Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal

Total Page:16

File Type:pdf, Size:1020Kb

Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal coatings Article Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal P. Barreiro 1, A. Andreotti 2, M. P. Colombini 2, P. González 1 and J. S. Pozo-Antonio 3,* 1 Dpto. Física Aplicada, Escola de Enxeñaría Industrial, University of Vigo, 36310 Vigo, Spain; [email protected] (P.B.); [email protected] (P.G.) 2 Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; [email protected] (A.A.); [email protected] (M.P.C.) 3 Dpto. Enxeñaría dos Recursos Naturais e Medio Ambiente, Escola de Enxeñaría de Minas e Enerxía, University of Vigo, 36310 Vigo, Spain * Correspondence: [email protected]; Tel.: +34-986814077 Received: 29 January 2020; Accepted: 21 February 2020; Published: 25 February 2020 Abstract: The colonization of stone-built monuments by different organisms (algae, fungi, lichens, bacteria, and cyanobacteria) can lead to biodeterioration of the stone, negatively affecting the artistic value of the heritage. To address this issue, laser cleaning has been widely investigated in recent years, due to the advantages it offers over traditional mechanical and chemical methods: it is gradual, selective, contactless, and environmentally friendly. That said, the laser parameters should be optimized in order to avoid any by-effects on the surface as a result of overcleaning. However, as the adjustment of each parameter to clean polymineralic stones is a difficult task, it would be useful to know the effect of overcleaning on the different forming minerals depending on the wavelength used. In this paper, three different wavelengths (355 nm, 532 nm, and 1064 nm) of a Q-Switch neodymium-doped yttrium aluminum garnet (Nd:Y3Al5O12) laser, commonly known as QS Nd:YAG laser were applied to extract a naturally developed sub-aerial biofilm from Vilachán granite, commonly used in monuments in the Northwest (NW)Iberian Peninsula. In addition to the removal rate of the biofilm, the by-effects induced for fluences higher than the damage threshold of the stone were evaluated using stereomicroscopy, color spectrophotometry, and scanning electron microscopy with energy-dispersive x-ray spectroscopy. The results showed that different removal rates were obtained depending on the wavelength used and 532 nm obtained the highest removal level. In terms of by-effects, biotite melting was registered on all surfaces regardless of the wavelength. In addition, 532 nm seemed to be the most aggressive laser system, inducing the greatest change in appearance as a result of extracting the kaolinite crackled coating and the segregations rich in Fe, which are a result of natural weathering. These changes were translated into colorimetric changes visible to the human eye. The surfaces treated with 355 nm and 1064 nm showed lower surface changes. Keywords: laser; stone cleaning; Nd:YAG; granite; cleaning effectiveness; cultural heritage 1. Introduction Laser cleaning is a technique that is currently being fine-tuned in order to clean cultural heritage stones [1–3]. The advantages of this technology lie in its selectivity and graduality (precise removal of thin layers), not forgetting the fact that it does not come into contact with the surface to be cleaned and it is environmentally friendly [1,4]. Furthermore, the possibility of automation is an enticing option that is still under investigation. Since laser was first used in stone cleaning in the 1970s—to clean incrustations from Venetian marble [5]—there has been a considerable amount of scientific research focused on the Coatings 2020, 10, 196; doi:10.3390/coatings10030196 www.mdpi.com/journal/coatings Coatings 2020, 10, 196 2 of 17 optimization of lasers to maximize cleaning while minimizing damage caused to the forming minerals. A neodymium-doped yttrium aluminum garnet (Nd:YAG) laser, a neodymium-doped yttrium orthovanadate (Nd:YVO4) laser, and an erbium-doped yttrium aluminium garnet (Er:YAG) laser have been used to extract graffiti, as well as sulphated and lichenic black crusts from different rocks with different texture and mineralogy, primarily limestone, marble, and granite [3,6–11]. In the Northwest (NW)Iberian Peninsula, cultural heritage is built with granite, which is a bioreceptive stone [12]. Considering the climate of this region (a humid climate with rainy winters), the stone’s durability would be compromised by the colonization of monuments and facades with organisms [12]. Sub-aerial biofilms (SAB), composed mainly of phototrophs (algae and cyanobacteria), are the initial colonization stage on granite. Consequently, the artistic and historical value of the monument will be negatively affected. Therefore, removal of this initial biocolonization from monuments should be carried out urgently in order to avoid greater damage from hyphae penetration and mineralogical transformations, or neoformations due to the acids generated by the organisms [13,14]. Different procedures have been implemented by professionals to extract biological patinas and crusts, mostly