ALB Materials Inc Product List.Xlsx

Total Page:16

File Type:pdf, Size:1020Kb

ALB Materials Inc Product List.Xlsx ALB Materials Inc 2360 Corporate Circle. Suite 400 Website: www.albmaterials.com Henderson, NV 89074-7739 E-mail: [email protected] ALB Crystal Materials Products List Item No. Product Name Formula Shape ALB-Al2O3-CR Alumina (Al2O3) Infrared Crystal Al2O3 Wafer, windows ALB-BaF2-CR Barium Fluoride (BaF2) Crystal BaF2 Wafer, windows ALB-BGO12-CR Bismuth Germanate (Bi4Ge3O12 or BGO12) Crystal BGO12 or Bi4Ge3O12 Wafer, windows ALB-CaCO3-CR Calcite (CaCO3) Crystal CaCO3 Wafer, windows ALB-CaF2-CR Calcium Fluoride (CaF2) Infrared Crystal CaF2 Wafer, windows ALB-CdTe-CR Cadmium Telluride (CdTe) Crystal CdTe Wafer, windows ALB-Ce-YAG-CR Cerium-Doped Yttrium Aluminum Garnet (Ce: YAG) Scintillation Crystal Ce: YAG Wafer, windows ALB-Co-MgAl2O4-CR Cobalt-doped Magnesium Aluminate (Co: MgAl2O4) Crystal, Passive Q-switch Co: MgAl2O4 Wafer, windows ALB-Cr-YAG-CR Chromium-doped Yttrium-Aluminum Garnet (Cr: YAG) Crystal, Passive Q-switch Cr: YAG Wafer, windows ALB-Er-YAG-CR Erbium-Doped Yttrium Aluminium Garnet (Er: YAG) Laser Crystal Er: YAG Wafer, windows ALB-GaAs-CR Germanium Arsenide (GaAs) Semiconductor Crystal GaAs Wafer, windows ALB-GaN-CR Gallium Nitride (GaN) Crystal GaN Wafer, windows ALB-GaSb-CR Gallium Antimonide (GaSb) Crystal GaSb Wafer, windows ALB-Ge-CR Germanium (Ge) Crystal Ge Wafer, windows ALB-GGG-CR Gallium Gadolinium Garnet (Gd3Ga5O12 or GGG) Crystal GGG or Gd3Ga5O12 Wafer, windows ALB-InAs-CR Indium Arsenide (InAs) Crystal InAs Wafer, windows ALB-InP-CR Indium Phosphide (InP) Crystal InP Wafer, windows ALB-KBr-CR Potassium Bromide (KBr) Crystal KBr Wafer, windows ALB-KTaO3-CR Potassium Tantalum (KTaO3 or KT) Crystal KT or KTaO3 Wafer, windows ALB-KTN-CR Potassium Tantalum Niobium Oxide (KTaNbO3 or KTN) Crystal KTN or KTaNbO3 Wafer, windows ALB-LaAlO3-CR Lanthanum Aluminate (LaAlO3) Crystal LaAlO3 Wafer, windows ALB-LaF3-CR Lanthanum Fluoride (LaF3) Crystal LaF3 Wafer, windows ALB-LiAlO2-CR Lithium Aluminate (LiAlO2) Crystal LiAlO2 Wafer, windows ALB-LiF-CR Lithium Fluoride (LiF) Photoelectric Crystal LiF Wafer, windows ALB-LiNbO3-CR Lithium Niobate (LiNbO3) Crystal LiNbO3 Wafer, windows ALB-LiTaO3-CR Lithium Tantalate (LiTaO3) Crystal LiTaO3 Wafer, windows ALB-LSAT-CR Lanthanum Strontium Aluminum Tantalum Oxide (LSAT) Crystal LSAT or (LaAlO3)3(Sr2AlTaO6)7 Wafer, windows ALB-MgAl2O4-CR Magnesium Aluminate (MgAl2O4 or Spinel) Crystal MgAl2O4 or Spinel Wafer, windows