 33, 82, 142, 182, 184, silicic eruption 9-13 188, 308,374 GASCOFIL 153, 162 (1982 eruption) 178, 188, 329, 330, 331,332, General Circulation Model (GCM) 297-8, 299 336, 338, 377 Geostationary Meterological Satellite (GMS) C/S ratio 45, 45 331 EldN/t (AD 934-940 eruption), Iceland 105, 106, glass inclusions 108-10 108, 114, 114, 116, 116, 118 Global Ozone Monitoring Experiment electron microprobe (EMP) 309 (GOME) 197, 198 environmental impacts of tropospheric volcanic GOES 196 gas plumes 381-95 Grimsv6tn volcanic system, Iceland 103-19 Envisat- 1 satellite 180 groundwater, impact of tropospheric EOS/Aura satellite 180 gas plumes on 393-4 Erebus, Mount, volcano, Antarctica 123, 157, 169, 173, 383 H20 + CO2 saturation model 94-5 Fumarolic Ice Towers 231-43 Halema'uma'u, Hawai'i 282 carbon isotope samples 234-5, 236 halogens as tracers 63-77 ice cave observations 239 Harry's Dream, Mt Erebus 237, 238, 239, 242 flux from 233-4, 235-7 Hawaiian fire-fountains 6 monitoring inside ice towers and caves Heard Island, Southern Indian Ocean 182, 186 237-9 Heimaey, Iceland (1973) 9 soil gas data 234, 239-41 Hekla, Iceland (2000 eruption) 182, 184, 190, isotopes 241-2, 242-3 191,193, 308, 374, 377 ERS-2 197 Henry coefficient 313, 314 Erta 'Ale, Ethiopia 243 Henry's Law 354 Etna, Italy 9, 123, 142, 182, 190, 231,243, 265, hercynite 127, 132 298, 387, 389 high-alumina (HAB) 29-31 (2001 eruption) 193, 194, 284-5 HITRAN database (High-resolution aerosol emissions 152, 155, 157, 158, 161 Transmission molecular absorption ash leachates 205, 206 database) 156, 283, 356 FTIR 281-92 H61ms~t fires, Katla, Iceland 117, 118 factors controlling SO2, HC1 and HF 286-9 ICP-MS 143 fractional magma degassing 289-91 illness, human 401-12 mercury emissions 382 instrumental neutron activation analysis TOMS observations of 196-7 (INAA) 143 excess sulphur 152 Iraz6 volcano, Costa Rica 206, 248 Iztaccihuatl volcano, Mexico 124 Fernandina, Galapagos Islands 178, 182 Izu-Oshima, Japan 243 INDEX 417

Kalimantan 187 mafic melt compositions 38, 41, 43, 48 Kamchatka 186 magma chamber evolution, degassing and 16-18 Katla volanic system, Iceland 103-19 magma volatile contents, degassing and 18-19 Katmai, Alaska 27 Makian, Indonesia 182, 184, 188 Kilauea (Hawai'i) 2, 17, 123, 139, 231,243, 384 Mammoth Mountain, California 231 fractional degassing of 282 Manam volcano, PNG 182, 190, 193 Pu'u 'O'o vent 9, 161,282 Masaya volcano, Nicaragua 157, 158, 350-2, Krafla, Iceland 182, 186, 188, 374 350 (1984 eruption) 193 environmental impacts 382, 385, 385, 386, Krakatau, Indonesia 27, 32, 377 388 (1883 eruption) 1 location of active craters 351 Kudryavy volcano, Kurile Islands, Russia 39, measurements FTIR 357-63 142 short time-scale variability in FTIR Kuriles 186 measurements 363-6 tropospheric processes 366-7 Laacher See volcano eruption, Germany Mauna Loa, Hawai'i (1984 eruption) 182, 193, (12 900 yr Bp) 307-24 374 compositional parameters of halogens and Mayon, Mount, Philippines 182, 188 sulphur in 310-12 Melbourne, Mount, Antarctica 232 estimate of volatile release 312-13 melt inclusions 17, 26, 63, 103-21,283, 307, 372 HC1 emission 319, 321 MELTS code 66, 67, 68 hydrometeors 319, 321 Merapi, Mount, Java 39, 129, 182, 188 processes in the eruption column 313 Meteor-3 (MS) TOMS 178, 180 release of gases from ice 316-17 Michelson interferometer 156 scavenging by ice particles 315-17 mid-ocean ridge basalts (MORBs) 110 scavenging by liquid droplets 313-15 Mihara, Mount, Japan 150 transfer of solutes during microphysical Minoan eruption of Santorini 27 processes 316 