Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users Pattern and process in volcano seismology Item Type Thesis Authors Benoit, John Paul Download date 04/10/2021 14:14:58 Link to Item http://hdl.handle.net/11122/9464 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zed) Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PATTERN AND PROCESS IN VOLCANO SEISMOLOGY A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By John Paul Benoit, B.S. Fairbanks, Alaska May 1998 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 9838831 Copyright 1998 by Benoit, John Paul All rights reserved. UMI Microform 9838831 Copyright 1998, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PATTERN AND PROCESS IN VOLCANO SEISMOLOGY By John Paul Benoit RECOMMENDED: . _ s L " 's' Prcif. Max Wyss. - ProLJohn Eicfaelbereer / jc I- /4 c? > ^ ^ - l5r. Roger Hansen, State Seismologist Research Prof. Stephen McNutt. Advisory Comfnltfee Chair Associate Prof. Paul Layer. \i Department Head /i / APPROVED: Prof. Paul Reichardt, Dean, College of Natural Science. Engineering, and Mathematics Prof. Joseph Kan. Dean of the Graduate School Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ABSTRACT The patterns of occurrence and the underlying processes of two important seismological phenomena at volcanoes, earthquake swarms and volcanic tremor, were investigated. A global database of volcanic earthquake swann parameters was compiled and was used to evaluate the March 10-14,19% seismo-volcanic crisis at Akutan Volcano, Alaska. Earthquake swarm durations and magnitudes were compared with eruptive activity using this database. Trends identified using the database suggest that the Akutan swarm was not precursory and, no eruption occurred. We postulate that a deep intrusion with a large opening component occurred under the flanks of Akutan. The global swarm database has provided an important baseline and has proved to be useful in preparing eruption scenarios for public information releases. The duraiion-amplitude distribution or ffequency-size scaling of volcanic tremor was also examined. The hypothesis tested was that the duraiion-amplitude distribution may be approximated by an exponential function. The exponential model, implying a scale-bound source process, is found to be a better fit to data then a power-law (scale invariant) model. The exponential model gives a satisfactory description of tremor associated with a wide range of volcanic activity. We propose that exponential scaling of tremor amplitude is due to fixed source geometry driven by a variable excess pressures. This implies that the characteristic amplitude of the duration-amplitude distribution is proportional to a geometric dimension of the source. Broadband seismic data recorded at Arenal volcano, Costa Rica, provide new constraints on tremor source processes. Arenal's tremor contains as many as seven harmonics, whose frequencies vary temporally. This source is inferred to be a shallow, 200-660 m-long resonator, radiating seismic energy from displacement antinodes. We infer that the resonator is gas- charged magma with variable bubble concentration within the conduit and also changes as a function of time, thereby changing the acoustic velocity and the boundary conditions. Polarization analyses for the fundamental mode show particle motion azimuths abruptly rotating, which may be explained by a decrease in incidence angle near the recording site. We suggest that energy for this mode is radiated predominantly from a displacement antinode that is changing position with time. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. iv Table of Contents Abstract “* Table of Contents *v List of Figures “ List of Tables » i Acknowledgements Chapter 1 Thesis Introduction 1.0 General Introduction I 1.1 An overview of the chapters 3 1.2 References 6 Chapter 2 Use of a global database of volcanic earthquake swarms during the 1996 seismo-volcanic crisis at Akutan volcano, Alaska 2.0 Abstract 7 2.1 Introduction . 