involving chemical methods and the mechanical scalpel [15,16]. Although scientific publications devoted to the optimization of biofilm removal from granite are scarcer than for carbonate stones, these traditional procedures have nonetheless exhibited some drawbacks in this area, making a case for the use of other less invasive techniques in granite cleaning. Pozo et al. [17] have evaluated chemical products (ethanol, benzalkonium chloride, hydrochloric acid solutions, and the commercial biocides Hyvar X® and LimpiaFachadas1®) used by professionals to extract a biofilm composed of filamentous green algae belonging to the genus Trebouxia and cyanobacteria belonging to the genera Gleocapsa and Choococcus from coarse-grained granite. Despite the satisfactory results achieved by the commercial biocides, salts were precipitated on the surface. Moreover, the same research evaluated a low-pressure (0.5–1.5 bar) air rotation system that used a mixture of air–water–silicate grains as an abrasive. Due to the formation of cracks and grain extraction, surface roughness was increased. Therefore, in order to avoid such issues that pose a risk to manually carved cultural heritage elements, laser treatment is increasingly being implemented. However, to the best of our knowledge, there is insufficient scientific information relating to the laser cleaning of SAB, with this alteration being the initial stage in the colonization of granitic monumental heritage. López et al. [18] found that by means of an Nd:YVO4 laser at 355 nm, a patina composed of filamentous green algae was successfully removed from a fine-grained granitic surface. In the cleaning of a biological colonization from marble, the third harmonic (355 nm) of the Nd:YAG system showed more advantages when compared with the fundamental wavelength (1064 nm); also, the yellowing effect observed when using the latter was avoided [19]. When treating a more complex crust composed of lichen, Sanz et al. [11] found that the optimal conditions for laser removal were highly dependent on the lichen species and, to a lesser extent, on the type of stone. They applied a Q-Switched (QS) Nd:YAG laser at 1064 nm (IR), 355 nm and 266 nm (UV), as a single wavelength and in dual sequential irradiation (IR+UV). What we learn from the research conducted so far is that every study case needs its optimization. Therefore, before to perform a real cleaning of biological colonization on a heritage stone, it is necessary to perform preliminary tests in small areas with the laser systems available, playing with the different laser parameters such as frequency, velocity, fluence, etc. According to the literature, the polymineralic composition of granite hinders the effectiveness of laser cleaning. Therefore, it is a challenge to perform a satisfactory level of cleaning without damaging some mineral grains. Biotite is the most critical granite-forming mineral [20,21]. Moreover, tests applying an Nd:YAG laser at the fundamental wavelength (1064 nm) and at the third harmonic (355 nm) on a uncoated pinkish granite have reported that the characteristic coloration became paler as a result of the physical elimination of the ZnFe2O4 particles from the feldspars due to thermal effects [22]. However, these color changes were not detected on grey granites and whitish limestones [23,24]. On carbonate stones, a yellowish effect was detected on marble when it was irradiated with the Coatings 2020, 10, 196 3 of 17 fundamental of a QS Nd:YAG laser in order to extract black crusts [7,25]. However, UV radiation using the third harmonic of a QS Nd:YAG laser induced a grey discoloration on these surfaces [7]. From a practical point of view, Nd:YAG lasers are used as portable equipment to perform cleaning in situ. Currently, these portable systems offer the possibility to experiment with different wavelengths (266 nm, 355 nm, 532 nm, and 1064 nm). Considering the findings from the references cited above, as well as the current incorporation of new wavelengths in portable laser equipment to clean cultural heritage objects in situ, it is vital to ascertain, in addition to the removal level, the effect produced by the different wavelengths on the stone when overcleaning takes place. This is because, during in situ cleaning, fluence variations could occur and lead to unintended damage in the forming minerals. Therefore, before any laser cleaning is performed, the extent of potential damage will be a decisive factor in the choice of wavelength. In this study, three wavelengths (355 nm, 532 nm, and 1064 nm) of a QS Nd:YAG laser system were used to extract a SAB from a pre-Hercynian granite commonly used in cultural heritage in the NW Iberian Peninsula. Particular attention was paid to the by-effects on the different granite-forming minerals in order to find different behaviours of the granite and each forming mineral under different wavelengths. The findings of this research will be used by conservator–restorers in order to select an appropriate wavelength to perform the cleaning of pre-Hercynian granites, characterized by their yellowish-brown coloration.