ALB-MgF2-CR Magnesium Fluoride (MgF2) Infrared Crystal MgF2 Wafer, windows ALB-MgO-CR Magnesium Oxide (MgO) Crystal MgO Wafer, windows ALB-NaCl-CR Sodium Chloride (NaCl) Crystal NaCl Wafer, windows ALB-Nb-SrTiO3-CR Niobium-doped Strontium Titanate (Nb: SrTiO3) Crystal Nb: SrTiO3 Wafer, windows ALB-Nd-LuLiF4-CR Neodymium-doped Lutetium Lithium Fluoride (Nd:LLF or Nd: LuLiF4) Crystal Nd: LLF or Nd: LuLiF4 Wafer, windows ALB-Nd-YAG-CR Neodymium-Doped Yttrium Aluminium Garnet (Nd: YAG) Laser Crystal Nd: YAG Wafer, windows ALB-Nd-YLiF4-CR Neodymium-doped Yttrium Lithium Fluoride (Nd:YLF or Nd: YLiF4) Crystal Nd: YLF or Nd: YLiF4 Wafer, windows ALB-Nd-YVO4-CR Neodymium-Doped Yttrium Orthovanadate (Nd: YVO4) Laser Crystal Nd: YVO4 Wafer, windows ALB-Nd-GGG-CR Neodynium Doped Gadolinium Gallium Garnet (Nd:GGG) Crystal Nd:GGG Wafer, windows ALB-PbMoO4-CR Lead Molybdate (PbMoO4 or PM) Crystal PbMoO4 Wafer, windows ALB-PMNT-CR PMNT Crystal PMNT or Pb(Mg1/3Nb2/3)O3-PbTiO3 Wafer, windows ALB-Si-CR Silicon (Si) Semiconductor Crystal Si Wafer, windows ALB-SiC-CR Silicon Carbide (SiC) Semiconductor Crystal SiC Wafer, windows ALB-SiO2-CR Silica (SiO2) Photoelectric Crystal SiO2 Wafer, windows ALB-SrLaAlO4-CR Strontium Lanthanum Aluminate (SrLaAlO4) Crystal SrLaAlO4 Wafer, windows ALB-SrTiO3-CR Strontium Titanate (SrTiO3) Crystal SrTiO3 Wafer, windows ALB-TeO2-CR Tellurium Dioxide (TeO2) Photoelectric Crystal TeO2 Wafer, windows ALB-TGG-CR Terbium Gallium Garnet (Tb3Ga5O12 or TGG) Crystal TGG or Tb3Ga5O12 Wafer, windows ALB-TiO2-CR Titanium Dioxide (TiO2) Photoelectric Crystal TiO2 Wafer, windows ALB-Tm-LuLiF4-CR Thulium-doped Lutetium Lithium Fluoride (Tm: LLF or Tm: LuLiF4) Crystal Tm: LLF or Tm: LuLiF4 Wafer, windows ALB-Tm-YLiF4-CR Thulium-doped Yttrium Lithium Fluoride (Tm: YLF or Tm: YLiF4) Crystal Tm: YLF or Tm: YLiF4 Wafer, windows ALB-V-YAG-CR Vanadium-doped Yttrium-Aluminum Garnet (V: YAG) Crystal, Passive Q-switch V: YAG Wafer, windows ALB-YAG-CR Yttrium Aluminium Garnet (Y3Al5O12 or YAG) Crystal YAG or Y3Al5O12 Wafer, windows ALB-YAlO3-CR Yttrium Orthoaluminate (YAlO3) Crystal YAlO3 Wafer, windows ALB-Yb-YAG-CR Ytterbium-Doped Yttrium Aluminum Garnet (Yb: YAG) Laser Crystal Yb: YAG Wafer, windows ALB-YSZ-CR Yttria Stabilized Zirconia (YSZ) Crystal YSZ Wafer, windows ALB-YVO4-CR Yttrium Orthovanadate (YVO4) Photoelectric Crystal YVO4 Wafer, windows ALB-ZnO-CR Zinc Oxide (ZnO) Semiconductor Crystal ZnO Wafer, windows ALB-ZnSe-CR Zinc Selenide (ZnSe) Crystal ZnSe Wafer, windows www.albmaterials.com 1.
