Title in 18-Point Times Font
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal
coatings Article Influence of the Laser Wavelength on Harmful Effects on Granite Due to Biofilm Removal P. Barreiro 1, A. Andreotti 2, M. P. Colombini 2, P. González 1 and J. S. Pozo-Antonio 3,* 1 Dpto. Física Aplicada, Escola de Enxeñaría Industrial, University of Vigo, 36310 Vigo, Spain; [email protected] (P.B.); [email protected] (P.G.) 2 Department of Chemistry and Industrial Chemistry, University of Pisa, 56126 Pisa, Italy; [email protected] (A.A.); [email protected] (M.P.C.) 3 Dpto. Enxeñaría dos Recursos Naturais e Medio Ambiente, Escola de Enxeñaría de Minas e Enerxía, University of Vigo, 36310 Vigo, Spain * Correspondence: [email protected]; Tel.: +34-986814077 Received: 29 January 2020; Accepted: 21 February 2020; Published: 25 February 2020 Abstract: The colonization of stone-built monuments by different organisms (algae, fungi, lichens, bacteria, and cyanobacteria) can lead to biodeterioration of the stone, negatively affecting the artistic value of the heritage. To address this issue, laser cleaning has been widely investigated in recent years, due to the advantages it offers over traditional mechanical and chemical methods: it is gradual, selective, contactless, and environmentally friendly. That said, the laser parameters should be optimized in order to avoid any by-effects on the surface as a result of overcleaning. However, as the adjustment of each parameter to clean polymineralic stones is a difficult task, it would be useful to know the effect of overcleaning on the different forming minerals depending on the wavelength used. In this paper, three different wavelengths (355 nm, 532 nm, and 1064 nm) of a Q-Switch neodymium-doped yttrium aluminum garnet (Nd:Y3Al5O12) laser, commonly known as QS Nd:YAG laser were applied to extract a naturally developed sub-aerial biofilm from Vilachán granite, commonly used in monuments in the Northwest (NW)Iberian Peninsula. -
Advanced Optics with Laser Pointer and Metersticks Roman Ya
Advanced Optics with Laser Pointer and Metersticks Roman Ya. Kezerashvili New York City College of Technology, The City University of New York 300 Jay Street, Brooklyn NY, 11201 Email: [email protected] Abstract We are using a laser pointer as a light source, and metersticks as an optical branch and the screen for wave optics experiments. It is shown the setup for measurements of wavelength of laser light and rating radial spacing of the CD, diffraction on a wire and a slit, observation of a polarization of light and observation of a hologram. 1. Introduction Laser pointers also know as laser penlights, have become very affordable recently due to new developments in laser technology. They are widely available at electronic stores, novelty shops, through mail order catalogs and by numerous other sources. They are in the price range from $1 to $30 as other electronic toys and are being treated as such by many parents and children. Pointers are used for other purposes such as the aligning of other lasers, laying pipes in construction, and as aiming devices for firearms. Laser pointer can be use to observe the interference, diffraction and polarization of light in college physics laboratory. Laser pointers can be used to produce holograms[1-2]. It been opinions it couldn't be done because of the short coherence of the beam and that laser pointer’s beam was not polarized. But it was practically proved that a laser pointer could be used not only to observe a hologram but to produce a high quality transmission and reflection display hologram[1-3]. -
Laser Pointer Safety About Laser Pointers Laser Pointers Are Completely Safe When Properly Used As a Visual Or Instructional Aid
