
Index Note: page numbers in italics refer to figures; those in bold refer to tables ADEOS TOMS 178, 181,189 calc-silicates 125 Advanced Earth Observing Satellite (ADEOS) Cameroon, Mount 9, 182, 190 TOMS 178, 181,189 carbon disulphide (CS2) 297 Advanced Spaceborne Thermal Emission and carbonyl sulphide (OCS) 297 Reflection Radiometer (ASTER) 150, Cerro Azul, Galapagos 182, 188, 190 198 Cerro Hudson, Chile 182, 184, 188 Advanced Very High Resolution Radiometer Cerro Negro, Nicaragua 33, 182 (AVHRR) 331 volcanic fumarole 140 aerosol cloud, development of 332 chemistry-transport model (CTM) 297-8 Agnano-Monte Spina (AMS) explosive climate sensitivity 342 eruption 53-61 climatic influence 265-6 Agung, Indonesia 335, 377 closed-path spectroscopy 150 air pollution C-O-H-S fluids, saturation 81-99 mortality and 402 rhyolitic composition 87-90 tropospheric sulphur burden and 387-9 tholeiitic composition 85-7 volcanic eruptions and 401-2 Colima Rift 265 Aleutians 186 Colima volcano, Mexico 39, 139, 169, 173 andesitic compositions 26-7, 29, 30 diffuse degassing 271-4 Ardoukoba, Djibouti 243 diffuse gas measurements 267-8 Arenal, Costa Rica 206 fumarole sampling and analyses 267, Asama volcano, Japan 156 268-71,269 Aso, Japan 156 geological background 264-5 ASTER 150, 198 plume measurements 267 asymmetry parameter 335 previous geochemical studies 266-7 ATHAM 309, 314, 315, 317-18, 319 sulphur dioxide flux 271,273,273 simulation 318, 323 Colo volcano, Indonesia 182, 184, 187, 188, atmospheric impacts of tropospheric gas plumes 330 387-91 Correlation Spectrometer (COSPEC) 134, 141, atomic force microscopy (AFM) 143 143, 150-4, 151, 161, 162, 162, 204, Augustine, Mount, Alaska 39, 182, 184, 188, 219, 220, 265, 384 330, 331 applications 171-3 AVHRR 331 elevation effects in 169-75 AVIRIS 395 used at Masaya 352 operation and accuracy 151-2 Ballachulish, Scotland 134 pressure and temperature dependence Banda Api, Indonesia 182, 184, 188, 374 169-71 basaltic compositions 27-32, 31, 46 column abundances 169-70 basaltic eruption 6-9, 7 path-length concentration:column basicity moderating parameter 97 abundance relationship 171 Beer-Lambert law 56, 169, 175 path-length concentrations 170-1 Berlin, Mount, Antarctica 232 SO2 and mass of magma, correlation Bezymianny, Kamchatka 182, 187, 188, 190, 377 between 373 Big Island, Hawai'i 388 volcanological interpretation of SO2 fluxes Bishop Tuff 45, 45, 139 152-3 Boltzmann-Matano analysis 57-8 COSPEC see Correlation Spectrometer buchites 127-9 crystallization, degassing and, in ascending B6rfell-Dreki lavas, Iceland 117, 118 magma 13-16 416 INDEX DIAL 159 FESEM/EDS 23-43 difference frequency generation (DFG) lasers Fish Canyon Tuff, Colorado 27 159, 163 Flood-Grjotheim treatment 95-6 Differential Absorption LIDAR (DIAL) 159 Fourier Transform Infrared (FTIR) differential optical absorption spectroscopy spectroscopy 150, 151,153, 155-8, (DOAS) 150, 154-5, 154, 155, 161,162, 161,163, 203-18, 220, 265, 349-69 163 Mount Etna, Sicily 281-92 diffusion coefficients 57-8 measurements of water diffusivity 55-7 dimethyl sulphide (DMS) 297 Fourier Transform Ultraviolet Spectroscopy distributed feedback (DFB) lasers 159, 163 (FTUV) 163 DOAS 150, 154-5, 154, 155, 161, 162, 163 