Miyake-jima volcano, Japan TOMS volcanic gases 319-21 observations of S02 from 182, 190, 196 volcanic particles 318-19, 320 modelling degassing processes 64-5 volcanology and petrological background application to Mont Pel6e and Santa Maria- 309 Santiaguito 70-7 Laki, Iceland closed- and open-system evolution 64 (1783-84 eruption) 2, 3, 103, 105, 106, 108, correlation diagrams between residual 113-14, 114, 116, 116, 118, 149, 329, volatile contents 68-9 332, 340, 342 equations for open- and closed-system air pollution and volcanic eruptions 401-2 evolution 65-8 air pollution and mortality 402 closed-system evolution 66 English mortality trends (1783-84) 405-6, 410 estimations of parameters 66 eruption dynamics 402 open-system evolution 66 human illness after eruption 401-12, 404 partition coefficients 66-8 local mortality crises 406-10 vescularity 68 meteorology during eruption 402-3 erupted magmatic clasts 64-5 pollution damage to vegetation 403-4, 403 halogens in glasses 65 Langila, PNG 182, 188 Moderate Resolution Imaging (1997) 189 Spectroradiometer (MODIS) 197, 395 Lfiscar (Chile) 10, 182, 184, 188,374, 377 MODIS 197, 395 Lau Basin, SW Pacific 83 Momotombo volcano, Nicaragua 39, 243 Lesser Antilles arc 48 Montserrat 27, 33, 48, 203-18, 219-30, 308 LI-COR spectrometer 134, 153, 162 Monzoni Complex, Italy 134 LIDAR 143, 155, 158-9, 161,162, 163, 336 mortality, English trends during Laki eruption LIDAR In-space Technology Experiment (1783-84) 405-6, 410 (LITE) 143 moving-mirror interferometer 156 Lonquimay volcano, Chile (1989-90 eruption) Mule Creek vent complex USA 10 9, 182, 188 Lux-Flood acidity 96 National Polar-orbiting Operational Environmental Satellite System mafic arc magmas 32 (NPOESS) 197 418 INDEX

Nausea Knob, Mt Erebus 240 geological and volcanological background Navier-Stokes equations 317 248 Nevado de Colima volcano, Mexico 264, 267 map of crater 249 volcano, Columbia 277, 393 sampling and analytical methods 248-50 Nimbus-7 (N7) satellite TOMS 177, 178, 179, sampling in Laguna Caliente 250 179, 180, 191,199 pollution NPOESS 197 air 401-2 Nyamuragira, Congo 183, 184, 187, 188, 190, damage to vegetation 403-4, 403 191,192, 193, 199, 374 Popcat6petl volcano, Mexico 9, 124-5, 158, 183, (1978 eruption) 189 187, 188, 189, 190, 242 (1996 eruption) 189 aerosol particles from the 134-42 TOMS observations of 194-5 contact-metamorphic particles 125-34 Nyiragongo volcano, Congo (2002) 189, 197 calc-silicates 125 wollastonite 125-7, 126-7, 130, 130, 131 Oldoinyo Lengai volcano, Tanzania 242, 265 spinel, buchites and indicators of contact OMI 180, 197, 199 metamorphism 127-9 OMPS 197 significance 129-34 Open Path Fourier Transform Infrared diffuse gas measurements 267-8, 275 Spectroscopy see Fourier Transform fumarole sampling and analyses 267,274-7 Infrared geological background 263-4 optical basicity 97 plume measurements 267 optical particle counters 150, 160, 163 previous geochemical studies 266 optical sensing of gas and aerosol emissions TOMS observations of 195 149-64 pre-eruptive conditions 26-32 Oshima, Japan 9, 183 basaltic compositions 27-32, 31 oxygen fugacity (fO2) 23-49, 83-99 rhyolitic to andesitic compositions 26-7, 29, Oyama, Mount, Japan 389 30 Ozone Mapping and Profiler Suite (OMPS) 197 pre-eruptive fluids, composition 32-3 Ozone Monitoring Instrument (OMI) 180, 197, comparison with volcanic gases 38-9 199 Pu'u 'O'o (Hawai'i) 9, 161,282