Harvard University Radiation Safety Services Laser Pointer Safety About Laser Pointers Laser pointers are completely safe when properly used as a visual or instructional aid. However, they can cause serious eye damage when used improperly. There have been enough documented injuries from laser pointers to trigger a warning from the Food and Drug Administration (Alerts and Safety Notifications). Before deciding to use a laser pointer, presenters are reminded to consider alternate methods of calling attention to specific items. Most presentation software packages offer screen pointer options with the same features, but without the laser hazard. Selecting a Safe Laser Pointer 1) Choose low power lasers (Class 2) Whenever possible, select a Class 2 laser pointer because of the lower risk of eye damage. 2) Choose red-orange lasers (633 to 650 nm wavelength, choose closer to 635 nm) The National Institute of Standards and Technology (NIST) researchers found that some green laser pointers can emit harmful levels of infrared radiation. The green laser pointers create green light beam in a three step process. A standard laser diode first generates near infrared light with a wavelength of 808nm, and pumps it into a ND:YVO4 crystal that converts the 808 nm light into infrared with a wavelength of 1064 nm. The 1064 nm light passes into a frequency doubling crystal that emits green light at a wavelength of 532nm finally. In most units, a combination of coatings and filters keeps all the infrared energy confined. But the researchers found that really inexpensive green lasers can lack an infrared filter altogether. One tested unit was so flawed that it released nine times more infrared energy than green light. -
Modeling Light Interactions with Matter (Liquid Solutions)
Modeling Light Interactions with Matter (liquid solutions) Author(s): David Deutsch Date Created: July 31, 2015 (Revised June 22, 2017) Subject: Physics Grade Level: High School Standards: Next Generation Science Standards (www.nextgenscience.org) HS-PS4-5 Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy Schedule: Two 45 minute periods CCMR Lending Library Connected Activities: Diffraction DNA and the Diffraction of Light (CIPT) The Phantastic Photon and LEDs (CIPT) Text is available under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. - 1 – Objectives: Vocabulary: Laser pointers of several frequencies, · transmission index cards, and a small transparent · scattering container of extra virgin olive oil can be · absorption used to investigate the interaction of · fluorescence light with particles in solution. One can describe the observed phenomena · Stokes Shift operationally in terms of brightness, color, and direction or from a photon – particle perspective. Students Will: Materials: 1. Operationally define scattering, - Two plain white index cards transmission, absorption, and - One small, transparent container of fluorescence. extra virgin olive oil 2. Develop a photon/energy level - Laser pointers (green, red, blue/violet) model for absorption and fluorescence. 3. Interpret absorption and emission spectra and define the Stokes Shift The laser pointers used can damage Safety tissue, especially in the eye. Care must be taken to assure that laser light is aimed only at the targets intended in this activity Science Content for the Teacher: When light encounters matter (such as particles in a solution), there are several phenomena which may occur. -
Laser Pointer Safety
Laser Pointer Safety INTRODUCTION The use of laser diode pointers that operate in the visible radiation region (400 to 760 nanometers [nm]) is becoming widespread. These pointers are intended for use by educators while presenting talks in the classroom or at conventions and meetings. A high-tech alternative to the retractable, metal pointer, the laser pointer beam will produce a small dot of light on whatever object at which it is aimed. It can draw an audience¹s attention to a particular key point in a slide show. Laser pointers are not regulated at Oklahoma State University although the university has a Laser Safety Committee. Only Class IIIb and Class IV lasers are covered under OSU’s Laser Safety Program. The power emitted by these laser pointers ranges from 1 to 5 milliwatts (mW). Laser Pointers are similar to devices used for other purposes such as the aligning of other lasers, laying pipes in construction, and as aiming devices for firearms. They are widely available at electronic stores, novelty shops, through mail order catalogs and by numerous other sources. At $20 or even less, laser pointers are in the price range of other electronic toys and have been treated as such by many parents and children. Laser Pointers are not toys! Although most of these devices contain warning labels, as required by FDA regulations, many have been erroneously advertised as "safe". The potential for hazard with laser pointers is generally considered to be limited to the unprotected eyes of individuals who might be exposed by a direct beam (intrabeam viewing). -