Recommended publications
  • Optical Characterization and Study of the Judd-Ofelt Parameters of Nd³+
    UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE FÍSICA ALVARO HERRERA CARRILLO OPTICAL CHARACTERIZATION AND STUDY OF THE JUDD-OFELT PARAMETERS OF Nd3+ AND Sm3+ IONS IN DIFFERENT GLASSES AND CRYSTALS FOR PHOTONIC APPLICATIONS Maceió 2012 UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE FÍSICA ALVARO HERRERA CARRILLO OPTICAL CHARACTERIZATION AND STUDY OF THE JUDD-OFELT PARAMETERS OF Nd3+ AND Sm3+ IONS IN DIFFERENT GLASSES AND CRYSTALS FOR PHOTONIC APPLICATIONS Dissertation submitted to the Instituto de Física of the Universidade Federal de Alagoas in partial fulfillment of the requirements for the degree of Master in Science. Supervisor: Prof. Dr. Carlos Jacinto Da Silva Maceió 2012 Catalogação na fonte Universidade Federal de Alagoas Biblioteca Central Divisão de Tratamento Técnico Bibliotecária responsável: Fabiana Camargo dos Santos H564o Herrera Carrillo, Alvaro. Optical characterization and study of the Judd-Ofelt parameters of Nd³+ and Sm³+ ions in differents glasses and crystals for photonics applications / Alvaro Herrera Carrillo. – 2012. 117 f. : il. Orientador: Carlos Jacinto da Silva. Dissertação (Mestrado em Física) – Universidade Federal de Alagoas. Instituto de Física. Maceió, 2012. Bibliografia: f. 112-117. 1. Judd-Ofelt – Teoria. 2. Vidros. 3. Cristais. I. Título. CDU: 535.343.2 ACKNOWLEDGEMENTS To God that always full of wisdom every corner of my universe. To my dear parents, for their invaluable love, for guiding me spiritually to this new chapter of my life. To my son Juan Sebastian, result of great inspiration and light of my life. To my brothers for their constant emotional support. I extend my sincerest gratitude to my supervisor, PhD. Carlos Jacinto for his leadership, patience, and encouragement throughout the course of this research as well as his invaluable assistance for finalizing this dissertation .
    [Show full text]
  • Few-Cycle Pulses Amplification for Attosecond Science Applications: Modeling and Experiments
    FEW-CYCLE PULSES AMPLIFICATION FOR ATTOSECOND SCIENCE APPLICATIONS: MODELING AND EXPERIMENTS by MICHAËL HEMMER M.S. Engineering Ecole Nationale Supérieure de Physique de Marseille, 2005 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Optics and Photonics at the University of Central Florida Orlando, Florida Spring Term 2011 Major professor: Martin Richardson © 2011 Michaël Hemmer ii ABSTRACT The emergence of mode-locked oscillators providing pulses with durations as short as a few electric-field cycles in the near infra-red has paved the way toward electric-field sensitive physics experiments. In addition, the control of the relative phase between the carrier and the pulse envelope, developed in the early 2000’s and rewarded by a Nobel price in 2005, now provides unprecedented control over the pulse behaviour. The amplification of such pulses to the millijoule level has been an on-going task in a few world-class laboratories and has triggered the dawn of attoscience, the science of events happening on an attosecond timescale. This work describes the theoretical aspects, modeling and experimental implementation of HERACLES, the Laser Plasma Laboratory optical parametric chirped pulse amplifier (OPCPA) designed to deliver amplified carrier-envelope phase stabilized 8-fs pulses with energy beyond 1 mJ at repetition rates up to 10 kHz at 800 nm central wavelength. The design of the hybrid fiber/solid-state amplifier line delivering 85-ps pulses with energy up to 10 mJ at repetition rates in the multi-kHz regime tailored for pumping the optical parametric amplifier stages is presented.