Recommended publications
  • Light and Color
    Light and Color Light is a complex phenomenon that is classically explained with a simple model based on rays and wavefronts. The Molecular Expressions Microscopy Primer explores many of the aspects of visible light starting with an introduction to electromagnetic radiation and continuing through to human vision and the perception of color. Each section outlined below is an independent treatise on a limited aspect of light and color. We hope you enjoy your visit and find the answers to your questions. Electromagnetic Radiation - Visible light is a complex phenomenon that is classically explained with a simple model based on propagating rays and wavefronts, a concept first proposed in the late 1600s by Dutch physicist Christiaan Huygens. Electromagnetic radiation, the larger family of wave-like phenomena to which visible light belongs (also known as radiant energy ), is the primary vehicle transporting energy through the vast reaches of the universe. The mechanisms by which visible light is emitted or absorbed by substances, and how it predictably reacts under varying conditions as it travels through space and the atmosphere, form the basis of the existence of color in our universe. Light: Particle or a Wave? - Many distinguished scientists have attempted to explain how electromagnetic radiation can display what has now been termed duality , or both particle-like and wave-like behavior. At times light behaves as if composed of particles, and at other times as a continuous wave. This complementary, or dual, role for the properties of light can be employed to describe all of the known characteristics that have been observed experimentally, ranging from refraction, reflection, interference, and diffraction, to the results with polarized light and the photoelectric effect.
    [Show full text]
  • Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal
    coatings Article Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal P. Barreiro 1, A. Andreotti 2, M. P. Colombini 2, P. González 1 and J. S. Pozo-Antonio 3,* 1 Dpto. Física Aplicada, Escola de Enxeñaría Industrial, University of Vigo, 36310 Vigo, Spain; [email protected] (P.B.); [email protected] (P.G.) 2 Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; [email protected] (A.A.); [email protected] (M.P.C.) 3 Dpto. Enxeñaría dos Recursos Naturais e Medio Ambiente, Escola de Enxeñaría de Minas e Enerxía, University of Vigo, 36310 Vigo, Spain * Correspondence: [email protected]; Tel.: +34-986814077 Received: 29 January 2020; Accepted: 21 February 2020; Published: 25 February 2020 Abstract: The colonization of stone-built monuments by different organisms (algae, fungi, lichens, bacteria, and cyanobacteria) can lead to biodeterioration of the stone, negatively affecting the artistic value of the heritage. To address this issue, laser cleaning has been widely investigated in recent years, due to the advantages it offers over traditional mechanical and chemical methods: it is gradual, selective, contactless, and environmentally friendly. That said, the laser parameters should be optimized in order to avoid any by-effects on the surface as a result of overcleaning. However, as the adjustment of each parameter to clean polymineralic stones is a difficult task, it would be useful to know the effect of overcleaning on the different forming minerals depending on the wavelength used. In this paper, three different wavelengths (355 nm, 532 nm, and 1064 nm) of a Q-Switch neodymium-doped yttrium aluminum garnet (Nd:Y3Al5O12) laser, commonly known as QS Nd:YAG laser were applied to extract a naturally developed sub-aerial biofilm from Vilachán granite, commonly used in monuments in the Northwest (NW)Iberian Peninsula.