High Performance Raman Spectroscopy with Simple Optical Components ͒ ͒ W
High performance Raman spectroscopy with simple optical components ͒ ͒ W. R. C. Somerville, E. C. Le Ru,a P. T. Northcote, and P. G. Etchegoinb The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand ͑Received 6 December 2009; accepted 19 April 2010͒ Several simple experimental setups for the observation of Raman scattering in liquids and gases are described. Typically these setups do not involve more than a small ͑portable͒ CCD-based spectrometer ͑without scanning͒, two lenses, and a portable laser. A few extensions include an inexpensive beam-splitter and a color filter. We avoid the use of notch filters in all of the setups. These systems represent some of the simplest but state-of-the-art Raman spectrometers for teaching/ demonstration purposes and produce high quality data in a variety of situations; some of them traditionally considered challenging ͑for example, the simultaneous detection of Stokes/anti-Stokes spectra or Raman scattering from gases͒. We show examples of data obtained with these setups and highlight their value for understanding Raman spectroscopy. We also provide an intuitive and nonmathematical introduction to Raman spectroscopy to motivate the experimental findings. © 2010 American Association of Physics Teachers. ͓DOI: 10.1119/1.3427413͔ I. INTRODUCTION and finish with a higher energy than the original one. This case corresponds to anti-Stokes Raman scattering. The Raman effect was discovered in 1928 by Raman1 and In reality, the photon is usually provided by a laser, which is now a major research tool with applications in physics, has a well defined frequency. -
Optical Characterization and Study of the Judd-Ofelt Parameters of Nd³+
UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE FÍSICA ALVARO HERRERA CARRILLO OPTICAL CHARACTERIZATION AND STUDY OF THE JUDD-OFELT PARAMETERS OF Nd3+ AND Sm3+ IONS IN DIFFERENT GLASSES AND CRYSTALS FOR PHOTONIC APPLICATIONS Maceió 2012 UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE FÍSICA ALVARO HERRERA CARRILLO OPTICAL CHARACTERIZATION AND STUDY OF THE JUDD-OFELT PARAMETERS OF Nd3+ AND Sm3+ IONS IN DIFFERENT GLASSES AND CRYSTALS FOR PHOTONIC APPLICATIONS Dissertation submitted to the Instituto de Física of the Universidade Federal de Alagoas in partial fulfillment of the requirements for the degree of Master in Science. Supervisor: Prof. Dr. Carlos Jacinto Da Silva Maceió 2012 Catalogação na fonte Universidade Federal de Alagoas Biblioteca Central Divisão de Tratamento Técnico Bibliotecária responsável: Fabiana Camargo dos Santos H564o Herrera Carrillo, Alvaro. Optical characterization and study of the Judd-Ofelt parameters of Nd³+ and Sm³+ ions in differents glasses and crystals for photonics applications / Alvaro Herrera Carrillo. – 2012. 117 f. : il. Orientador: Carlos Jacinto da Silva. Dissertação (Mestrado em Física) – Universidade Federal de Alagoas. Instituto de Física. Maceió, 2012. Bibliografia: f. 112-117. 1. Judd-Ofelt – Teoria. 2. Vidros. 3. Cristais. I. Título. CDU: 535.343.2 ACKNOWLEDGEMENTS To God that always full of wisdom every corner of my universe. To my dear parents, for their invaluable love, for guiding me spiritually to this new chapter of my life. To my son Juan Sebastian, result of great inspiration and light of my life. To my brothers for their constant emotional support. I extend my sincerest gratitude to my supervisor, PhD. Carlos Jacinto for his leadership, patience, and encouragement throughout the course of this research as well as his invaluable assistance for finalizing this dissertation . -
CD, DVD, and Blu-Ray Disc Diffraction with a Laser Ray Box Alan J