    [Show full text]
  • The Effect of Pressure on the Structural and Electronic Properties of Yttrium Orthovanadate YVO4 Compound: Total-Energy Calculations
    514 Z. Kristallogr. 225 (2010) 514–519 / DOI 10.1524/zkri.2010.1319 # by Oldenbourg Wissenschaftsverlag, Mu¨nchen The effect of pressure on the structural and electronic properties of yttrium orthovanadate YVO4 compound: total-energy calculations Messekine SouadI, III, Sahnoun Mohammed*,I, Driz MohamedII and Daul ClaudeIII I Laboratoire de Physique Quantique de la Matie`re et de Mode´lisation Mathe´matiques (LPQ3M). Universite´ de Mascara. B.P 763 Mascara, Algeria II Applied Materials Laboratory (AML), Universite´ de Sidi-bel-Abbes, 22000, Algeria III De´partement de Chimie, Universite´ de Fribourg, Chemin du Muse´e 9, 1700 Fribourg, Switzerland Received July 31, 2010; accepted September 22, 2010 Ab-initio calculations / Structural phase transition / sively investigated systems of this family are orthovana- Electronic properties / Pressure effect dates [1], and most of these compounds crystallize either in the zircon-type [space group I41/amd, Z ¼ 4] or the Abstract. We have investigated the structural properties scheelite-type structure [space group I41/a, Z ¼ 4] at ambi- and electronic properties of the zircon-type and the schee- ent conditions. Yttrium orthovanadate YVO4 crystallizes in lite-type YVO4 using first-principles method and by con- the zircon-type structure at ambient conditions. The com- sidering Engel-Vosko exchange correlation energy func- pound is attractive for technological applications owing to tional. The calculated lattice parameters and the atomic its properties such as large refractive indices, non-linear positions of the zircon-type YVO4 are in good agreement coefficients, birefringence and effectively no infrared ab- with the experiment. We also found from this study that sorption from 2.5 to 15 mm [2].
    [Show full text]
  • Laser Gain Crystals
    Laser Gain Crystals II-VI is a leading supplier of laser gain crystals grown in-house, which are used in a wide variety of applications and industries. Nd:YAG, Nd:YLF and Nd:YVO4 crystals are ideal for solid state lasers used in welding, cutting and micro-machining applications. Er:YAG crystals are used in medical lasers for aesthetic and dental applications. Our advanced growth and coating technology improves the conversion efficiency, laser damage threshold and life time. Major Material Production Capability ■ ■ Nd:YVO4 More than 150 growth stations in Florida, USA and Fuzhou, China ■ YAG (Nd,Er,Yb,Ho,Tm) ■ Complete quality control from growth, polishing and coating ■ YLF (Nd,Pr) ■ 100 coating machines ■ Diversified coating technology from IBS, E-beam, IAD and Magnetron sputtering WEBSITE CONTACT US © 2020 II-VI Incorporated ii-vi.com [email protected] Rev. 01 Legal notices: ii-vi.com/legal Neodymium Doped Yttrium Orthovanadate (Nd:YVO4) Crystals Nd:YVO4 is the most efficient laser host crystal for diode pumping among commercial laser crystals currently available, especially for low to middle power density. This is mainly due to its absorption and emission features surpassing Nd:YAG. Pumped by laser diodes, Nd:YVO4 crystal has been incorporated with high NLO coefficient crystals (LBO, BBO, or KTP) to frequency-shift the output from the near-infrared to green, blue, or even UV. Key features ■ Low lasing threshold and high slope efficiency ■ Low dependency on pump wavelength ■ Large stimulated emission cross-section at lasing wavelength ■ High absorption over a wide pumping wavelength bandwidth ■ Optically uniaxial and large birefringence emits polarized laser Figure 1.