Pacaya volcano, Guatemala 123, 183 Q-Ab-Or diagram 66 Paricutin, Mexico (1949-56 eruption) 9 quasi-chemical ionic species of sulphur and Parker, Mount, Philippines (1641 eruption) 375, oxygen 95 377 QuikTOMS satellite 178, 197 particle-induced X-ray emission (PIXE) 143 Quizapu, Chile (1932 eruption) 375, 377 Pel6e, Mont (Martinique) 27, 33, 48 modelling of degassing 64, 68, 70, 71, 71, Rabaul, PNG 183, 184, 308, 330 72-3, 75, 76 Rainier, Mount, USA 232, 242 (1902 eruption) 65 RSAM 220 Phlegrean Fields, Italy (Campi Flegrei) 2, 53-61 Rayleigh distillation law 66 Pinatubo, Mount, Philippines 27, 33, 70, 118, Real-time Seismic Amplitude Measurement 152, 183, 184, 219, 308, 330, 374, 377 (RSAM) 220, 222, 223, 224, 225, 227 (1991 eruption) 1, 13, 23, 26, 45, 90, 178, Redlich-Kwong equation of state, modified 188, 297, 371 32 atmospheric effects of 329, 331,333, 336, Redoubt volcano, Alaska 183, 184, 186, 187, 338, 339-40, 341,342 188, 308, 331,374, 377 partitioning of sulphur in 26 remote-sensing, ground-based 349-68 Pine Grove 26, 27 rhyolitic composition 87-90 PIXE 143 Rinjani volcano, Indonesia 183, 187, 188 Plinian eruptions 63-77 Ruapehu, NZ (1995 eruption) 188 plume composition and emission rate 382-4 plume dispersion 384-7 S saturation model 95-9 plume monitoring techniques 381-2 Sakurajima, Mount, Japan 205, 377, 386, 388, Po/ls volcano, Costa Rica 39, 247-60, 265 389 chemistry and spring water discharges 250-5, Santa Maria-Santiaguito, Guatemala 16, 27, 36, 251,252-3, 257 377 gas and condensate samples 255-6, 254--5, 258 modelling of degassing 64, 68, 70, 71 INDEX 419

(1902 eruption) 33, 375 chemical and ozone changes 336-8 (1922 eruption) 74-7 climate response 341-3 Sauna Cave, Mt. Erebus 239,240 properties of volcanically enhanced Scanning Imaging Absorption Spectrometer for stratospheric aerosol 332-5 Atmospheric Cartography radiative changes 335-6 (SCIAMACHY) 143, 180, 198 relative forcing 339-41,340 SCIAMACHY 143, 144, 180, 198 Stromboli, Italy 6, 9, 83, 155, 382, 389 Sheveluch volcano, Kamchatka 183, 188, 190, sulphate capacity 98 377 sulphide capacity 97 Shishaldin volcano, Alaska (1999 eruption) 183, sulphur cycle, tropospheric 295-303 190, 191 recent model estimates 296-7 Showa-Shinzan volcano, Japan 39 STOCHEM-Ed model 297-9, 302 Sierra Negra, Galapagos Islands 183, 184, 188, sulphur dioxide yield 374 eruption magnitude and surface cooling (1979 eruption) 193 371-8 silicic eruption 9-13 magma mass and 373-5 silicic to andesitic melt compositions 33-8, 34, sulphur fugacity 0cS2) 23-49 35, 36, 37, 39-41, 40, 41, 46 sulphur partitioning 26 single scatter albedo 335 sulphur release 103-19 size distribution of volcanic particles 334, 335 atmospheric venting, estimation 110-15 soil, impact of tropospheric gas plumes on 393-4 glass inclusions 108-10 solar occultation geometry for FTIR two-stage degassing model 103, 105-6 measurements 157 sulphur solubility 24-6, 25 Soputan volcano, Indonesia 183, 184, 187, 188 summer cooling, erupted magma mass and 375 Soufri6re Hills volcano, Montserrat 10, 70, 76, Sun photometry 150, 160-1,163, 395 157, 158, 183, 187, 188, 190, 308, 366, SUPERFLUID code 84, 94 377, 382 synchrotron X-ray fluorescence microprobe (during 1997) 11, 12, 12, 65 (SYXRF) 309 Chances Peak 12 SYXRF 309 crystallization in magma 14, 14, 15 rainwater and ash leachate analysis 203-16 Tamazula Fault, Colima volcano, Mexico 265, ash leachate analysis 206, 208, 209, 215 272 composition 204-6 Tambora, Indonesia (1815 eruption) 1,332, 371, geochemical and remote-sensing data 377 215-16 Tar River valley, Montserrat 220 HCI/SO2 in ash leachates 211-12 Taupo volcano, NZ 27, 33 monitoring activity 204 Temkin model 83, 96 rainwater analysis 206-8, 210-11, 215 