    [Show full text]
  • Preparation of Barium Strontium Titanate Powder from Citrate
    APPLIED ORGANOMETALLIC CHEMISTRY Appl. Organometal. Chem. 13, 383–397 (1999) Preparation of Barium Strontium Titanate Powder from Citrate Precursor Chen-Feng Kao* and Wein-Duo Yang Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan TiCl4 or titanium isopropoxide reacted with INTRODUCTION citric acid to form a titanyl citrate precipitate. Barium strontium citrate solutions were then BaTiO3 is ferroelectric and piezoelectric and has added to the titanyl citrate reaction to form gels. extensive applications as an electronic material. It These gels were dried and calcined to (Ba,Sr)- can be used as a capacitor, thermistor, transducer, TiO3 powders. The gels and powders were accelerometer or degausser of colour television. characterized by DSC/TGA, IR, SEM and BaTiO3 doped with strontium retains its original XRD analyses. These results showed that, at characteristics but has a lower Curie temperature 500 °C, the gels decomposed to Ba,Sr carbonate for positive temperature coefficient devices under and TiO2, followed by the formation of (Ba,Sr)- various conditions. TiO3. The onset of perovskite formation oc- Besides solid-state reactions, chemical reactions curred at 600 °C, and was nearly complete at have also been used to prepare BaTiO3 powder. 1 1000 °C. Traces of SrCO3 were still present. Among them the hydrolysis of metal alkoxide , The cation ratios of the titanate powder oxalate precipitation in ethanol2, and alcoholic prepared in the pH range 5–6 were closest to dehydration of citrate solution3 are among the more the original stoichiometry. Only 0.1 mol% of the attractive methods. In 1956 Clabaugh et al.4 free cations remained in solution.
    [Show full text]
  • Clinical Optics Elkington
    Document file:///C|/download/www.netlibrary.com/nlreader/nlreader.dll@bookid=51924&Filename=cover.html9/30/2006 2:34:05 PM Document Page i Clinical Optics file:///C|/download/www.netlibrary.com/nlreader/nlreader.dll@bookid=51924&Filename=Page_I.html9/30/2006 2:34:28 PM Document Page ii Other books of interest Clinical Orthoptics Fiona Rowe 0 632 04274 5 Diagnosis and Management of Ocular Mobility Disorders Second Edition A. Anson & H. Davis 0 632 04798 4 Ocular Anatomy and Physiology T. Saude 0 632 03599 4 Clinical Anatomy of the Eye R.S. Snell & M.A. Lemp 0 632 04344 X Orthoptic Assessment and Management Second Edition D. Stidwill 0 632 05012 8 file:///C|/download/www.netlibrary.com/nlreader/nlreader.dll@bookid=51924&Filename=Page_II.html9/30/2006 2:34:29 PM Document Page iii Clinical Optics Third Edition Andrew R. Elkington CBE, MA, FRCS, FRCOphth Consultant Ophthalmologist Southampton Eye Unit Southampton General Hospital. Professor of Ophthalmology University of Southampton. President, Royal College of Ophthalmologists (1994–1997). Helena J. Frank BMedSci, FRCS, FRCOphth Consultant Ophthalmologist Royal Victoria Hospital Bournemouth. Michael J. Greaney MD, FRCSEd, FRCOphth Specialist Registrar Southampton Eye Unit Southampton General Hospital. file:///C|/download/www.netlibrary.com/nlreader/nlreader.dll@bookid=51924&Filename=Page_III.html (1 of 2)9/30/2006 2:34:30 PM Document Page iv © 1984, 1991, 1999 by Blackwell Science Ltd Editorial Offices: Osney Mead, Oxford OX2 0EL 25 John Street, London WC1N 2BL 23 Ainslie Place, Edinburgh EH3 6AJ 350 Main Street, Malden MA 02148 5018, USA 54 University Street, Carlton Victoria 3053, Australia 10, rue Casimir Delavigne 75006 Paris, France Other Editorial Offices: Blackwell Wissenschafts-Verlag GmbH Kurfürstendamm 57 10707 Berlin, Germany Blackwell Science KK MG Kodenmacho Building 7–10 Kodenmacho Nihombashi Chuo-ku, Tokyo 104, Japan The right of the Author to be identified as the Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.