    [Show full text]
  • Laser Diode End Pumped Nd :YVO4 Laser
    University of Technology Laser and Optoelectronics Engineering Department Laser Eng. Branch Experiment No.( 2 ) Laser Diode End Pumped Nd :YVO4 Laser Aim of experiment: A. Study how the reflectivity of the output coupler will affect on the cavity loss. B. Understand how the cavity length effect on the cavity loss by change cavity loss with fixed coupling loss. Apparatus: 1-Laser current driver, 2-aiming on optical plate 3-several output coupler mirror, 4-HR coating or 1064nm, 5-IR sensor card, 6-power meter device. Theory: 3+ Nd doped yttrium orthovanadate (YVO4) has shown a relatively low threshold at pulsed operation, early studies of this crystal were hampered by severe crystal growth problems, and as a result YVO4 was discarded as a host. With the emergence of diode pumping, Nd :YVO4 has become an important solid-state. A diode-end pumped solid-state laser (DPSSL) especially single-end- pump solid-state laser with high efficiency, high output power, a good spatial beam profile, and good stability is highly desired for use in material processing and other scientific applications such as pumping other laser crystals. Laser diode pumping has numerous advantage compared to lamp pumping including: Matching the laser diode emission with the absorption bands of gain medium . Easy to match laser diode beam profile to the fundamental laser resonator mode volume in the gain medium. Laser diode has high efficiency more than 30% for high power and 85% for low power . Lifetimes are quit high more than 5,000 hours Cooling system is very easy heat sink only . Low cost, weight , and other advantage .
    [Show full text]
  • OPTICAL and DEFECT STUDIES of WIDE BAND GAP MATERIALS By
    OPTICAL AND DEFECT STUDIES OF WIDE BAND GAP MATERIALS By CHARLES RICHARD SHAWLEY A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY School of Mechanical and Materials Engineering DECEMBER 2008 © Copyright by CHARLES RICHARD SHAWLEY, 2008 All Rights Reserved © Copyright by CHARLES RICHARD SHAWLEY, 2008 All Rights Reserved To the Faculty of Washington State University The members of the Committee appointed to examine the dissertation of CHARLES RICHARD SHAWLEYfind it satisfactory and recommend that it be accepted. ______________________________ Kelvin Lynn, Chair ______________________________ M. Grant Norton ______________________________ David Field ______________________________ Matthew McCluskey ii ACKNOWLEDGMENT The author is truly indebted to Dr. Kelvin G. Lynn for his invaluable assistance and guidance and for sponsoring this work. Many thanks are due to all members of the Center for Materials Research at Washington State University. Also, much gratitude is extended to Dr. M.G. Norton, Dr. D.P. Field, and Dr. M.D. McCluskey for their guidance and evaluation. Several of the photographs and plots used in this dissertation were provided by graduate students Denys Solodovnikov and Jalal Nawash as well as by Dr. Marc Weber. Their help is greatly appreciated. Many thanks are extended to Dr. Jim Elliston at the WSU Radiation Center for their help with the neutron activation analysis measurements The majority of this work was performed under the auspices of the Department of Defense, Joint Electromagnetics Technology Program Office, under the Assistant Secretary of Defense for Command, Control, Communications, and Intelligence (ASD/C3I), under contract N66001-00-C-6008. This work was supported under a subcontract from VLOC Inc.