8 23 Global Volcanic Earthquake Swarm Database (GVESD) 10 2_3 Results from the GVESD 11 2.3.1 Swann duration 12 2.3.2 Swann duration and eruption explosivity 15 2.3.3 Event type and swarm duration 17 2.3.4 The largest shock within a volcanic earthquake swarm (Mmax) 18 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. V 2.3.5 Mmax and the explosivity of the following eruption 21 2.4 A case study: Using the GVESD during the 1996 Akutan crisis 23 2.4.1 Description of the Akutan swarms 23 2.5 Discussion 28 2.6 Conclusions 39 2.7 Acknowledgements 42 2.8 References 42 Appendix 2A Development and Description of the Global Volcanic Earthquake Swarm Database 2A.1 Introduction 47 2A.2 Database Structure and Description 49 2AJ2.1 Volcano Table 50 2A.22 Earthquake Swarm Table 50 2A.23 Eruption Table 50 2A3 VOLCAT Organization and Parameter Description 51 2A.3.1 Morphology. Tectonic Framework. Elevation, and Edifice Relief 53 2A.32 Range of Erupted Products 55 2A.4 SWARMCAT Organization and Parameter Description 56 2A.4.1 Swarm Dates. Durations and Uncertainties 57 2A.4.2 Definition of a Swarm and Swarm Duration 57 2A.43 Swarm Type 58 2A.4.4 Event Types 60 2A.43 Quality Grades 61 2A.4.6 Maximum Magnitude. Intensity, and Depth 62 2A.4.7 Cumulative Energy. Energy Release Rate, and Repose 63 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. vi 2A.4.8 Earthquake Counts and Magnitude Detection Threshold 63 2A.4.9 Seismograph Information 63 2A.4.10 Previous Swarms and Other Reported Information 64 2A.4.11 References, Comment and Key Phrase fields 65 2A3 ERUPTCAT Organization and Parameter Description 65 2A.5.1 Data Sources 69 2A.5 2 Erupted Volume. Plume Height. Silica Content, and the VE2 70 2A.6 Improvements and Future Work 71 2A.7 Acknowledgements 71 2A.8 References 72 Chapter 3 The Duration-Amplitude Distribution of Volcanic Tremor 3.0 Abstract 74 3.1 Introduction 75 32 Frequency-size distributions 77 33 Methodology 78 3.4 Case studies 86 3.4.1 Crater Peak. Mt. Spurr. Alaska 86 3.4.2 Kilauea. Hawaii 90 3.4.3 Karkar and Ulawun, Papua New Guinea 93 3.4.4 Pavlof. Alaska 96 3.43 Fuego. Guatemala and Arenal. Costa Rica 97 3.4.6 Old Faithful Geyser. Yellowstone National Park. Wyoming 99 3.4.7 Redoubt. Alaska 101 33 Is volcanic tremor a series of law-fireqnency events closely spaced in time? 102 3.6 Discussion 106 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3.7 Conclusions 112 33 Acknowledgements 112 3.9 References 113 Appendix 3A 3A.1 Definition of reduced displacement 119 3AJ2 Calculation of reduced displacement from RSAM data 119 Appendix 3B 3B.1 Overestimation of RMS ground displacement using helicorders or RSAM data 122 Appendix 3C 3C.1 The duration-amplitndewaling of acoustic signals at Arenal volcano 125 3G2 Data 125 3C_3 Duration-amplitude measurements 125 Chapter 4 New Constraints on Source Processes of Volcanic Tremor at Arena! Volcano. Costa Rica, Using Broadband Seismic Data 4.0 Abstract 128 4.1 Introduction 129 42 Analyses and Results 133 43 Discussion and Conclusions 142 4.4 Other Observations and Future Work 149 45 Acknowledgements 150 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. viii 4.6 References 150 Appendix 4A 4A.1 Calculation of theoretical dispersion curves of Love waves 154 4A3 Source code 155 Chapter 5 Thesis Condusion 5.0 General Conclusions 159 5.1 Volcanic Earthquake Swarms 159 52 Volcanic
Recommended publications
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title Assessment of high enthalpy geothermal resources and promising areas of Chile Permalink https://escholarship.org/uc/item/9s55q609 Authors Aravena, D Muñoz, M Morata, D et al. Publication Date 2016 DOI 10.1016/j.geothermics.2015.09.001 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Assessment of high enthalpy geothermal resources and promising areas of Chile Author links open overlay panel DiegoAravena ab MauricioMuñoz ab DiegoMorata ab AlfredoLahsen ab Miguel ÁngelParada ab PatrickDobson c Show more https://doi.org/10.1016/j.geothermics.2015.09.001 Get rights and content Highlights • We ranked geothermal prospects into measured, Indicated and Inferred resources. • We assess a comparative power potential in high-enthalpy geothermal areas. • Total Indicated and Inferred resource reaches 659 ± 439 MWe divided among 9 areas. • Data from eight additional prospects suggest they are highly favorable targets. • 57 geothermal areas are proposed as likely future development targets. Abstract This work aims to assess geothermal power potential in identified high enthalpy geothermal areas in the Chilean Andes, based on reservoir temperature and volume. In addition, we present a set of highly favorable geothermal areas, but without enough data in order to quantify the resource. Information regarding geothermal systems was gathered and ranked to assess Indicated or Inferred resources, depending on the degree of confidence that a resource may exist as indicated by the geoscientific information available to review. Resources were estimated through the USGS Heat in Place method. A Monte Carlo approach is used to quantify variability in boundary conditions.