terrestrial ecosystems, impact of tropospheric rainwater results for 1996-1997 212-15 gas plumes on 391-3 magma extrusion dynamics 219-28 theolite composition 85-7 dome growth renewal 220-2 Thermal Infrared Multispectral Scanner cyclic gas exhalations 226-7 (TIMS) 150 gas measurement methods 222-3 Thj6rsfi events (8600 Be), Iceland 105, 114, 114, magma flux and SO2 flux 227-8 116, 116, 118 short-term variations in SO2 flux 226 time-of-flight secondary mass spectrometry TOMS observations of 195-6 (TOF SIMS) 143 Soufriere St Vincent, West Indies 183, 188 Tlfiloc volcano, Mexico 124 spinel 127-9 Toba volcano, Indonesia 27, 343 Spurr, Mount, Alaska 183, 184, 188, 308, 374 TOF SIMS 143 St Helens, Mount, USA 16, 27, 33, 39, 70, 82, Toop-Samis treatment of silicate melts 83, 95, 97 123, 142, 182, 184, 330, 374, 377 Total Ozone Mapping Spectrometer (TOMS) (1980 eruption) 174, 178, 187, 188, 206, 298, 150, 177-99, 299, 372-3 331,343, 384 ADEOS TOMS 178, 181,189 C/S atomic ratio 45, 45 case studies 194-7 SO2 flux 152, 153 Etna 196-7 SO2 mixing ratios 169, 173 Miyake-jima 196 Stokes' law 6 Nyamuragira 194-5 stratosphere 329-43 Popocat6petl 195 420 INDEX

Soufri6re Hills, Montserrat 195-6 two-stage degassing model 103, 105-6 , Ecuador 196 detection limits 181 Unzen, Mount, Japan 27, 39, 156 Earth Probe (EP) satellite TOMS 178, 180, Usu volcano, Japan 39, 142, 231,377 181,184, 189-93, 197 results (1996-2001) 189, 190 van't Hoff equation 314 Meteor-3 (MS) TOMS 178, 180 vegetation, impact of tropospheric gas plumes missions 1978-2001 180 on 391-3 after Mount Pinatubo eruption 338,338 Veidiv6tn volcanic system, Iceland 103-19 Nimbus-7 (N7)satellite TOMS 177, 178, 179, Vesuvius, Italy 53, 129, 134, 140, 243, 389 179, 180, 191,199 , Chile 9 QuikTOMS satellite 178, 197 Volcfin de Colima, Mexico see Colima regions with detected eruptions 188 volcanic ash properties 331-2 tectonic settings with TOMS-detected development of ash clouds 332 eruptions 189 composition 331 TOMS Aerosol Index 178, 181, 184 size distribution 331-2 UV remote sensing in the post-TOMS era Volcanic Explosivity Index (VEI) 180, 299, 197-9, 198 330, 330, 373 volcanic emissions database 180-9, 182-3, 184 volcanic plume monitoring 352-68 volcano types with detected eruptions 188 processes 352-4, 353 volcanoes with TOMS-detected eruptions chemical and physical reactions affecting 184-8, 185, 186 HC1 354 Tramway Ridge, Mt Erebus 232, 234, 237, 241 chemical and physical reactions affecting Trans Mexican Volcanic Belt 124 SO2 353-4 transmission electron microscopy (TEM) 143 deposition processes 354 tropospheric volcanic gas plumes meteorological effects 353 atmospheric impacts 387-91 simplified models 354-5 air pollution and tropospheric sulphur volume extinction coefficient 335 burden 387-9 Vulcano, Italy 155, 156, 157, 231,265, 382, 385, dry and wet deposition 389-91 387, 389 challenges and prospects 394-5 environmental impacts 381-95 water diffusion experiments 53-61 impact on soil and groundwater 393-4 calculation of water diffusivity 57-8 impact on terrestrial ecosystems 391-3 different melt compositions 59-61, 60 impact on vegetation 391-3 diffusion-couple experiments 54-5 plume composition and emission rate FTIR spectroscopy 55-7 382-4 temperature and water content dependence plume dispersion 384-7 58-9, 59 plume monitoring techniques 381-2 wet deposition 389-91,205 Tungurahua volcano, Ecuador, TOMS White Island, NZ 243, 382, 383-4 observations of 183, 190, 196 Wolf volcano, Galapagos 183, 184 Turrialba volcano, Costa Rica 248 wollastonite 125-7, 126-7, 130, 130, 131