Fuego volcano, Guatemala 123, 377 dome-building eruptions 63-77 Doppler RADAR 162 Galeras volcano, Columbia 24, 70, 219, 243, 265 dry deposition 389-91 Galunggung volcano, Indonesia 181,182, 184, dry fogs 340, 389, 401,402, 403, 404-06, 411 187, 188, 206, 374 DUSTTRAK optical particle counter 160 gas correlation filter spectrometry (GASCOFIL) 153, 162 Earth Probe (EP) satellite TOMS 178, 180, 181, gas correlation imaging 154 184, 189-93, 197 gas segregation dynamics 6-13 Eastern Volcanic Zone (EVZ), Iceland 104, 105 basaltic eruption 6-9, 7 E1 Chich6n, Mexico 27, 33, 82, 142, 182, 184, silicic eruption 9-13 188, 308,374 GASCOFIL 153, 162 (1982 eruption) 178, 188, 329, 330, 331,332, General Circulation Model (GCM) 297-8, 299 336, 338, 377 Geostationary Meterological Satellite (GMS) C/S ratio 45, 45 331 EldN/t (AD 934-940 eruption), Iceland 105, 106, glass inclusions 108-10 108, 114, 114, 116, 116, 118 Global Ozone Monitoring Experiment electron microprobe (EMP) 309 (GOME) 197, 198 environmental impacts of tropospheric volcanic GOES 196 gas plumes 381-95 Grimsv6tn volcanic system, Iceland 103-19 Envisat- 1 satellite 180 groundwater, impact of tropospheric EOS/Aura satellite 180 gas plumes on 393-4 Erebus, Mount, volcano, Antarctica 123, 157, 169, 173, 383 H20 + CO2 saturation model 94-5 Fumarolic Ice Towers 231-43 Halema'uma'u, Hawai'i 282 carbon isotope samples 234-5, 236 halogens as tracers 63-77 ice cave observations 239 Harry's Dream, Mt Erebus 237, 238, 239, 242 flux from 233-4, 235-7 Hawaiian fire-fountains 6 monitoring inside ice towers and caves Heard Island, Southern Indian Ocean 182, 186 237-9 Heimaey, Iceland (1973) 9 soil gas data 234, 239-41 Hekla, Iceland (2000 eruption) 182, 184, 190, isotopes 241-2, 242-3 191,193, 308, 374, 377 ERS-2 197 Henry coefficient 313, 314 Erta 'Ale, Ethiopia 243 Henry's Law 354 Etna, Italy 9, 123, 142, 182, 190, 231,243, 265, hercynite 127, 132 298, 387, 389 high-alumina basalts (HAB) 29-31 (2001 eruption) 193, 194, 284-5 HITRAN database (High-resolution aerosol emissions 152, 155, 157, 158, 161 Transmission molecular absorption ash leachates 205, 206 database) 156, 283, 356 FTIR 281-92 H61ms~t fires, Katla, Iceland 117, 118 factors controlling SO2, HC1 and HF 286-9 ICP-MS 143 fractional magma degassing 289-91 illness, human 401-12 mercury emissions 382 instrumental neutron activation analysis TOMS observations of 196-7 (INAA) 143 excess sulphur 152 Iraz6 volcano, Costa Rica 206, 248 Iztaccihuatl volcano, Mexico 124 Fernandina, Galapagos Islands 178, 182 Izu-Oshima, Japan 243 INDEX 417 Kalimantan 187 mafic melt compositions 38, 41, 43, 48 Kamchatka 186 magma chamber evolution, degassing and 16-18 Katla volanic system, Iceland 103-19 magma volatile contents, degassing and 18-19 Katmai, Alaska 27 Makian, Indonesia 182, 184, 188 Kilauea (Hawai'i) 2, 17, 123, 139, 231,243, 384 Mammoth Mountain, California 231 fractional degassing of 282 Manam volcano, PNG 182, 190, 193 Pu'u 'O'o vent 9, 161,282 Masaya volcano, Nicaragua 157, 158, 350-2, Krafla, Iceland 182, 186, 188, 374 350 (1984 eruption) 193 environmental impacts 382, 385, 385, 386, Krakatau, Indonesia 27, 32, 377 388 (1883 eruption) 1 location of active craters 351 Kudryavy volcano, Kurile Islands, Russia 