    [Show full text]
  • Festuca Pallescens Colliguaya Integerrima- Festuca Pallescens
    Zona de Pastizales Rolando Demanet Filippi Universidad de la Frontera Superficie de Praderas y Pasturas PRADERAS Y PASTURAS REGIÓN SEMBRADAS, PERMANENTES Y MEJORADAS NATURALES DE ROTACION * I 2,829 84 475,755 II 1,890 142 24,808 III 1,489 279 418,836 IV 43,412 10,999 3,070,887 V 14,587 13,232 782,081 VI 16,680 18,234 503,384 VII 49,116 89,070 811,014 VIII 51,157 75,746 733,471 IX 77,248 138,206 829,919 X 145,524 525,312 680,515 XI 14,969 29,324 662,616 XII 9,865 94,979 2,664,242 RM 23,840 14,193 264,694 Total País 452,606 1,009,801 11,922,222 Fuente: INE * No incluye Anuales Importancia del Almacenamiento del Agua Altitud Capacidad Año Tiempo de uso Nombre Categoría Región Ubicación m.s.n.m. (Mm3) Area km2 Inauguración (Años) Chungará Lago I 196 km NO Arica 4.750 msnm 4.750 21.000 Cotacotani Laguna I 190 km NO Arica. 600 Huasco Laguna I 174 km SE Arica Chaxa Laguna II 56 km San Pedro Atacama 18 km Sur Socaire 5.910 Miscanti y Miñiques Laguna II msnm 5.910 213 km SE Calama 4.260 Legía Laguna II msnm 4.260 8 Del Negro Francisco Laguna III 226 kms E Copiapó 4.126 860 Laguna Verde Laguna III 265 km NE Copiapó 4.325 Santa Rosa Laguna III Sur del salar de Maricunga Santa Juana Emabalse III 20 km E Vallenar. 160 410 1955 53 Lautaro Tranque III 96 km SE Copiapó 27 1930 78 Recoleta Embalse IV 25 km NO Ovalle 100 1934 74 La Paloma Embalse IV 27 km SE Ovalle 780 3.000 1974 34 La Laguna Embalse IV 3.350 msnm Elqui 3.350 40 5 Cogotí Embalse IV 19 km N Combarbalá 150 Peñuelas Lago V 13 km Valparaíso 8.000 1900 108 Rapel Lago VI 102 km O Rancagua 720
    [Show full text]
  • Volcanes Cercanos Volcanes Cercanos
    Localidades al interior de un radio de 30 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá Callaqui, Copahue Ralco Santa Bárbara Bio Bio Bio Bio Nevados de Chillán Recinto Los Lleuques Pinto Ñuble Bio Bio Villarrica, Quetrupillán, Lanín, Sollipulli Curarrehue Curarrehue Cautín La Araucanía Llaima, Sollipulli Mellipeuco Melipeuco Cautín La Araucanía Villarrica, Quetrupillán, Lanín Pucón Pucón Cautín La Araucanía Llaima Cherquenco Vilcún Cautín La Araucanía Villarrica Lican Ray Villarrica Cautín La Araucanía Villarrica Villarrica Villarrica Cautín La Araucanía Llaima, Lonquimay Curacautín Curacautín Malleco La Araucanía Llaima, Lonquimay Lonquimay Lonquimay Malleco La Araucanía Villarrica, Quetrupillán, Lanín, Mocho Coñaripe Panguipulli Valdivia Los Rios Calbuco, Osorno Alerce Puerto Montt Llanquihue Los Lagos Calbuco, Osorno Las Cascadas Puerto Octay Osorno Los Lagos Chaitén, Michinmahuida, Corcovado Chaitén Chaitén Palena Los Lagos Hornopirén, Yate, Apagado, Huequi Rio Negro Hualaihue Palena Los Lagos Localidades al interior de un radio de 50 km respecto de volcanes activos Volcanes cercanos Localidad Comuna Provincia Región Olca, Irruputuncu Collaguasi Pica Iquique Tarapacá Taapaca, Parinacota Putre Putre Parinacota Tarapacá San José San Alfonso San José de Maipo Cordillera Metropolitana San José San José de Maipo San José de Maipo Cordillera Metropolitana Tupungatito La Parva Lo Barnechea Santiago
    [Show full text]
  • Boron and Other Trace Element Constraints on the Slab-Derived Component in Quaternary Volcanic Rocks from the Southern Volcanic Zone of the Andes