    [Show full text]
  • Rietmann St., Biela J., Sensor Design for a Current Measurement System with High Bandwidth and High
    Sensor Design for a Current Measurement System with High Bandwidth and High Accuracy Based on the Faraday Effect St. Rietmann, J. Biela Power Electronic Systems Laboratory, ETH Zürich Physikstrasse 3, 8092 Zürich, Switzerland „This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of ETH Zürich’s products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional pur- poses or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document you agree to all provisions of the copyright laws protecting it.” Sensor Design for a Current Measurement System with High Bandwidth and High RIETMANN Stefan Accuracy Based on the Faraday Effect Sensor Design for a Current Measurement System with High Bandwidth and High Accuracy Based on the Faraday Effect Stefan Rietman and Jurgen¨ Biela Laboratory for High Power Electronic Systems, ETH Zurich, Switzerland Keywords Current Sensor, Sensor, Transducer, Frequency-Domain Analysis Abstract This paper presents the design of the optical system of a current sensor with a wide bandwidth and a high accuracy. The principle is based on the Faraday effect, which describes the effect of magnetic fields on linearly polarized light in magneto-optical material. To identify suitable materials for the optical system the main requirements and specification are determined. A theoretical description of the optical system shows a maximal applicable magnetic field frequency due to the finite velocity of light inside the material.
    [Show full text]
  • Sensitization of Titanium Dioxide and Strontium Titanate Electrodes By
    Subscriber access provided by University of Texas Libraries Sensitization of titanium dioxide and strontium titanate electrodes by ruthenium(II) tris(2,2'-bipyridine-4,4'-dicarboxylic acid) and zinc tetrakis(4-carboxyphenyl)porphyrin: an evaluation of sensitization efficiency for component photoelectrodes in a multipanel device Reza Dabestani, Allen J. Bard, Alan Campion, Marye Anne Fox, Thomas E. Mallouk, Stephen E. Webber, and J. M. White J. Phys. Chem., 1988, 92 (7), 1872-1878 • DOI: 10.1021/j100318a035 Downloaded from http://pubs.acs.org on February 2, 2009 More About This Article The permalink http://dx.doi.org/10.1021/j100318a035 provides access to: • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article The Journal of Physical Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 1872 J. Phys Chem. 1988, 92, 1872-1878 Sensitization of Titanium Dioxide and Strontium Titanate Electrodes by Ruthenium( I I) Trls (2,2’- bipyridine-4,4’-dicar box y lic acid) and Zinc Tetrakis (4-carboxy phen yl) porphyrin: An Evaluation of Sensitization Efficiency for Component Photoelectrodes in a Muitipanei Device Reza Dabestani, Allen J. Bard, Alan Campion, Marye Anne Fox,* Thomas E. Mallouk, Stephen E. Webber, and J. M. White Department of Chemistry, University of Texas, Austin, Texas 78712 (Received: December 1. 1986; In Final Form: October 6, 1987) The utility of polycrystalline anatase Ti02 and SrTi03 semiconductor electrodes sensitized by ruthenium(I1) tris(2,2’-bi- pyridine-4,4’-dicarboxylicacid) (1) and by zinc tetrakis(4-carboxypheny1)porphyrin (2) as component photoelectrodes in a multipanel array has been evaluated.