    [Show full text]
  • Arxiv:1803.07520V2 [Quant-Ph] 13 Jan 2019 and Coherently Control Individual Ions in a Chip-Scale Ar- Positioner
    Optically addressing single rare-earth ions in a nanophotonic cavity Tian Zhong,1, 2, 3, ∗ Jonathan M. Kindem,1, 2 John G. Bartholomew,1, 2 Jake Rochman,1, 2 Ioana Craiciu,1, 2 Varun Verma,4 Sae Woo Nam,4 Francesco Marsili,5 Matthew D. Shaw,5 Andrew D. Beyer,5 and Andrei Faraon1, 2, y 1Kavli Nanoscience Institute and Thomas J. Watson, Sr., Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA. 2Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA. 3Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. 4National Institute of Standards and Technology, 325 Broadway, MC 815.04, Boulder, Colorado 80305, USA 5Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109, USA (Dated: January 15, 2019) We demonstrate optical probing of spectrally resolved single Nd3+ rare-earth ions in yttrium orthovanadate (YVO4). The ions are coupled to a photonic crystal resonator and show strong enhancement of the optical emission rate via the Purcell effect resulting in near-radiatively-limited single photon emission. The measured high coupling cooperativity between a single photon and the ion allows for the observation of coherent optical Rabi oscillations. This could enable optically controlled spin qubits, quantum logic gates, and spin-photon interfaces for future quantum networks. Rare-earth dopants in solids exhibit long-lived coher- icantly exceeds the linewidth of a Nd3+ ion, allowing ence in both the optical and spin degrees of freedom for coherent manipulation of spins with optical pulses. [1, 4]. The effective shielding of 4f electrons leads to Unlike prior experiments [8{13], this technique does not optical and radio-frequency transitions with less sensitiv- hinge on the spectroscopic details of a specific type of ion ity to noise in their crystalline surroundings at cryogenic and can be readily extended to other rare-earths or defect temperatures.
    [Show full text]
  • THE MAJOR RARE-EARTH-ELEMENT DEPOSITS of AUSTRALIA: GEOLOGICAL SETTING, EXPLORATION, and RESOURCES Figure 1.1
    CHAPTER ONE WHAT ARE RARE- EARTH ELEMENTS? 1.1. INTRODUCTION latter two elements are classified as REE because of their similar physical and chemical properties to the The rare-earth elements (REE) are a group of seventeen lanthanides, and they are commonly associated with speciality metals that form the largest chemically these elements in many ore deposits. Chemically, coherent group in the Periodic Table of the Elements1 yttrium resembles the lanthanide metals more closely (Haxel et al., 2005). The lanthanide series of inner- than its neighbor in the periodic table, scandium, and transition metals with atomic numbers ranging from if its physical properties were plotted against atomic 57 to 71 is located on the second bottom row of the number then it would have an apparent number periodic table (Fig. 1.1). The lanthanide series of of 64.5 to 67.5, placing it between the lanthanides elements are often displayed in an expanded field at gadolinium and erbium. Some investigators who want the base of the table directly above the actinide series to emphasise the lanthanide connection of the REE of elements. In order of increasing atomic number the group, use the prefix ‘lanthanide’ (e.g., lanthanide REE: REE are: lanthanum (La), cerium (Ce), praseodymium see Chapter 2). In some classifications, the second element of the actinide series, thorium (Th: Mernagh (Pr), neodymium (Nd), promethium (Pm), samarium 1 (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), and Miezitis, 2008), is also included in the REE dysprosium (Dy), holmium (Ho), erbium (Er), thulium group, while promethium (Pm), which is a radioactive (Tm), ytterbium (Yb), and lutetium (Lu).