    Geochemical Journal, Vol. 47, pp. 185 to 199, 2013 Boron and other trace element constraints on the slab-derived component in Quaternary volcanic rocks from the Southern Volcanic Zone of the Andes HIRONAO SHINJOE,1* YUJI ORIHASHI,2 JOSÉ A. NARANJO,3 DAIJI HIRATA,4 TOSHIAKI HASENAKA,5 TAKAAKI FUKUOKA,6 TAKASHI SANO7 and RYO ANMA8 1Tokyo Keizai University, Japan 2Earthquake Research Institute, The University of Tokyo, Japan 3Servicio Nacional de Geología y Minería, Chile 4Kanagawa Prefectural Museum of Natural History, Japan 5Department of Earth and Environmental Sciences, Graduate School of Science and Technology, Kumamoto University, Japan 6Department of Environment Systems, Faculty of Geo-environmental Science, Rissho University, Japan 7Department of Geology and Paleontology, National Museum of Nature and Science, Japan 8Integrative Environmental Sciences, Graduate School of Life and Environmental Sciences, Tsukuba University, Japan (Received April 18, 2012; Accepted December 25, 2012) We present a dataset for boron and other trace element contents obtained from samples from 13 volcanoes distributed along the Quaternary volcanic front of the Southern Volcanic Zone (SVZ) of the Chilean Andes. The dataset shows con- straints on the nature of slab-derived component to mantle source. Analyzed samples show large negative Nb and Ta anomalies, and enrichment of alkaline earth elements and Pb, which are features of typical island arc volcanic rocks. Boron contents of SVZ volcanic rocks range 2.3–125.5 ppm, exhibiting marked enrichment relative to N-MORB and OIB. Both the boron contents and B/Nb ratios of the volcanic rocks increase from the southern SVZ (SSVZ) to central SVZ (CSVZ). Fluid mobile/immobile element ratios (B/Nb, Ba/Nb, Pb/Nb, and K/Nb) are used to examine slab-derived com- ponent to mantle source.
    [Show full text]
  • PDF Linkchapter
    Index Page numbers in italic denote figures. Page numbers in bold denote tables. adakite vii, 3, 15–17, 23, 156, 175, 251 Baja California 390, 393–395, 396 distribution in Japan arc 25–26 basalt viii, 2, 5, 8, 65, 369 adiabatic dT/dP 202 fractionation 84–86 Aegean arc, magmatism 137–158 Gulf of California 395–398, 401 analytical techniques 142 high-TiO2(Nb) basalt 80 differentiation and eruption 155–156 intrusion rate 87 geochemistry 142–146 Mariana arc 242–243, 245 geological setting 137–140 to andesite 32 source and process 146–155 basaltic andesite viii, 82, 140, 141, 310 air-fall deposit 210, 211, 216–218, 219 fractional crystallization 223, 225 amphibole 153, 156, 270, 271 Guatemala 209, 212, 215, 219, 220, 222 Anatahan Felsic Province 237, 251, 252–253 Gulf of California 393, 395–398 Andean arc, magma sources 303–330 Oregon 284–286, 288, 293, 296, 297 geochemistry 311–320 Papua 121, 123, 124–125 magma history 308–309 batholith 401 tectonic setting 304–311 10Be isotope 2 andesite and subduction 1–2, 58–59 Benioff zone, Andean arc 304, 325, 326, 328 andesite from tholeiite 281–300 Bezymianny volcano 104, 106 andesite, Gulf of California 389, 395–401, 403 bimodal volcanism 6, 67, 80, 93, 270 andesite, NE Japan island arc 335–378 Californian Gulf 393–398, 401, 403 andesitic magma, preferential eruption 257–276 Guatemala 210, 215, mixing 258–260 Japan arc 336, 340, 374 mobility 260–261 Mariana arc 251, 252–253 origin 257, 261–270 boninite vii, 130, 131 recharge filtering 270, 272–274 Bouguer gravity anomaly 338, 354 andesitic petrogenesis