CD, DVD, and Blu-Ray Disc Diffraction with a Laser Ray Box Alan J. DeWeerd, University of Redlands, Redlands, CA compact disc (CD) can be used as a diffraction grat- of the rays are blocked and the remaining ray is aimed at the ing, even though its track consists of a series of pits, point where the origin of the polar graph paper meets the CD. not a continuous groove. Previous authors described The paths of the incoming, reflected, and diffracted rays are Ahow to measure the track spacing on a CD using an incident visible, especially with the room lights slightly dimmed, so it is laser beam normal to the surface1 or one at an oblique angle.2 very easy to measure their directions. Note that the diffracted In both cases, the diffraction pattern was projected on a light on the paper will curve slightly as it gets further from the screen and distance measurements allowed the track spacing CD because it comes from higher up where the track becomes to be calculated. I propose an alternative method using a laser less vertical. Using the outer part of the CD where the track is ray box, which is also applied to a DVD and a Blu-ray disc. less curved reduces this effect. The upper portion of the CD Figure 1 shows the simple layout for the experiment. The could also be masked off to eliminate the problem. CD is taped to the edge of a table so that slightly more than In the simplest case, the incident ray is normal to the half of it sticks up over the edge, which means that the track surface of the CD, so the incident and reflected rays overlap. -
Blackbody Radiation and Optical Sources
01/03/2021 Blackbody Radiation and Optical Sources Optical Engineering Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Prof. Elias N. Glytsis, School of ECE, NTUA 2 Wave-Particle Duality of Light De Broglie (1924): λ = h / p, h = 6.62607015 × 10-34 J sec, p = momentum (exact according to NIST 2018-2019) Φορτίο Ηλεκτρονίου: e = 1.602176634 × 10-19 Coulombs (exact according to NIST 2018-2019) Photons (zero rest mass) Particles (non-zero rest mass) https://physics.nist.gov/cgi-bin/cuu/Category?view=pdf&All+values.x=71&All+values.y=12 Prof. Elias N. Glytsis, School of ECE, NTUA 3 Light Sources Incoherent Light Sources Incandescent Sources Blackbody Radiators Discharge Lamps Line (Spectral) Sources) High-Intensity Sources Fluorescent Lamps Light Emitting Diodes (LED) Coherent Light Sources LASERS (Light Amplification via Stimulated Emission of Radiation) Prof. Elias N. Glytsis, School of ECE, NTUA 4 Blackbody Radiation https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Map%3A_Physical_C hemistry_(McQuarrie_and_Simon)/01%3A_The_Dawn_of_the_Quantum_Theory/1.01%3A_Blackbody_Radiation_Can not_Be_Explained_Classically Prof. Elias N. Glytsis, School of ECE, NTUA 5 Blackbody Radiation Prof. Elias N. Glytsis, School of ECE, NTUA 6 Electromagnetic Cavity Modes TEmpq Modes From Maxwell’s equations Electromagnetic Knowledge z a d TMmpq Modes y b x Dispersion Relation Prof. Elias N. Glytsis, School of ECE, NTUA 7 Blackbody Radiation 2ν q nd z c a R(ν) 1 1 2ν nb 1 c d p y 2ν b na x c m Density of Electromagnetic Modes per Frequency: Prof. Elias N. Glytsis, School of ECE, NTUA 8 Blackbody Radiation From Boltzmann’s statistics (energy of an em mode between E and E+dE): Normalization Average Energy per Electromagnetic Mode: Rayleigh-Jeans Equation Prof. -
Few-Cycle Pulses Amplification for Attosecond Science Applications: Modeling and Experiments
FEW-CYCLE PULSES AMPLIFICATION FOR ATTOSECOND SCIENCE APPLICATIONS: MODELING AND EXPERIMENTS by MICHAËL HEMMER M.S. Engineering Ecole Nationale Supérieure de Physique de Marseille, 2005 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Optics and Photonics at the University of Central Florida Orlando, Florida Spring Term 2011 Major professor: Martin Richardson © 2011 Michaël Hemmer ii ABSTRACT The emergence of mode-locked oscillators providing pulses with durations as short as a few electric-field cycles in the near infra-red has paved the way toward electric-field sensitive physics experiments. In addition, the control of the relative phase between the carrier and the pulse envelope, developed in the early 2000’s and rewarded by a Nobel price in 2005, now provides unprecedented control over the pulse behaviour. The amplification of such pulses to the millijoule level has been an on-going task in a few