    [Show full text]
  • Neodymium Doped Yttrium Orthovanadate (Nd:YVO4)
    ■■■ Neodymium Doped Yttrium Orthovanadate (Nd:YVO4) Introduction Nd:YVO4 is the most efficient laser host crystal for diode pumping among the current commercial laser crystals, especially, for low to middle power density. This is mainly for its absorption and emission features surpassing Nd:YAG. Pumped by laser diodes, Nd:YVO4 crystal has been incorporated with high NLO coefficient crystals ( LBO, BBO, or KTP) to frequency-shift the output from the near infrared to green, blue, or even UV. This incorporation to construct all solid state lasers is an ideal laser tool that can cover the most widespread applications of lasers, including machining, material processing, spectroscopy, wafer inspection, light displays, medical diagnostics, laser printing, and data storage, etc. It has been shown that Nd:YVO4 based diode pumped solid state lasers are rapidly occupying the markets traditionally dominated by water-cooled ion lasers and lamp­ pumped lasers, especially when compact design and single-longitudinal-mode outputs are required. Nd:YVO4 's advantages over Nd:YAG • As high as about five times larger absorption efficient over a wide pumping bandwidth around 808 nm (therefore,the dependency on pumping wavelength is much lower and a strong tendency to the single mode output) • As large as three times larger stimulated emission cross-section at the lasing wavelength of 1064nm • Lower lasing threshold and higher slope efficiency • As a uniaxial crystal with a large birefringence, the emission is only a linearly polarized. CASTECH Provides • Various doping concentration from0.1 % to 3%. • Doping concentration tolerance: ± 0. 05%( atm%< 1 % ), ± 0 .1 %( atm%2:1 %) 3 3 • Various size bulk and finishedhigh quality Nd:YVO4 crystals up to <j>35x50mm and <j>20x20mm , respectively; • 10,000 pcs ofNd:YVO4 devices per month in sizes 3x3x0.5 to 4x4x8mm • With quick delivery • With competitive price.
    [Show full text]
  • Neodymium Doped Yttrium Vanadate (Nd:YVO4)
    Nd:YVO4 Crystal (Neodymium Doped Yttrium Orthovanadate) Nd:YVO4 is one of the most promising commercially available diode pumped solid state laser materials. It has high laser induced damage threshold and good mechanical in addition to optical properties. Its large stimulated emission cross-section and high absorption of pump laser make it a right crystal for pocket laser. Nd: YVO4 can produce IR green and blue laser by using minor different set-up. A broad absorption band centered at 808nm and favorable mechanical properties make Nd:YVO4 well suited for compact, efficient, high power diode-pumped lasers. Natural birefringence gives rise to a highly polarized output at 1064.3 and 1342nm. Basic Properties of Nd:YVO4 Atomic Density: 1.26x1020 atoms/cm3 (Nd1.0%) Zircon Tetragonal, space group Crystal Structure: D4h-I4/amd a=b=7.1193A,c=6.2892A Density; 4.22g/cm3 Mohs Hardness: 4-5(Glass-like) Thermal Expansion α a=4.43x10-6/K Coefficient(300K): α c=11.37x10-6/K Thermal Conductivity //C:0.0523W/cm/K Coefficient(300K): ⊥C:0.0510W/cm/K Optical Properties of Nd:YVO4: Lasing wavelength: 1064nm,1342nm Thermal optical dno/dT=8.5×10-6/K coefficient (300K): dne/dT=2.9×10-6/K Stimulated emission × cross-section: 25 10-19cm2 @ 1064nm Fluorescent lifetime: 90μ s(1% Nd doping) Absorption coefficient: 31.4cm-1 @810nm Intrinsic loss: 0.02cm-1 @1064nm Gain bandwidth: 0.96nm@1064nm Polarized laser emission: π polarization; parallel to optic axis(c-axis) Diode pumped optical to optical efficiency: >60% Sellemeier n02=3.77834+0.069736/(λ 2-0.04724)-0.010813λ 2 equations (λ in um) ne2=4.59905+0.110534/(λ 2-0.04813)-0.012676λ 2 Laser Properties of Nd:YVO4 The major laser properties of Nd:YVO4 vs Nd:YAG are listed in Table below, including stimulated emission cross-sections ( σ ), Absorption Coefficient ( α ) Fluorescent lifetime (τ ),Absorption Length (La),threshold Power (Pth) and Pump Quantum Efficiency.