    [Show full text]
  • Evaluating a Fluorosis Hazard After a Volcanic Eruption
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/15253810 Evaluating a Fluorosis Hazard after a Volcanic Eruption Article in Archives of Environmental Health An International Journal · October 1994 DOI: 10.1080/00039896.1994.9954992 · Source: PubMed CITATIONS READS 37 59 6 authors, including: Professor Eric K. Noji, M.D. King Saud University 295 PUBLICATIONS 3,601 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: ICARUS | Max Planck Institute for Ornithology View project The Effects of Extreme Environmental Conditions on Human Physiology and Survivability View project All content following this page was uploaded by Professor Eric K. Noji, M.D. on 19 April 2015. The user has requested enhancement of the downloaded file. Evaluating a Fluorosis Hazard after a Volcanic Eruption CAROL H. RUBIN JORGE GRANDE Epidemic Inlelligence Service U.S. Agency for International Development Epidemiology Program Office Office of Disaster Assistance Atlanta, Georgia San Jose, Costa Rica ERICK. NOJI F. VITTANI Centers for Disease Control and Prevention Ministry of Health and Social Action National Center for Environmental Health Buenos Aires, Argentina Atlanta, Georgia PAULJ. SELIGMAN JOHN L. HOLTZ Centers for Disease Control and Prevention National Institute for Occupational Safety and Health Cincinnati, Ohio ABSTRACT. The August, 1991 eruption of Mt. Hudson (Chile) deposited ash across southern Argentina and contributed to the deaths of thousands
    [Show full text]
  • Dynamical Regime and Advance Rate of Lava Flows Using Its Deposit Characteristics: 2 Cases from the Lonquimay and Villarrica
    IAVCEI 2013 Scientific Assembly - July 20 - 24, Kagoshima, Japan Forecasting Volcanic Activity - Reading and translating the messages of nature for society 0P2_3H-O11 Room A5 Date/Time: July 20 17:15-17:30 Dynamical regime and advance rate of lava flows using its deposit characteristics: 2 cases from the Lonquimay and Villarrica volcanoes, Southern Andes of Chile Maria Angelica Contreras1,2, Angelo Castruccio1,2 1Universidad de Chile, Chile, 2Centro de Excelencia en Geotermia de los Andes (CEGA), Chile E-mail: [email protected] The advance of lava flows is controlled by the effusion rate, rheology, topography and cooling effects. Consequently, the deposits of lava flows would reflect the interplay between these factors. We tested a methodology to estimate the variations of flow rate and velocity of ancient lava flows using its deposit dimensions, textural characteristics and petrography. We studied the deposits of two lava flows with contrasting styles generated during historical times in the Southern Andes of Chile: the 1971 eruption of Villarrica volcano and the 1988-89 eruption of Lonquimay volcano. Both eruptions have a record of its duration and advance rate, so we can test different dynamical models in order to fit better the available data. The Villarrica eruption lasted a couple of days and the resulting lava flow reached a length of 16.5 km, with thicknesses of 3-15 m, depending mainly on the channelling of the flow. The morphology is transitional between Pahoe-hoe and Aa. Clasts morphologies are mainly rubbly and slabby, ranging from a few cm to a couple of meters in diameter.