    [Show full text]
  • (YAG) Laser Capsulotomy Reference Number: CP.VP.65 Coding Implications Last Review Date: 12/2020 Revision Log
    Clinical Policy: Yttrium Aluminium Garnet (YAG) Laser Capsulotomy Reference Number: CP.VP.65 Coding Implications Last Review Date: 12/2020 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description This policy describes the medical necessity requirements for yttrium aluminium garnet (YAG) laser capsulotomy. Policy/Criteria I. It is the policy of health plans affiliated with Centene Corporation® (Centene) that YAG laser capsulotomy is medically necessary for the following indications: A. Posterior capsular opacification following cataract surgery resulting in best corrected visual acuity of 20/30 or worse associated with symptoms of blurred vision, visual distortion or glare affecting activities of daily living; B. Contraction of the posterior capsule with resulting displacement of the intraocular lens; C. Posterior capsular opacification resulting in best corrected visual acuity of 20/25 or worse, reducing the ability to evaluate and treat retinal detachment. Background YAG capsulotomy is the incision of an opaque posterior lens capsule in an aphakic or pseudophakic eye. This incision allows the capsule to retract and no longer serve as an obstruction to the passage of light through the media to the retina. The incision is performed with YAG laser. The eye examination must confirm the diagnosis of posterior capsular opacification and excludes other ocular causes of functional impairment by one of the following methods: The eye examination should demonstrate decreased light transmission (visual acuity worse than 20/30 or 20/25 if the procedure is performed to assist in the diagnosis and treatment of retinal detachment). Manifest refraction must be recorded with decrease in best-corrected visual acuity.
    [Show full text]
  • Colourless Gemstones
    GEMS THE gem DeteCTIVE: COLOURLess gemstONes superseded in the 1970s by a man-made gemstone called cubic zirconia that is still the most popular and common diamond imitation in modern jewellery due to its low cost, high dispersion and good hardness (8.5 on Mohs scale). Another man-made gemstone called synthetic Moissanite was introduced as a diamond simulant in the late 1990s. Although TED A synthetic Moissanite tests positive on a FFILI A diamond tester, it is easily distinguished from diamond by a property called double refraction, detected using a 10x loupe. This property is also displayed by zircon, a natural CCREESH, O’NEILS O’NEILS CCREESH, gemstone with a sub-adamantine lustre. M N N A Complicating the process of identification are treatments that may affect the value of gemstones. For example, a laser may be used to drill down to a dark diamond inclusion and remove it using acid in a process called GE COURTESY OF BREND OF COURTESY GE laser drilling. Also common is fracture filling, ma I where a high refractive-index lead glass is used to fill surface-reaching fractures to make Sparkling, colourless gemstones may People love to assume that their great ALTHOUGH them less visible. Fortunately, both of these appear similar to the naked eye but they grandma’s solitaire engagement ring SYNTHETIC treatments are easily identified using a loupe can vary significantly in identity, rarity contained a natural diamond by virtue MOISSANITE or microscope. TESTS POSITIVE and value. Making such distinctions of its age but they should think again. Some off-coloured diamonds may be ON A DIamOND requires the detective skills of a qualified Synthetically-produced sapphire, spinel and TESTER, IT CAN BE whitened using High Pressure High gemmologist.
    [Show full text]
  • Magnetic Properties and Defects in Iron Implanted Strontium Titanate Single Crystals and Thin Films
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-4-2012 12:00 AM Magnetic Properties and Defects in Iron Implanted Strontium Titanate Single Crystals and Thin films Misha Chavarha The University of Western Ontario Supervisor Lyudmila Goncharova The University of Western Ontario Graduate Program in Physics A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Misha Chavarha 2012 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Condensed Matter Physics Commons Recommended Citation Chavarha, Misha, "Magnetic Properties and Defects in Iron Implanted Strontium Titanate Single Crystals and Thin films" (2012). Electronic Thesis and Dissertation Repository. 435. https://ir.lib.uwo.ca/etd/435 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. DEFECTS AND MAGNETIC PROPERTIES OF IRON-IMPLANTED STRONTIUM TITANATE AND THIN FIMS (Spine title: Defects and magnetic properties of iron-implanted strontium titanate and thin films) (Thesis format: Monograph) by Misha Chavarha Graduate Program in Physics A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Misha Chavarha 2012 THE UNIVERSITY OF WESTERN ONTARIO SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES CERTIFICATE OF EXAMINATION Supervisor Examiners ______________________________ ______________________________ Dr. Lyudmila Goncharova Dr. Giovanni Fanchini ______________________________ Supervisory Committee Dr. Jeffrey Hutter ______________________________ ______________________________ Dr.