world-class laboratories and has triggered the dawn of attoscience, the science of events happening on an attosecond timescale. This work describes the theoretical aspects, modeling and experimental implementation of HERACLES, the Laser Plasma Laboratory optical parametric chirped pulse amplifier (OPCPA) designed to deliver amplified carrier-envelope phase stabilized 8-fs pulses with energy beyond 1 mJ at repetition rates up to 10 kHz at 800 nm central wavelength. The design of the hybrid fiber/solid-state amplifier line delivering 85-ps pulses with energy up to 10 mJ at repetition rates in the multi-kHz regime tailored for pumping the optical parametric amplifier stages is presented. -
Bright 1080P Laser Projector HZ39HDR
Bright 1080p Laser Projector HZ39HDR Exceptional colors and image quality for home entertainment 4,000 ANSI lumens with 300,000:1 contrast ratio Flexible installations with 1.3x zoom 4K UHD and 1080p HDR (HDMI 2.0) input compatible Accurate color with sRGB & REC.709 color profile Powerful 10-watt speaker DuraCore maintenance-free laser light source up to 30,000 hours Quiet operation 1080p Full 3D Bring the cinematic experience home with the incredible 4,000 lumens, 1080p Optoma HZ39HDR laser home theater projector. A DuraCore Laser light source eliminates lamp and filter replacements for up to 30,000 hours of maintenance-free operation with stunning color and image quality throughout the life of the projector. The compact size and low weight make mounting a breeze while its quiet operation ensures the HZ39HDR is seen, not heard. Vertical keystone correction and a 1.3x optical zoom provide flexible installation options. Blu-ray 3D support brings the immersive 3D movie experience home when paired with optional DLP-Link 3D glasses. Robust inputs include HDMI 2.0 and VGA for connectivity to a wide range of devices. CONNECTIVITY (May require optional accessories) 3D Blu-ray/DVD Players Smart ® Computers Phones Tablets Camcorders Apple TV Chromecast™ OPTICAL/TECHNICAL SPECIFICATIONS Display Technology Texas Instruments™ 0.65” 1080p DMD Color Wheel 4 segment RGBY Native Resolution 1080p 1 2 3 4 5 6 Maximum Resolution HDMI 2.0: 4K UHD (3840 x 2160 @ 60Hz) 4K (4096 x 2160, 60Hz) HDMI 1.4: WUXGA (1920 x 1200) 9 Brightness 4,000 ANSI lumens 7 8 Contrast Ratio 300,000:1 (Extreme Black enabled) 1,800:1 full on/full off 10 11 Displayable Colors 1.07 billion Lamp Life* Up to 30,000 hrs (Eco), 20,000 hrs (Normal) Light Source Type* DuraCore Laser Projection Method Front, rear, ceiling mount, table top 1. -
Light and Optics -- Build a Laser Communicator. Send Your Voice Over a Laser Beam
Chapter 7: Light and Optics -- Build a laser communicator. Send your voice over a laser beam. Scitoys.com Kitchen Science Ingredients Science Blog Custom Laser Crizal® No-Glare Lenses Power Do you stare at a computer all day? Try Crizal no-glare Supply lenses Rugged COTS Laser Diode Power Supplies for Military Science Toys Magnetism Electromagnetism Electrochemistry Radio Thermodynamics Aerodynamics Light and optics Simple laser communicator Make your own 3D pictures Making permanent rainbows. A solar powered marshmallow roaster Make a spectroscope from a CD. The impossible kaleidoscope Make a solar hotdog cooker Exploring invisible light A high resolution spectrograph. Time-lapse photography. High speed photography. Stacking photos for high depth of field. Biology Mathematics Computers and Electronics http://sci-toys.com/scitoys/scitoys/light/light.html[12/11/2014 12:08:29 PM] Chapter 7: Light and Optics -- Build a laser communicator. Send your voice over a laser beam. A simple laser communicator. How would you like to talk over a laser beam? In about 15 minutes you can set up your own laser communication system, using cheap laser pen pointers and a few parts from Radio Shack. For the transmitter you will need: 1. A laser pen pointer. You can get one for $10 from our catalog. 2. A battery holder that holds the same number of batteries as the laser pointer (often 3 cells). The batteries can be any size, but they must be the same voltage as the laser batteries. You may need to get one that holds two cells, and another that holds one cell, and wire them together in series.