    [Show full text]
  • The Origin and Emplacement of Domo Tinto, Guallatiri Volcano, Northern Chile Andean Geology, Vol
    Andean Geology ISSN: 0718-7092 [email protected] Servicio Nacional de Geología y Minería Chile Watts, Robert B.; Clavero Ribes, Jorge; J. Sparks, R. Stephen The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Andean Geology, vol. 41, núm. 3, septiembre, 2014, pp. 558-588 Servicio Nacional de Geología y Minería Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=173932124004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Andean Geology 41 (3): 558-588. September, 2014 Andean Geology doi: 10.5027/andgeoV41n3-a0410.5027/andgeoV40n2-a?? formerly Revista Geológica de Chile www.andeangeology.cl The origin and emplacement of Domo Tinto, Guallatiri volcano, Northern Chile Robert B. Watts1, Jorge Clavero Ribes2, R. Stephen J. Sparks3 1 Office of Disaster Management, Jimmit, Roseau, Commonwealth of Dominica. [email protected] 2 Escuela de Geología, Universidad Mayor, Manuel Montt 367, Providencia, Santiago, Chile. [email protected] 3 Department of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol. BS8 1RJ. United Kingdom. [email protected] ABSTRACT. Guallatiri Volcano (18°25’S, 69°05’W) is a large edifice located on the Chilean Altiplano near the Bo- livia/Chile border. This Pleistocene-Holocene construct, situated at the southern end of the Nevados de Quimsachata chain, is an andesitic/dacitic complex formed of early stage lava flows and later stage coulées and lava domes.
    [Show full text]
  • Secular Variation of the Earth Magnetic Field And
    Secular variation of the Earth magnetic field and application to paleomagnetic dating of historical lava flows in Chile Pierrick Roperch, Annick Chauvin, Luis Lara, Hugo Moreno To cite this version: Pierrick Roperch, Annick Chauvin, Luis Lara, Hugo Moreno. Secular variation of the Earth magnetic field and application to paleomagnetic dating of historical lava flows in Chile. Physics oftheEarth and Planetary Interiors, Elsevier, 2015, 242, pp.65-78. 10.1016/j.pepi.2015.03.005. insu-01130332 HAL Id: insu-01130332 https://hal-insu.archives-ouvertes.fr/insu-01130332 Submitted on 4 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Secular variation and paleomagnetic dating Physics of the Earth and Planetary Interiors, 2015 Roperch, Pierrick, Annick Chauvin, Luis E. Lara, et Hugo Moreno. « Secular Variation of the Earth’s Magnetic Field and Application to Paleomagnetic Dating of Historical Lava Flows in Chile ». Physics of the Earth and Planetary Interiors 242 (mai 2015): 65-78. https://doi.org/10.1016/j.pepi.2015.03.005. Secular variation of the Earth’s magnetic field and application to paleomagnetic dating of historical lava flows in Chile. Pierrick Roperch1, Annick Chauvin1, Luis E.
    [Show full text]
  • Southern Andes Supersite Coupled Geohazards at Southern Andes: Copahue-Lanín Arc Volcanoes and Adjacent Crustal Faults
    Version 1.3 15 October 2018 www.geo-gsnl.org Biennial report for Permanent Supersite/Natural Laboratory GeoHazSA: Southern Andes Supersite Coupled geohazards at Southern Andes: Copahue-Lanín arc volcanoes and adjacent crustal faults History https://geo-gsnl.org/supersites/permanent- supersites/southern-andes-supersite/ Supersite Coordinator Luis E. Lara, SERNAGEOMIN, CIGIDEN, Av. Santa María 0104, Santiago, CHILE 1 Version 1.3 15 October 2018 www.geo-gsnl.org 1. Abstract The Southern Andes (33°-46°S) is a young and active mountain belt where volcanism and tectonic processes pose a significant threat to the communities nearby. In fact, only recent eruptions caused evacuations of 250-3500 people and critical infrastructure is present there. The segment here considered corresponds to a low altitude orogen (<2000 masl on average) but characterized by a high uplift rate as a result of competing tectonic and climate forces. This Supersite focuses on a ca. 200 km long segment of the Southern Andes where 9 active stratovolcanoes (Copahue, Callaqui, Tolhuaca, Lonquimay, Llaima, Sollipulli, Villarrica, Quetrupillan and Lanín) and 2 distributed volcanic fields (Caburgua and Huelemolles) are located, just along a tectonic corridor defined by the northern segment of the Liquiñe-Ofqui Fault System (LOFS). Activity of the LOFS has been detected prior to some eruptions and coeval with some others. There are several tectonic and volcanic models to be investigated that derive from a strong two-way coupling between tectonics and volcanism, recently detected by either geophysical techniques or numerical modeling. Hazards in the segment derive mostly from the activity of some of the most active volcanoes in South America (e.g., Villarrica, Llaima), others with long-lasting but weak current activity (e.g., Copahue) or some volcanoes with low eruptive frequency but high magnitude eruptions in the geological record (e.g., Lonquimay).