    [Show full text]
  • Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
    resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research.
    [Show full text]
  • Faraday Rotator Based on TSAG Crystal with <001> Orientation
    Vol. 24, No. 14 | 11 Jul 2016 | OPTICS EXPRESS 15486 Faraday rotator based on TSAG crystal with <001> orientation 1* 2 2 RYO YASUHARA, ILYA SNETKOV, ALEKSEY STAROBOR, ЕVGENIY 2 2 MIRONOV, AND OLEG PALASHOV 1National Institute for Fusion Science, 322-6, Oroshi-cho, Toki, Gifu 509-5292, Japan 2Institute of Applied Physics of the Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod, 603950, Russia *[email protected] Abstract: A Faraday isolator (FI) for high-power lasers with kilowatt-level average power and 1-µm wavelength was demonstrated using a terbium scandium aluminum garnet (TSAG) with its crystal axis aligned in the <001> direction. Furthermore, no compensation scheme for thermally induced depolarization in a magnetic field was used. An isolation ratio of 35.4 dB (depolarization ratio γ of 2.9 × 10−4) was experimentally observed at a maximum laser power of 1470 W. This result for room-temperature FIs is the best reported, and provides a simple, practical solution for achieving optical isolation in high-power laser systems. ©2016 Optical Society of America OCIS codes: (160.3820) Magneto-optical materials; (140.6810) Thermal effects. References and links 1. D. J. Gauthier, P. Narum, and R. W. Boyd, “Simple, compact, high-performance permanent-magnet Faraday isolator,” Opt. Lett. 11(10), 623–625 (1986). 2. R. Wynands, F. Diedrich, D. Meschede, and H. R. Telle, “A compact tunable 60dB Faraday optical isolator for the near infrared,” Rev. Sci. Instrum. 63(12), 5586–5590 (1992). 3. S. Banerjee, K. Ertel, P. D. Mason, P. J. Phillips, M. Siebold, M. Loeser, C.
    [Show full text]
  • Influence of the Epitaxial Strain on Magnetic Anisotropy in LSMO Thin Films for Spintronics Applications Sandeep Kumar Chaluvadi
    Influence of the epitaxial strain on magnetic anisotropy in LSMO thin films for spintronics applications Sandeep Kumar Chaluvadi To cite this version: Sandeep Kumar Chaluvadi. Influence of the epitaxial strain on magnetic anisotropy inLSMO thin films for spintronics applications. Electronics. Normandie Université, 2017. English. NNT: 2017NORMC248. tel-01717569 HAL Id: tel-01717569 https://tel.archives-ouvertes.fr/tel-01717569 Submitted on 26 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE Pour obtenir le diplôme de doctorat Spécialité ELECTRONIQUE, MICROELECTRONIQUE, OPTIQUE ET LASERS, OPTOELECTRONIQUE MICROONDES Préparée au sein de l’ENSICAEN et de l’UNICAEN Influence of the epitaxial strain on magnetic anisotropy in LSMO thin films for spintronics applications Présentée et soutenue par Sandeep Kumar CHALUVADI Thèse soutenue publiquement le 13 décembre 2017 devant le jury composé de M. VIRET Michel Chercheur (HDR), CEA Saclay Rapporteur M. BELMEGUENAI Mohamed Maître de conférences (HDR), Université Paris 13 Rapporteur Mme MOUGIN Alexandra Directrice de recherches CNRS, Université Paris 11 Examinateur M. MAZALEYRAT Frédéric Professeur des universités, ENS Cachan Examinateur M. PERNA Paolo Chercheur, IMDEA Madrid Examinateur Mme MECHIN Laurence Directrice de recherches CNRS, Université Caen Normandie Directeur de thèse Thèse dirigée par Laurence MECHIN, laboratoire GREYC (UMR 6072) iii Contents List of Abbreviations ..............................................................................................................
    [Show full text]