39, measurements FTIR 357-63 142 short time-scale variability in FTIR Kuriles 186 measurements 363-6 tropospheric processes 366-7 Laacher See volcano eruption, Germany Mauna Loa, Hawai'i (1984 eruption) 182, 193, (12 900 yr Bp) 307-24 374 compositional parameters of halogens and Mayon, Mount, Philippines 182, 188 sulphur in 310-12 Melbourne, Mount, Antarctica 232 estimate of volatile release 312-13 melt inclusions 17, 26, 63, 103-21,283, 307, 372 HC1 emission 319, 321 MELTS code 66, 67, 68 hydrometeors 319, 321 Merapi, Mount, Java 39, 129, 182, 188 processes in the eruption column 313 Meteor-3 (MS) TOMS 178, 180 release of gases from ice 316-17 Michelson interferometer 156 scavenging by ice particles 315-17 mid-ocean ridge basalts (MORBs) 110 scavenging by liquid droplets 313-15 Mihara, Mount, Japan 150 transfer of solutes during microphysical Minoan eruption of Santorini 27 processes 316 Miyake-jima volcano, Japan TOMS volcanic gases 319-21 observations of S02 from 182, 190, 196 volcanic particles 318-19, 320 modelling degassing processes 64-5 volcanology and petrological background application to Mont Pel6e and Santa Maria- 309 Santiaguito 70-7 Laki, Iceland closed- and open-system evolution 64 (1783-84 eruption) 2, 3, 103, 105, 106, 108, correlation diagrams between residual 113-14, 114, 116, 116, 118, 149, 329, volatile contents 68-9 332, 340, 342 equations for open- and closed-system air pollution and volcanic eruptions 401-2 evolution 65-8 air pollution and mortality 402 closed-system evolution 66 English mortality trends (1783-84) 405-6, 410 estimations of parameters 66 eruption dynamics 402 open-system evolution 66 human illness after eruption 401-12, 404 partition coefficients 66-8 local mortality crises 406-10 vescularity 68 meteorology during eruption 402-3 erupted magmatic clasts 64-5 pollution damage to vegetation 403-4, 403 halogens in glasses 65 Langila, PNG 182, 188 Moderate Resolution Imaging (1997) 189 Spectroradiometer (MODIS) 197, 395 Lfiscar (Chile) 10, 182, 184, 188,374, 377 MODIS 197, 395 Lau Basin, SW Pacific 83 Momotombo volcano, Nicaragua 39, 243 Lesser Antilles arc 48 Montserrat 27, 33, 48, 203-18, 219-30, 308 LI-COR spectrometer 134, 153, 162 Monzoni Complex, Italy 134 LIDAR 143, 155, 158-9, 161,162, 163, 336 mortality, English trends during Laki eruption LIDAR In-space Technology Experiment (1783-84) 405-6, 410 (LITE) 143 moving-mirror interferometer 156 Lonquimay volcano, Chile (1989-90 eruption) Mule Creek vent complex USA 10 9, 182, 188 Lux-Flood acidity 96 National Polar-orbiting Operational Environmental Satellite System mafic arc magmas 32 (NPOESS) 197 418 INDEX Nausea Knob, Mt Erebus 240 geological and volcanological background Navier-Stokes equations 317 248 Nevado de Colima volcano, Mexico 264, 267 map of crater 249 Nevado del Ruiz volcano, Columbia 277, 393 sampling and analytical methods 248-50 Nimbus-7 (N7) satellite TOMS 177, 178, 179, sampling in Laguna Caliente 250 179, 180, 191,199 pollution NPOESS 197 air 401-2 Nyamuragira, Congo 183, 184, 187, 188, 190, damage to vegetation 403-4, 403 191,192, 193, 199,
Details
-
File Typepdf
-
Upload Time-
-
Content LanguagesEnglish
-
Upload UserAnonymous/Not logged-in
-
File Pages6 Page
-
File Size-