    [Show full text]
  • Recent Changes in Total Ice Volume on Volcán Villarrica, Southern Chile
    Nat Hazards DOI 10.1007/s11069-014-1306-1 ORIGINAL PAPER Recent changes in total ice volume on Volca´n Villarrica, Southern Chile Andre´s Rivera • Rodrigo Zamora • Jose´ Uribe • Anja Wendt • Jonathan Oberreuter • Sebastia´n Cisternas • Fernando Gimeno • Jorge Clavero Received: 3 October 2013 / Accepted: 13 June 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Results obtained by the first intensive airborne surveys carried out at Volca´n Villarrica (39°S) in Southern Chile, are presented. These campaigns included the use of a scanner laser system, for detecting the glacier surface topography, and a helicopter-borne ice penetrating radar, for measuring ice thicknesses. These surveys allowed determining the snow and ice volume storage at this volcano, volume which is susceptible to melt during eruptive events generating dangerous fast flows (lahars). Volca´n Villarrica is one of the most active volcanoes in Chile, with frequent eruptive events, many of them associated with lahars which are considered the most hazardous process at this volcano. In fact, most of the casualties and infrastructure damages incurred during historical eruptive events at the volcano are associated with lahars. With use of the radar and laser data, a total volume of 1.17 ± 0.1 km3 of water equivalent (w.eq.) at the volcano in 2012 was calculated, only 37 % of the estimated volume of 1961, a reduction mainly explained by the area shrinkage and ice thinning rates observed in the last 51 years. This total volume represents a lower boundary available for melting during eruptive events when lahars mudflows can be generated, because mainly in the winter, nearly 0.14 km3 w.eq.
    [Show full text]
  • Plan De Impulso a La Carga Ferroviaria Prólogo
    Bío / Chillán / San Carlos / Ñiquén / San Fabián / Coihueco / Pinto / San Ignacio / El Carmen / Yungay / Pemuco / Bulnes / Quillón / Ránquil / Portezuelo / Coelemu / Treguaco / Cobquecura / Quirihue / Ninhue / San Nicolás / Chillán Viejo / Alto Bío Bío / Los Ángeles / Cabrero / Tucapel / Antuco / Quilleco / Santa Bárbara / Quilaco / Mulchén / Negrete / Nacimiento / Laja / San Rosendo / Yumbel / Concepción / Talcahuano / Penco / Tomé / Florida / Hualpén / Hualqui / Santa Juana / Lota / Coronel / San Pedro de la Paz / Chiguayante / Lebu / Arauco / Curanilahue / Los Álamos / Cañete / Contulmo / Tirúa / Región de la Araucanía / Angol / Renaico / Collipulli / Lonquimay / Curacautín / Ercilla / Victoria / Traiguén / Lumaco / Purén / Los Sauces / Temuco / Lautaro / Perquenco / Vilcún / Cholchol / Cunco / Melipeuco / Curarrehue / Pucón / Villarrica / Freire / Pitrufquén / Gorbea / Loncoche / Toltén / Teodoro Schmidt / Saavedra / Carahue / Nueva Imperial / Galvarino / Padre Las Casas / Región de Los Ríos / Valdivia / Mariquina / Lanco / Máfil / Corral / Los Lagos / Panguipulli / Paillaco / La Unión / Futrono / Río Bueno / Lago Ranco / Región de Los Lagos / Osorno / San Pablo / Puyehue / Puerto Octay / Purranque / Río Negro / San Juan de la Costa / Puerto Montt / Puerto Varas / Cochamó / Calbuco / Maullín / Los Muermos / Fresia / Llanquihue / Frutillar / Castro / Ancud / Quemchi / Dalcahue / Curaco de Vélez / Quinchao / Puqueldón / Chonchi / Queilén / Quellón / Chaitén / Hualaihué / Futaleufú / Palena / Región de Aysén del General Carlos Ibáñez del
    [Show full text]