    [Show full text]
  • Raport Final De Activitate Ceres
    Denumirea Programului: Cercetare fundamentala, de interes socio- economic si cultural - CERES Codul Programului: C1 RAPORT FINAL DE ACTIVITATE CERES Perioada acoperita: 10.08.2001 – 31.10.2006 Data prezentarii: 2007 Elaborat de: Conducator de Program: Institutul de Fizica Atomica (IFA) Bucuresti - Magurele Reprezentant autorizat Director General Dr. Theodor IONESCU-BUJOR Director de Program: Dr. Theodor IONESCU-BUJOR C U P R I N S Pag. Raport final asupra derularii Programului CERES 3 Anexa FP – Fise de prezentare proiecte (selectie) 17 Anexa R – Tabel rezultate deosebite 127 Anexa 1 – Buget program 154 Anexa 2 – Unitati conducere proiecte 155 Anexa 3 – Structura personal de cercetare 156 Anexa 4 – Tipuri parteneriate 157 Anexa 5 – Rezultate competitii 158 Anexa 6 – Rezultate licitatii 159 Anexa 7 – Structura cheltuieli proiecte 160 Anexa 8 – Structura tarif 161 Anexa 9 – Rezultate proiecte 162 Anexa 10 – Fise de studiu (selectie) 163 Anexa 11 – Fise produs (selectie) 393 Anexa 12 – Fise tehnologie (selectie) 442 Anexa 13 – Fise Centre de excelenta (selectie) 461 Anexa 16 – Brevete 470 Anexa 17 – Publicatii 471 Anexa 18 – Comunicari stiintifice 472 Anexa 19 – Participare la Salon Cercetare 473 Anexa 20 – Colaborari internationale 474 Anexa 22 – Lista proiecte 475 2 PNCDI Programul CERES Institutul de Fizica Atomica R A P O R T F I N A L privind derularea programului CERES 1. Descrierea programului Codul Programului: C1 Durata Programului : 5 ani Data inceperii : 10.08.2001 Data finalizarii: 31.10.2006 Structura Programului Subprogramul
    [Show full text]
  • Yb3+-Doped YVO4 Crystal for Efficient Kerr-Lens Mode Locking in Solid
    3234 OPTICS LETTERS / Vol. 30, No. 23 / December 1, 2005 3+ Yb -doped YVO4 crystal for efficient Kerr-lens mode locking in solid-state lasers A. A. Lagatsky, A. R. Sarmani, C. T. A. Brown, and W. Sibbett J. F. Allen Physics Research Laboratories, School of Physics and Astronomy, University of St. Andrews, St. Andrews, KY16 9SS, Scotland, UK V. E. Kisel, A. G. Selivanov, I. A. Denisov, A. E. Troshin, K. V. Yumashev, and N. V. Kuleshov Institute of Optical Materials and Technologies, BNTU, 65 F. Scoriny Avenue, Building 17, Minsk, 220013 Belarus V. N. Matrosov, T. A. Matrosova, and M. I. Kupchenko У Solix, Ltd., 77 Partizanski Avenue, Minsk, Belarus Received June 22, 2005; accepted August 12, 2005 Т We report the first demonstration, to our knowledge, of soft-aperture Kerr-lens mode locking in a diode- 3+ pumped femtosecond Yb :YVO4 laser. Near-transform-limited pulses as short as 61 fs are generated around a center wavelength of 1050 nm with an output power of 54 mW and a pulse repetition frequency of 104.5 MHz. This is, to our knowledge, the shortest pulse generated directly from an Yb laser havingН a crys- talline host material. The femtosecond operation has a mode-locking threshold at an absorbed pump power 3+ of 190 mW. The nonlinear refractive indexes of the Yb :YVO4 crystal have been measured to be 19 ϫ10−16 cm2 /W and 15ϫ10−16 cm2 /W for the ␴ and ␲ polarizations, respectively, at 1080 nm. © 2005 Op- tical Society of America Б OCIS codes: 140.3480, 140.3580, 140.4050, 140.7090, 140.5680.
    [Show full text]